# Multi-Criteria Decision Making Car Buying Problem



# **Problem 1**

| Problem 1 |       |         |  |  |  |
|-----------|-------|---------|--|--|--|
| Car       | Price | Mileage |  |  |  |
| Α         | 10000 | 26000   |  |  |  |
| В         | 15000 | 16000   |  |  |  |
| С         | 11000 | 22600   |  |  |  |
| D         | 12000 | 25000   |  |  |  |
| E         | 11000 | 27000   |  |  |  |

#### Problem 1 – Solution 1

| Problem 1 - Solution 1 |           |             |                      |      |  |  |
|------------------------|-----------|-------------|----------------------|------|--|--|
| Car                    | Price (↓) | Mileage (↓) | Price+Mileage<br>(↓) | Rank |  |  |
| Α                      | 10000     | 26000       | 36000                | 3    |  |  |
| В                      | 15000     | 16000       | 31000                | 1    |  |  |
| С                      | 11000     | 22600       | 33600                | 2    |  |  |
| D                      | 12000     | 25000       | 37000                | 4    |  |  |
| E                      | 11000     | 27000       | 38000                | 5    |  |  |

#### Problem 1 – Solution 2

| Problem 1 - Solution 2 |           |                     |             |                       |                    |      |
|------------------------|-----------|---------------------|-------------|-----------------------|--------------------|------|
| Car                    | Price (↓) | Normalized<br>Price | Mileage (↓) | Normalized<br>Mileage | Total Score<br>(↓) | Rank |
| Α                      | 10000     | 0.00                | 26000       | 0.91                  | 0.91               | 2    |
| В                      | 15000     | 1.00                | 16000       | 0.00                  | 1.00               | 3    |
| С                      | 11000     | 0.20                | 22600       | 0.60                  | 0.80               | 1    |
| D                      | 12000     | 0.40                | 25000       | 0.82                  | 1.22               | 5    |
| E                      | 11000     | 0.20                | 27000       | 1.00                  | 1.20               | 4    |
|                        |           |                     |             |                       |                    |      |
| Min                    | 10000     |                     | 16000       |                       |                    |      |
| Max                    | 15000     |                     | 27000       |                       |                    |      |

# Problem 2

| Problem 2 |       |                  |  |  |  |
|-----------|-------|------------------|--|--|--|
| Car       | Price | Miles Per Gallon |  |  |  |
| Α         | 10000 | 26.0             |  |  |  |
| В         | 15000 | 16.0             |  |  |  |
| С         | 11000 | 22.6             |  |  |  |
| D         | 12000 | 25.0             |  |  |  |
| E         | 11000 | 27.0             |  |  |  |

#### **Problem 2 – Numerical Solution**

| Problem 2 - Numerical Solution |           |                     |                               |                       |                                 |                    |      |  |
|--------------------------------|-----------|---------------------|-------------------------------|-----------------------|---------------------------------|--------------------|------|--|
| Car                            | Price (↓) | Normalized<br>Price | Miles Per Gallon<br>(MPG) (个) | Reciprocal<br>MPG (↓) | Normalized<br>Reciprocal<br>MPG | Total Score<br>(↓) | Rank |  |
| Α                              | 10000     | 0.00                | 26.0                          | 0.038                 | 0.06                            | 0.06               | 1    |  |
| В                              | 15000     | 1.00                | 16.0                          | 0.063                 | 1.00                            | 2.00               | 5    |  |
| С                              | 11000     | 0.20                | 22.6                          | 0.044                 | 0.28                            | 0.48               | 3    |  |
| D                              | 12000     | 0.40                | 25.0                          | 0.040                 | 0.12                            | 0.52               | 4    |  |
| E                              | 11000     | 0.20                | 27.0                          | 0.037                 | 0.00                            | 0.20               | 2    |  |
| Min                            | 10000     |                     |                               | 0.037                 |                                 |                    |      |  |
| Max                            | 15000     |                     |                               | 0.063                 |                                 |                    |      |  |

### **Problem 2 – Graphical Solution (Euclid)**

| Problem 2 - Graphical Solution (Euclid)                                                                         |           |                     |                                                      |      |                       |      |
|-----------------------------------------------------------------------------------------------------------------|-----------|---------------------|------------------------------------------------------|------|-----------------------|------|
| Car                                                                                                             | Price (↓) | Normalized<br>Price | ormalizedMiles Per GallonNormalizedPrice(MPG) (↑)MPG |      | Euclidean<br>Distance | Rank |
| Α                                                                                                               | 10000     | 0.00                | 26.0                                                 | 0.91 | 0.09                  | 1    |
| В                                                                                                               | 15000     | 1.00                | 16.0                                                 | 0.00 | 1.41                  | 5    |
| С                                                                                                               | 11000     | 0.20                | 22.6                                                 | 0.60 | 0.45                  | 4    |
| D                                                                                                               | 12000     | 0.40                | 25.0                                                 | 0.82 | 0.44                  | 3    |
| E                                                                                                               | 11000     | 0.20                | 27.0                                                 | 1.00 | 0.20                  | 2    |
| Min                                                                                                             | 10000     |                     | 16                                                   |      |                       |      |
| Max                                                                                                             | 15000     |                     | 27                                                   |      |                       |      |
| Car B is known as "dominated solution" according to the even swaps concept (http://www.tavana.us/evenswaps.pdf) |           |                     |                                                      |      |                       |      |

### Problem 2 – Graphical Approach (Euclid)



# Normalization

We often want to compare scores or values obtained on different scales. For example, how do we compare a 3.5 GPA with a score of 500 on a GRE exam? In order to do so, we need to "eliminate" the unit of measurement, this operation is called to *normalization*. There are different types of normalization. The most common normalization originates from linear algebra and treats the data as a vector in a multidimensional space. In this context, to normalize the data is to transform the data vector into a new vector whose norm (i.e., length) is equal to one. This means to scale a variable to have a values between 0 and 1 using the following formula:

$$x_{new} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

### **Euclidean Distance**

The distance between two points (*d*) defined as the square root of the sum of the squares of the differences between the corresponding coordinates of the points. For example, in two-dimensional Euclidean geometry, the Euclidean distance between two points  $a = (x_a, y_a)$  and

 $b = (x_b, y_b)$  is defined as:

$$d(a,b) = \sqrt{(x_a - x_b)^2 + (y_a - y_b)^2}$$
  
$$d(a,b) = \sqrt{(0.30 - 0.60)^2 + (0.70 - 0.30)^2}$$
  
$$d(a,b) = 0.50$$

