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A B S T R A C T   

Analytic hierarchy process (AHP) and data envelopment analysis (DEA) are two popular decision science 
methods with many business, science, and engineering applications. AHP is a Multi-Attribute Decision-Making 
(MADM) method for prioritizing alternatives, and DEA is a non-parametric method for estimating production 
frontiers. Each method has known strengths and weaknesses, and the strengths in one method can overcome the 
weaknesses in the other. We study several strategies to diminish the weaknesses of DEA with the strengths of 
pairwise comparisons in AHP. We tackle the low discrimination power inherent to conventional DEA methods. 
AHP, with its pairwise comparison capability, has been consistently used to increase the discrimination power 
and accuracy in DEA. We propose and evaluate several new hybrid MADM-DEA models of different computa
tional complexity and consistency, including combinations of the best-worst method (BWM) and its variants with 
DEA as well as a novel method composed of Measuring Attractiveness by a Categorical Based Evaluation 
Technique (MACBETH) and DEA. We further develop a new technique for evaluating the similarity among 
multiple ranking results in MADM. The new simple but powerful technique is called Rank Absolute Deviation 
(RAD) and is inspired by the mean absolute deviation method. Several numerical examples and a real-world 
problem are used to demonstrate the applicability and efficacy of the new BWM-DEA, MACBETH-DEA, and 
RAD methods proposed in this study. We illustrate how less computationally demanding MADM-DEA techniques 
provide rankings that are highly correlated with the benchmark DEA-AHP and different consensus ranking 
models.   

1. Introduction 

Analytic Hierarchy Process (AHP) is a structured method for making 
complex decisions grounded in mathematics and psychology. AHP was 
first proposed by Saaty (1980) and has been extensively studied and 
used for alternative ranking, prioritization, and selection. On the other 
hand, Data Envelopment Analysis (DEA) is a non-parametric technique 
in operations research, economics, and management science for esti
mating the Production Possibility Set (PPS) frontiers. DEA is used to 
measure the relative efficiency of Decision-Making Units (DMUs). By 
computing the relative efficiency of DMUs, DEA provides a ranking of 
the different alternatives whose behavior is measured against a 

reference benchmark defined by the most efficient one. These efficiency 
values are derived from an optimization problem that evaluates the 
capacity of DMUs to produce a given set of outputs using a series of 
inputs. 

Bouyssou (1999) reviewed the equivalence between the concept of 
efficiency in DEA and convex efficiency in Multiple-Criteria Decision- 
Making (MCDM) environments. The author emphasized the set depen
dence of the rankings generated by DEA as well as the importance of 
incorporating preference information – such as the relative importance 
of criteria – within the corresponding optimization problems, as is 
generally done by standard MCDM methods. In this regard, Sarkis 
(2000) showed how incorporating the value judgments of decision- 
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makers (DMs) into a DEA framework provides comparable results to 
those derived from traditional MCDM approaches. The author also 
highlighted the fact that DEA approaches require less information from 
DMs while providing useful rankings of the alternatives. Opricovic and 
Tzeng (2003) analyzed the main differences between DEA and MCDM 
techniques, particularly the fact that the former does not consider the 
preferences of DMs. They highlighted the fact that despite these differ
ences, DEA complements the screening of alternatives within MCDM 
frameworks. 

Although Farrell (1957) introduced the idea of measuring relative 
efficiency, the first DEA models were formulated by Charnes et al. 
(1978), under the Constant Returns to Scale (CRS) assumption called the 
CCR model, and Banker et al. (1984), under the Variable Returns to 
Scale (VRS) assumption called the BCC model. Many extensions of DEA 
have been developed over four decades of research (Hatami-Marbini 
et al., 2022). The conventional DEA suggests each DMU selects its most 
desirable value of the variables solving the corresponding optimization 
problem. Applying the subsequent weights allows the DMUs to achieve 
their maximum performance. It is common for many DMUs to achieve 
maximum efficiency (equal to 1). Different methodologies have been 
defined in case several DMUs are regarded as efficient. For instance, 
ranking methods can improve DEA’s discrimination power in differen
tiating between the DMUs with maximum efficiency (Labijak-Kowalska 
and Kadziński, 2021). These authors illustrated numerically the use of 
fifteen selected DEA approaches, including DEA-AHP combinations, to 
rank DMUs and the significant impact on the ranking that follows from 
the choice of a given method. 

Even though AHP and DEA have unique strengths and weaknesses 
and have evolved independently, research has shown that they can be 
integrated to solve real-world problems effectively and efficiently (Ho, 
2008; Dutta et al., 2022). As a result, many researchers have attempted 
to establish a relationship between the two methods and offset the 
weaknesses of one with the strengths of the other. 

This integration can be examined from two different strategic per
spectives. The first strategy is to overcome the weaknesses of AHP with 
the strengths of DEA by using DEA to find the relative weights and local 
priorities in AHP. Ramanathan (2006) used DEA and calculated the 
relative weights of the elements within an AHP hierarchy and showed 
that the rank-reversal phenomenon does not occur in the integrated 
approach. Ramanathan’s (2006) approach eliminated a major flaw in 
AHP with DEA. Sevkli et al. (2007) embedded the DEA method into AHP 
and used the hybrid DEAHP method effectively for supplier selection 
and showed that the DEAHP outperforms the AHP method. Citing 
Ramanathan (2006), these authors illustrated how DEA correctly cal
culates the true weights for a consistent judgment matrix. Furthermore, 
DEAHP does not suffer from rank reversal when irrelevant alternatives 
are added or removed. Starcevic et al. (2019) used the AHP results as 
multiple outputs in a DEA model for terrain vehicle selection. Liu and 
Hai (2005) proposed a new AHP method called Voting AHP (VAHP) and 
calculated the relative weights of the criteria with DEA instead of 
forming pairwise comparison matrices in AHP. Hadi-Venchehand and 
Niazi-Motlagh (2011) addressed some of the shortcomings of Liu and 
Hai’s (2005) VAHP method and applied an extended VAHP method to a 
supplier selection problem. Soltanifar and Hosseinzadeh Lotfi (2011) 
used the extended VAHP method to rank efficient DMUs in DEA. This 
method and several other hybrid methods are also discussed in Tavana 
et al. (2021). Wang et al. (2008) proposed a method to eliminate some of 
the shortcomings of AHP and used said method to evaluate bridge risks. 

The second strategy is to overcome the weaknesses of DEA with the 
strengths of AHP. Several methods have been developed for imple
menting this strategy. These methods include the qualitative data to 
quantitative data (Lin et al., 2011), ranking the efficient units (Joblon
sky, 2007), weighing the degree of improvement (the amount of change) 
in initial inputs and outputs of DMUs in the target setting (Lozano and 
Villa, 2009), restricting the input and output weights (Takamura and 
Tone, 2003), restricting the virtual weights of inputs and outputs for 

each DMU (Shang and Sueyoshi, 1995), weighting the inputs and out
puts in the DEA structure (Kim, 2000), reflecting information on the 
hierarchical structure of input and output data in the performance 
assessment of DMUs (Pakkar, 2016), achieving common weights in DEA 
(Pakkar, 2015), and estimating the missing data for DMUs (Farzipoor 
Saen et al., 2005). Azadeh et al. (2011) evaluated the effective personnel 
operation indicators by management, which are usually qualitative, and 
converted them into quantitative forms using AHP. Then they evaluated 
and optimized the ranking and efficiency of the organization by DEA. 

We propose and evaluate several new hybrid MADM-DEA methods of 
different computational complexity and consistency. These methods 
have been designed to reduce the number of computations required 
relative to recent developments of the DEA-AHP model (Alirezayee 
et al., 2012). This is particularly the case in terms of the number of 
pairwise comparisons. The hybrid techniques proposed do not require 
DM to compute the relative weights of the criteria, as is the case in DEA- 
AHP, increasing the consistency of the analysis. In particular, the DEA- 
AHP model will be used as a benchmark to compare the techniques 
introduced, which consist of combinations of the Best-Worst Method 
(BWM), Best Method (BM), and Worst Method (WM) with DEA. We also 
introduce and evaluate a novel, more complex, and computationally 
demanding approach composed of Measuring Attractiveness by a Cate
gorical Based Evaluation Technique (MACBETH) and DEA (MACBETH- 
DEA). 

We compute the maximize agreement heuristic (MAH) and design a 
new technique for evaluating the similarity among multiple ranking 
results in MADM. The new simple but powerful technique is called Rank 
Absolute Deviation (RAD) and is inspired by the mean absolute devia
tion method (Yager and Alajlan, 2014). We demonstrate the applica
bility and efficacy of the new MADM methods and MACBETH-DEA with 
several examples and a real-world case study that applies the RAD 
developed in this study. 

In particular, we illustrate how the rankings generated by the hybrid 
MADM-DEA models proposed do not differ significantly from the MAH 
and RAD consensus rankings. That is, hybrid techniques that are less 
demanding computationally display a high degree of correlation and 
similarity with the benchmark DEA-AHP and consensus ranking models. 
We will also analyze the ranking variability induced by the more 
demanding – in computational and consistency terms – MACBETH-DEA 
technique. 

The remainder of this paper is organized as follows: Section 2 re
views the DEA ranking methods considered. Section 3 defines the new 
BWM-DEA, BM-DEA, WM-DEA, and MACBETH-DEA methods. In Sec
tion 4, the proposed new methods are reviewed and compared with 
other popular ranking methods through a numerical example. Section 5 
introduces a new approach for selecting the results of a ranking model 
on a problem under investigation inspired by one of the new MADM 
methods. Section 6 presents a real-world problem to demonstrate the 
applicability and efficacy of the hybrid ranking methods proposed in this 
study. We conclude in Section 7 discussing the limitations of the models 
presented and future research directions. 

2. Ranking methods in DEA 

The DEA technique allows each DMU to select a set of weights for 
inputs and outputs, indicating that the DMU is in the most favorable 
position relative to the other units. This benevolent view allows to 
obtain several DMUs with a maximum relative efficiency score of 1. 
Conventional DEA models do not differentiate between efficient units 
(units with a relative efficiency score of 1). In response, researchers have 
proposed ranking methods to distinguish among the efficient DMUs. 
These ranking methods can be categorized into six groups. The first 
group uses super-efficiency models, including those proposed by 
Hashimoto (1997), Andersen and Petersen (1993), Mehrabian et al. 
(1999), Sueyoshi (1999), and Tone (2002). In the super-efficiency 
models, the efficient DMU is removed from the performance 
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evaluation process, and the changes in the performance frontier are 
studied. The second group uses target setting, where one unit has a 
higher rank in the group when introduced as a target for other units. This 
idea was used by Torgersen et al. (1996). The third group uses multi
variate statistical techniques to rank the DMUs (Sinuany-Stern et al., 
1994; Friedman and Sinuany-Stern, 1997; Sinuany-Stern and Friedman, 
1998). The fourth group ranks inefficient units by their degree of in
efficiency (Bardhan et al., 1996). Simple and easy-to-interpret scalar 
efficiency measures are provided using the concept of efficiency domi
nance and in the form of mixed integer programming models. The effi
ciency of DMUs is therefore determined through the comparisons made 
with actually observed performances, allowing for the generation of 
rankings among the efficient DMUs. The fifth group uses a combination 
of DEA models and multi-criteria optimization for ranking (Golany, 
1988; Li and Reeves, 1999; Hosseinzadeh Lotfi et al., 2010a, 2010b). 
Finally, the sixth group uses the cross-efficiency matrix for ranking 
DMUs (Sexton et al., 1986; Doyle and Green, 1995). 

In this section, we present cross-efficiency models in greater detail 
along with their advantages and disadvantages. In the cross-efficiency 
models, the self-evaluation process is replaced with the peer evalua
tion process. Two main qualities of cross-evaluation are generally 
emphasized when suggesting its implementation as an extension of 
traditional DEA models. Both qualities follow from the fact that DMUs 
are rated by the weighting schemes of all DMUs composing the sample 
analyzed. As a result, cross-evaluation delivers unique orderings while 
eliminating unrealistic weighting scenarios without requiring experts to 
impose weight constraints exogenously (Anderson et al., 2002). 

Recent developments focusing on the capacity of cross-efficiency 
models to obtain full rankings include the introduction of behavioral 
decision-making features, such as accounting for the satisfaction and 
consensus of DMs (Wu et al., 2021) and the inclusion of interval and 
fuzzy data (Wang et al., 2021). The combination of AHP and cross- 
efficiency DEA into hybrid models, exploiting their respective comple
mentarities, has been consistently developed in the literature. For 
instance, An et al. (2018) combined DEA and AHP to fully rank DMUs 
considering all possible interval cross efficiencies among DMUs, which, 
at the same time, were used to define interval preference relations 
characterizing the ranking. Similarly, Akbarian (2020) introduced an 
approach to rank DMUs combining the interval cross-efficiencies 
derived from DEA and interval AHP. 

Assume that a set of n homogeneous DMUs is available with m inputs 
and s outputs. Also, assume that for a given DMUj (j = 1,2,…, n), xij(i =
1, 2…m) is the ith input value and yrj(r = 1, 2…s) is the rth output value. 
Cross-efficiency in DEA is usually evaluated through two steps. In the 
first step, one of the basic DEA models, such as the CCR model (Charnes 
et al., 1978), is constructed for each DMUo, with the subscript referring 
to the unit being analyzed, to calculate the relative efficiency and the 
weights of the inputs, vio, i = 1,2,…,m, and outputs, uro, r = 1,2,…,s, 
for achieving this relative efficiency. For instance, the calculation based 
on the CCR Model (1) is described below. 

E*
oo = max

∑s

r=1
uroyro

s.t.
∑m

i=1
vioxio = 1

∑s

r=1
uroyrj −

∑m

i=1
vioxij⩽0; j = 1, 2,…, n

uro⩾0; r = 1, 2,…, s

vio⩾0; i = 1, 2,…,m

(1) 

After solving Model (1) and finding the optimal solution, the cross- 
efficiency of the other DMUs will be calculated based on the efficiency 
of DMUo using Eq. (2). 

Eoj =
∑s

r=1u*
royrj∑m

i=1v*
ioxij

; j = 1, 2,…, n (2)  

where (*) represents the optimal values of Model (1). In the second step, 
the cross-efficiency value of each DMU is calculated using Eq. (3) to 
determine the arithmetic mean of the cross-efficiency values computed 
by Eq. (2). 

Ej =
1
n
∑n

o=1
Eoj; j = 1, 2,…, n (3) 

Despite its advantages, the use of cross-efficiency matrices has two 
major drawbacks. First, Doyle and Green (1994) showed that the exis
tence of other optimal solutions in the DEA models changes DMU 
rankings. In other words, choosing different optimal solutions will 
change the ranking of other DMUs. Sexton et al. (1986) and Doyle and 
Green (1995) suggested using secondary goal models to reduce the ef
fects of this flaw. They used both benevolent and aggressive perspectives 
and introduced secondary goal models and weight selection. We will 
define both perspectives when analyzing the hybrid techniques pre
sented throughout the manuscript. For completeness, they have both 
been described in the Appendix A section. Soltanifar and Shahghobadi 
(2013) proposed a new method to select the best secondary goal model 
according to the benevolent perspective by considering different sec
ondary goal models and introducing new ones. Davtalab-Olyaie (2018) 
defined a new criterion to propose secondary goal models. 

The second flaw lies in using the arithmetic mean (instead of other 
metrics, such as the geometric, Winsorized, or interquartile mean) to 
aggregate the results of the cross-efficiency matrix. A central tendency 
measure is needed to describe the performance of each DMU. In this 
regard, the appropriate description depends on the type of observations 
and the characteristics of the problem being discussed. In the traditional 
cross-efficiency method, the arithmetic mean is proposed without 
considering these specific characteristics while other measures of central 
tendency may constitute a more appropriate description of the efficiency 
of the DMU under evaluation. Zerafat Angiz et al. (2013) addressed this 
concern by proposing a new method for aggregating cross-efficiency 
matrix results based on the preferred voting process. In this paper, we 
use MADM and pairwise comparisons to address these flaws. 

3. Ranking methods based on pairwise comparisons 

In this section, we study four ranking methods based on pairwise 
comparisons: 

3.1. AHP-DEa 

AHP has been proposed to weaken the flaws of the cross-efficiency 
method by using the pairwise comparison between DMUs to calculate 
the relative weights. Sinuany-Stern et al. (2000) proposed a two-step 
process and two DEA models to evaluate the performance of DMUs 
relative to each other. They then used AHP to calculate the final weights 
of these units through pairwise comparison among the DMUs. Alir
ezayee and Rafiee Sani (2010) claimed that Sinuany-Stern et al.’s (2000) 
method has several shortcomings, including inconsistent DEA rankings 
in multi-input and multi-output problems. The author showed how an 
inefficient unit in the Sinuany-Stern et al.’s (2000) method may rank 
higher than an efficient unit and cited poor discrimination power in 
problems with many inputs and outputs. 

To eliminate these weaknesses, Rafiee Sani (2010) introduced a new 
process where the envelopment form was used to calculate the pairwise 
comparisons of the units with a new format each time by removing a 
DMU from the PPS. Finally, the AHP method was applied to the obtained 
pairwise comparison matrices. A similar envelopment form and PPS 
were proposed by Rezaeitaziani and Barkhordariahmadi (2015) to 
achieve improved results in AHP-DEA. Alirezayee et al. (2012) showed 
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that the method of Alirezayee and Rafiee Sani (2010) needs to solve n(n- 
1) + n linear programming models for a problem with n DMUs despite 
eliminating many shortcomings of the Sinuany-Stern et al.’s (2000) 
method. Consequently, they proposed a new method that required 
solving only n linear programming problems. In their method, after 
solving Model (1) for all DMUs and considering Eq. (2), the matrix of 

pairwise comparisons 
([

aij
]

n×n

)
is formed through Eq. (4). 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aij =
Eii + Eji
Ejj + Eij

aji =
1
aij

i, j = 1, 2,⋯n (4) 

Finally, the weight of each DMU is obtained by calculating relative 
weights via least-squares, logarithmic least squares, eigenvectors, or 
approximation methods. Ehsanifar (2014) used this method to rank 
different cars. 

In all of the above versions of the AHP-DEA method, the structure of 
pairwise comparison matrices in AHP has been used to rank DMUs in 
DEA. Recent research developments introduced in the literature on AHP- 
DEA include the analysis of interval cross-efficiencies (An et al., 2018) 
and the incorporation of fuzzy variables (Yilmaz et al., 2022). Other 
MADM techniques that implement a pairwise comparison process will 
be considered to develop new ranking methods in DEA. 

3.2. Best-worst method-DEA (BWM-DEA) 

One of the methods for weighting criteria is the best-worst method 
(BWM) proposed by Rezaei (2015) and implemented by many re
searchers, including Ahmadi et al. (2017), Delice & Can (2020), Liang 
et al. (2020), Rezaei (2015), and Rezaei et al. (2015, 2016). In this 
method, after determining the best and worst criteria, the pairwise 
comparison of other criteria with these two becomes the basis for pre
senting a mathematical programming model. Rezaei (2015) proposed 
the linear and non-linear versions of the method and discussed the 
inconsistency ratio. The weight of the criteria is extracted from solving a 
mathematical programming model, while the inconsistency ratio checks 
the validity of the comparisons. The algorithm of this method is defined 
as follows: 

Step 1. Identify the influential criteria for the purpose of the problem 
by interacting with the DM: C1,C2, ...,Cm. 

Step 2. Determine the best (CB) and the worst (CW) criteria among 
the final ones obtained based on the DM’s preferences. 

Step 3. Determine the DM’s preferences for the best criterion over 
others based on Saaty’s 9-point scale 

(
aBj, j = 1, 2, ...,m

)
. 

Step 4. Determine the DM’s preferences for the other criteria over 
the worst one based on Saaty’s 9-point scale 

(
ajW, j = 1, 2, ...,m

)
.

Step 5. Obtain the weights of the criteria by solving Model (5). 

minξL

s.t.
⃒
⃒wB − aBjwj

⃒
⃒⩽ξL, ∀j

⃒
⃒wj − ajWwW

⃒
⃒⩽ξL, ∀j

∑

j
wj = 1

wj⩾0, ∀j

(5)  

Theorem 1. Model (5) is always feasible. 

Proof. This is achieved by taking wB, ξL = 1 and all other variables 
equal to zero. Therefore, we conclude that Model (5) is feasible, and this 
ends the proof. □. 

Model (5) is known as the linear version of the BWM method (Rezaei, 
2016). It should be noted that nonlinear, random, and multiplicative 
versions of this method are also provided, but we use the linear version, 

which is the simplest and the most common version of the BWM method. 
If 
(
w*

1,w*
2,…,w*

m
)

are the optimal solutions of Model (5), ξL* is consid
ered the inconsistency rate of the system. The closer the inconsistency 
rate is to zero, the greater the confidence in the judgments made by the 
DMs. 

Omrani et al. (2020) presented the DEA-BWM multi-objective model 
by combining the concepts of DEA and BWM, which reduced the 
freedom of action of input and output weights by considering DM 
preferences. They also proposed goal programming for finding the 
common set of weights of inputs and outputs based on the decision of the 
DM. Fan et al. (2020) used the Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) and BWM methods to improve the 
cross-efficiency method in DEA. After forming a cross-efficiency matrix 
in a DEA problem, they calculated the ideal and anti-ideal options and 
the Euclidean distance of the other options in the matrix from these two 
options. They extracted the final weights of the DMUs based on these 
distances and the BWM method. The integration of BWM and DEA with 
fuzzy data can be found in Chen and Ming (2020). 

We will establish this relationship differently by considering a set of 
homogenous DMUs that use m inputs xij, 1⩽i⩽m, 1⩽j⩽n to produce s 
output of yrj, 1⩽r⩽s, 1⩽j⩽n. The algorithm of our proposed BWM-AHP 
method is defined as follows. 

Step 1. Calculate the best and the worst DMUs using Eqs. (6) and (7), 
respectively. Note that these units may be virtual units and may not exist 
externally. 

Best DMU =
(
x−1 ,⋯, x−m , y

+
1 ,⋯, y+s

)
; x−i = min

1⩽j⩽n
xij & y+r = max

1⩽j⩽n
yrj (6)  

Worst DMU =
(
x+1 ,⋯, x+m , y

−
1 ,⋯, y−s

)
; x+i = max

1⩽j⩽n
xij & y−r = min

1⩽j⩽n
yrj (7) 

Step 2. After solving Model (1) for all DMUs, solve Models (8) and 
(9) for the best DMU and the worst DMU, respectively. 

EBB = max
∑s

r=1
ury+r

s.t.
∑m

i=1
vix−i = 1

∑s

r=1
uryrj −

∑m

i=1
vixij⩽0; j = 1, 2,…, n

ur⩾0; r = 1, 2,…, s

vi⩾0; i = 1, 2,…,m

(8)  

EWW = max
∑s

r=1
ury−r

s.t.
∑m

i=1
vix+i = 1

∑s

r=1
uryrj −

∑m

i=1
vixij⩽0; j = 1, 2,…, n

ur⩾0; r = 1, 2,…, s

vi⩾0; i = 1, 2,…,m

(9) 

Step 3. Find pairwise comparisons of the Best DMU (BDMU) with 
other DMUs and the other DMUs with the Worst DMU (WDMU) through 
Eqs. (10) and (11), respectively, using Eq (2). 

aBj =
EBB + EjB
Ejj + EBj

∀j (10)  

ajW =
Ejj + EWj
EWW + EjW

∀j (11) 

Step 4. Obtain the weights of the DMUs by solving Model (5) and 
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rank the DMUs based on these weights. 

3.3. Best method-DEA (BM-DEA) and worst method-DEA (WM-DEA) 

Leal (2020) provided a simple version of the AHP method, consid
ering only pairwise comparisons of the best option with the other op
tions. Based on this idea, the BM-DEA method is presented as follows. 

Step 1. Calculate the best DMU using Eq. (6). Note that this unit may 
be a virtual unit and may not exist externally. 

Step 2. After solving Model (1) for all DMUs, solve Model (8) for 
BDMU. 

Step 3. Define pairwise comparisons between BDMU and the other 
DMUs through Eq. (10) using Eq. (2). 

Step 4. Obtain the weights of the DMUs from Eq. (12) and rank the 
DMUs based on these weights. 

wj =
1/aBj

∑n
k=11/aBk

∀j (12) 

Considering WDMU and the idea presented by Leal (2020), the WM- 
DEA method can also be described as follows. 

Step 1. Calculate the worst DMU using Eq. (7). Note that this unit 
may be a virtual unit and may not exist externally. 

Step 2. After solving Model (1) for all DMUs, solve Model (9) for 
WDMU. 

Step 3. Define pairwise comparisons between the other DMUs and 
WDMU through Eq. (11) using Eq. (2). 

Step 4. Obtain the weights of the DMUs from Eq. (13) and rank the 
DMUs based on these weights. 

wj =
ajW

∑n
k=1akW

∀j (13)  

3.4. MACBETH-DEA method 

MACBETH is a multi-attribute compensatory decision method 
developed by Bana e Costa and Vansnick (1994). This method quickly 
attracted the attention of researchers and was used in various decision- 
making problems (Bana e Costa et al., 2012; Ishizaka and Siraj, 2018). 
Applications of this method include performance analysis of online 
bookstores (Ertugrul and Qztas, 2016), evaluation and selection of 
flexible manufacturing systems (Karande and Chakraborty, 2013a), 
supplier performance assessment (Akyuz et al., 2018; Karande and 
Chakraborty, 2013b), and the evaluation of steam boiler alternatives 
(Kundakcı, 2019), among others. 

The idea in MACBETH is to prioritize and rank criteria and alterna
tives based on pairwise comparisons and a distance scale of priority 
information. In this method, DMs are asked to make pairwise compari
sons between two criteria or two alternatives using a seven-point scale, i. 
e., extreme, very strong, strong, moderate, weak, very weak, and null 
(Bana e Costa et al., 2002, 2012). The performance scores are usually 
qualitative arbitrations which are further quantified proportionately on 
a 0–100 scale. In this way, DMs can determine the relative and absolute 
weights of several alternatives based on the relative weights of multiple 
criteria. The M-MACBETH Software is available at (https://m-macbeth. 
com/) to facilitate all the necessary calculations. Although DMs gener
ally use this method to prioritize qualitative criteria, it is also used for 
quantitative criteria. In particular, quantitative performance levels are 
also transformed into commensurate MACBETH measures with refer
ence levels named good and neutral. 

The algorithm for the new MACBETH-DEA method is presented as 
follows: 

Step 1. Calculate the two reference levels, good and neutral, using 
Eqs. (6) and (7), respectively. Note that these units may be virtual DMUs 
and may not exist externally. 

Step 2. After solving Model (1) for all DMUs, solve Models (8) and 
(9) for the good (BDMU) and neutral (WDMU) levels, respectively. Ta
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Step 3. Define the pairwise comparison matrix through Eqs. (4), 
(10), (11), and (14) using Eq. (2). 

aBW =
EBB + EWB
EWW + EBW

(14) 

Step 4. Obtain the MACBETH scores of the DMUs by solving Model 
(15) and ranking the DMUs based on these scores.   

If the judgments made are inconsistent, problem (15) will be infea
sible (Bana et al., 1999). Therefore, after forming the pairwise com
parison matrix, we divide the maximum distance between the pairwise 
comparisons – up to 1 – by 6 and call the resulting value d. We then 
consider 1 equal to the zero scale and the values between 1 and 1 + d 
equal to the scale 1. This process is repeated until the values equivalent 
to scale six are determined from Table 1. Finally, we input the scales in 
M-MACBETH software and derive the final ranking. 

Due to the proximity of the pairwise comparison values to each other 
and Model (15) constraints, the infeasibility of this Model is high. We 
incorporate the deviational variables dijkl, ∀i, j, k, l ∈ {1,2,…, n;B,W},

into Model (15) to increase the flexibility of its constraints, eliminating 
this latter shortcoming and delivering a model immediately applicable 
within a DEA environment. Thus, we propose Model (16) for the 
MACBETH-DEA method.    

Theorem 2. Model (16) is always feasible. 

Proof. This is achieved by taking dijkl = aij − akl; ∀i, j, k, l ,
such that aij > akl⩾1, and all other variables equal to zero. Therefore, 

we conclude that Model (16) is feasible, and this ends the proof. □. 
If (v*(DMU1), v*(DMU2),…, v*(DMUn), d) is the optimal solution of 

Model (16), then the weight of DMUs is given by (v*(DMU1), v*(DMU2),

…, v*(DMUn)) and ψ* =
∑

i
∑

j
∑

k
∑

ld*
ijkl will be considered as the 

inconsistency rate of the system. The closer the inconsistency rate is to 
zero, the greater the confidence in the judgments made by the experts. 

A remark is due regarding the assumption that all the cross efficient 
comparisons introduced in the constraints are higher than one. That is, 

the inequalities aij > akl⩾1 imposed within the third set of constraints in 
Equations (15) and (16) cannot hold for all elements of a pairwise 
comparison matrix, since, if this were the case, we should have 
aji < alk⩽1. As illustrated in Equation (4), if aij and aji are not equal to 1, 
one of them will be greater than 1. MACBETH calculates the score of 
each DMU solely based on the latter pairwise comparisons. 

4. Survey on new ranking methods 

In this paper, an important relationship has been established be
tween DEA and MADM. Different MADM methods based on pairwise 
comparisons have been used to rank DMUs in DEA. In a scenario with n 
DMUs, the AHP-DEA method requires solving n linear programming 
problems, calculating 

(
n2 − n

)/
2 pairwise comparisons, and using one 

of the methods available to compute the relative weights (i.e., least- 
squares, logarithmic least squares, eigenvector, or approximation tech
niques). Note that each method used for calculating relative weights has 
its own computational complexity. Applying the BWM-DEA method 
requires solving n + 3 linear programming problems and calculating 
2n + 1 pairwise comparisons, but there is no need to perform any extra 
calculations to find the relative weights. The introduction of BDMU and 
WDMU makes the comparison structure of DMUs more manageable than 
the ideal and anti-ideal alternatives used in the cross-efficiency matrix 
defined by Fan et al. (2020). In the BM-DEA and WM-DEA methods, we 
only need to solve n + 1 linear programming problems and calculate n 

pairwise comparisons. In these latter methods, there is no need to 
calculate the relative weights. 

The decrease in the number of pairwise comparisons required by 
BWM-DEA relative to AHP-DEA implies that the inconsistency of the 
final judgments should be lower. The AHP-DEA method requires per
forming the calculations relevant to obtain the inconsistency ratio. Saaty 
(1980) suggests that the results of the pairwise comparisons are 
acceptable if the inconsistency ratio is less than or equal to 0.1. Aguarón 
et al. (2020) suggested using the geometric consistency index method to 
reduce the inconsistency in AHP. On the other hand, the optimal value of 
Model (5) includes all the consistent information required by BWM- 
DEA. In particular, a value of the objective function close to zero in
dicates consistency in the judgments. Therefore, there are no in
consistencies in the final judgments produced by the BM-DEA and WM- 
DEA methods. In the MACBETH-DEA case, the use of pairwise 

min[v(BDMU) − v(WDMU) ]
s.t.

v(WDMU) = 0 (arbitrary score)
v(DMUi) − v

(
DMUj

)
= 0 ; i, j ∈ {1, 2,…, n;B,W}& aij = 1

v(DMUi) − v
(
DMUj

)
⩾v(DMUk) − v(DMUl) + aij − akl; i, j, k, l ∈ {1, 2,…, n;B,W}& aij > akl⩾1

(15)   

min[v(BDMU) − v(WDMU) ] +
∑

i

∑

j

∑

k

∑

l
dijkl

s.t.
v(WDMU) = 0 (arbitrary score)
v(DMUi) − v

(
DMUj

)
= 0 ; i, j ∈ {1, 2,…, n;B,W}& aij = 1

v(DMUi) − v
(
DMUj

)
+ dijkl⩾v(DMUk) − v(DMUl) + aij − akl; i, j, k, l ∈ {1, 2,…, n;B,W}& aij > akl⩾1

dijkl⩾0; ∀i, j, k, l such that aij > akl⩾1

(16)   
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comparisons is slightly different. This method is similar to BWM-DEA in 
terms of computational volume and similar to AHP-DEA in terms of the 
information required. A summary of the comparison between the 
methods proposed and reviewed, assuming a total of n DMU is given in 
Table 2. 

To better compare the proposed methods with each other and other 
ranking methods, we consider the following example with six DMUs, 
two inputs, and two outputs (Sexton et al., 1986). The inputs and out
puts of each DMU are listed in Table 3. 

The results of the most popular ranking methods in DEA and those 
proposed in this study applied to Sexton et al.’s (1986) example are 
presented in Fig. 1. This figure shows that the traditional CCR models 
rank four efficient DMUs first. The super-efficiency methods rank the 
efficient units based on their respective models and the inefficient ones 
based on their efficiency scores. The remaining methods presented rank 
all DMUs. Whenever appropriate, the results are described from both the 
optimistic (benevolent) and the pessimistic (aggressive) perspectives. 

For simplicity, these DEA hybrid methods are called AHP-Benevolent, 
AHP-Aggressive, BWM-Benevolent, BWM-Aggressive, BM-Benevolent, 
BM-Aggressive, WM-Benevolent, WM-Aggressive, MACBETH- 
Benevolent, and MACBETH-Aggressive. One of the most remarkable 
features of Fig. 1 is the increase in ranking variability observed as the 
benevolent, and aggressive versions of the hybrid models are intro
duced, illustrating the effect of the reference solutions in determining 
the ranking delivered by these techniques. 

The variety of ranking methods considered implies that DMUs are 
evaluated from very different perspectives. The results further show how 
all super-efficiency methods rank inefficient DMUs fifth and sixth since 
these DMUs were ranked based on their efficiency scores while the other 
units were ranked based on their super-efficiency scores. In contrast, 
DMUs are ranked according to their best efficiency score and their ef
ficiency score compared to other DMUs in all methods considering 
pairwise comparisons. 

5. Selecting a ranking method 

Each ranking method ranks DMUs from a different perspective. The 
million-dollar question is, which ranking method should a DM choose? 
One way to deal with this question is to combine ranking results using 
techniques such as the Copeland method (Momeni, 2016), preferential 
voting (Soltanifar and Shahghobadi, 2013), or other similar methods. 
However, we are not only interested in a consensus ranking; we are 
searching for suitable rankings within a given set of possible ones, which 
requires defining a similarity score among rankings akin to a standard 
correlation coefficient. To this end, we propose a simple yet powerful 
ranking method called Rank Absolute Deviation (RAD), inspired by the 
concept of mean absolute deviation in statistics. The premise of this 
technique is to select the ranking methods producing similar results to 
those of the competing methods. In Section 6, we will illustrate the 
similarities between the RAD method proposed and a commonly 
implemented one such as MAH. The latter is described in Section 5.2. 

5.1. The rank absolute deviation method 

Let us assume that K ranking methods are utilized and denoted by 
DMUk

i (i = 1,2,…, n; k = 1, 2,…,K) the ith priority DMU from the view
point of the kth method. We use Eq. (16) to find the priority matrix for 

Table 2 
A comparison of different ranking methods.  

Methods Linear 
programs 

Pairwise 
comparisons 

Additional 
calculations to 
find relative 
weights 

Inconsistency 
potential 

AHP-DEA n Yes High 
BWM-DEA n + 3 2n + 1 No Medium 
BM-DEA n + 1 n No No 
WM-DEA n + 1 n No No 
MACBETH- 

DEA 
n + 3 (n+ 2)(n+

1)/2 
No High  

Table 3 
The input and output data for six DMUs in Sexton et al. (1986).  

DMU Input1 Input2 Output1 Output2 

DMU1 150 0.2 14,000 3500 
DMU2 400 0.7 14,000 21,000 
DMU3 320 1.2 42,000 10,500 
DMU4 520 2 28,000 42,000 
DMU5 350 1.2 19,000 25,000 
DMU6 320 0.7 14,000 15,000  

Fig. 1. DMU rankings for Sexton et al.’s (1986) problem solved with different methods.  

M. Tavana et al.                                                                                                                                                                                                                                



Expert Systems With Applications 223 (2023) 119902

8

each method. That is, a binary pairwise comparison matrix of the DMU 
rankings is constructed for each method. A zero is used if a DMU in a row 
of the matrix is ranked less than or equal to the DMU in the column, and 
a one is used if the DMU in the row is ranked greater than the DMU in the 
column of the matrix. Note that the diagonal values are always equal to 
zero. 

Rk =
[
akii′

]

n×n, a
k
ii′ =

{
0 if DMUk

i ⩽DMU
k
i′

1 if DMUk
i > DMUk

i′
; i, i′ = 1, 2,…, n; k

= 1, 2,…,K (17) 

Next, we use Eq. (17) to obtain the RAD score between each method 
and other methods. The ranking with the least RAD score is the most 
similar ranking to others. That is, if the rankings of method k have the 
least distances (are completely similar) to the rankings of all other 
ranking methods, the similarity is maximum, and the RAD score will be 
equal to zero. However, if the rankings of method k have the most dis
tances (are completely dissimilar) to the rankings of all other ranking 
methods, the similarity is minimum, and the RAD score will be equal to 
(K − 1)× (n2 − n). 

Denote by ρk the total deviation score of the ranking method k 
compared to other methods. 

ρk =
∑K

k′ =1
k′ ∕=k

∑n

i=1

∑n

i′ =1

⃒
⃒akii′ − ak

′

ii′
⃒
⃒, k = 1, 2,…K (18) 

As noted before, the diagonal values are always equal to zero and 
ρk ∈ [0, (K − 1) × (n2 − n) ]. Thus, we use Eq. (18) to normalize ρk and 
derive the RAD score for each method: 

RADk =
ρk

(K − 1) × (n2 − n)
, k = 1, 2, ...,K (19) 

This normalization is applied to standardize the RAD score 
(0⩽RADk⩽1) and select the ranking method with the least RAD score 
according to Eq. (19): 

RADk* = min
1⩽k⩽K

RADk (20) 

A numerical example is presented in Appendix B to demonstrate the 
working details of the RAD method and its comparison with the mean 
absolute deviation. Note that the introduction or omission of a ranking 
method does not modify the distances existing among the other methods 
but affects their RAD scores since the distances with respect to the 
rankings introduced or omitted would differ across methods. Thus, 
ranking modifications could arise since the score is determined by the 
distances among the rankings of all the techniques considered, and 
adding or omitting methods modifies these values. 

5.2. The maximize agreement heuristic method 

Beck and Lin (1983) introduced the MAH method to maximize the 
consensus of different raters in decision-making problems by ranking the 
alternatives through the resulting Final Consensus Ranking (FCR), 
which has been applied within a wide range of MADM scenarios 
(Kengpol and Tuominen, 2006). We build on the guidelines provided by 
Beck and Lin (1983) to define consensus among the methods described. 

Consider k MADM methods used to rank n alternatives. Define an 
agreement matrix, A, where aij refers to the number of methods in which 
alternative i is preferred to j. Suppose we add up the column values for 
each alternative i. In that case, we obtain a positive preference column 
vector, P, where each element describes the number of times alternative 
i is preferred to every other alternative: 

Pi =
∑n

j=1
aij, i = 1, 2, ..., n. (21) 

On the other hand, if we add the values of each alternative j for all 
rows, we obtain a negative preference row vector, N, where each 
element describes the number of times the other alternatives are 
preferred to j: 

Ni =
∑n

j=1
aji, i = 1, 2, ..., n. (22) 

The outcome of both equations determines the consensus criterion. If 
alternative i displays a value of zero in the corresponding entry of the 
negative preference vector, it should not be ranked below any other 

Table 4 
Statistical summary of input and output data.  

Statistical Parameters Inputs Outputs 

Staffing score Interests Paid* Arrears* Total Resources* Loans offered* Charges received* Interests received* 

Max 34.35 2,274,754,862 37,853,546,276 135,894,969,932 347,812,000,000 381,190,572 4,801,018,177 
Min 2.67 112,787,061 1,882,957 10,480,341,806 8,481,463,453 3,790,591 2,209,178 
Mean 9 503,891,934 2,752,188,729 40,781,792,487 59,898,992,728 53,420,530 305,850,430 
Standard Deviation 6.441687786 405817622 5934430277 27880295240 56589540867 57329316.25 647402877.6 

*Thousand Rials. 

Fig. 2. Comparison of the results of different ranking methods on bank Branches.  
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alternative in the consensus ranking. On the other hand, assume that 
alternative i displays a value of zero in the corresponding entry of the 
positive preference vector. This implies that this alternative should not 
be ranked above any other alternative in the consensus ranking. 

It, therefore, follows that the value (Pi − Ni) determines the ranking 
of the alternatives displaying no zero-entries within the negative or 
positive preference vectors. Thus, if an alternative i displays the 
maximum value of |Pi − Ni| for a positive (Pi − Ni), it should be placed at 
the top of the positions available within the FCR. On the other hand, if an 
alternative i displays the maximum value of |Pi − Ni| for a negative 
(Pi − Ni), it should be place at the bottom of the positions available 
within the FCR. 

The main steps determining the FCR are summarized below: 
Step 1. Define the agreement matrix A, with the parameter n refer

ring to the number of alternatives being considered. 
Step 2. The entries of the N and P preference vectors are computed 

using Equations (20) and (21). 
Step 3. Alternatives displaying a zero-value-entry in P are placed at 

the bottom of the consensus ranking. Similarly, those alternatives dis
playing a zero-value entry in N are placed at the top of the ranking. 

Step 4. The remaining alternatives are ranked based on the value of 
Pi − Ni. Whenever the maximum difference is positive, the corresponding 
alternative is placed in the highest position available among the 
remaining ones. However, when the maximum difference is negative, 

Table 5 
Peoples Bank branch ranking according to ten ranking methods.  

Bank 
Branches 

AHP- 
Benevolent 

AHP- 
Aggressive 

BWM- 
Benevolent 

BWM- 
Aggressive 

BM- 
Benevolent 

BM- 
Aggressive 

WM- 
Benevolent 

WM- 
Aggressive 

MACBETH- 
Benevolent 

MACBETH- 
Aggressive 

DMU1 41 41 38 38 43 43 55 55 49 42 
DMU2 7 4 9 5 20 5 21 7 15 11 
DMU3 40 40 44 44 47 47 37 38 42 43 
DMU4 32 32 26 27 32 34 42 43 27 32 
DMU5 25 26 14 21 23 28 39 40 21 21 
DMU6 37 37 48 49 51 51 32 33 33 35 
DMU7 44 44 40 41 45 45 46 46 52 41 
DMU8 10 15 12 19 22 26 7 17 16 5 
DMU9 24 27 32 32 37 39 5 15 28 25 
DMU10 19 8 19 9 26 18 23 5 15 23 
DMU11 58 58 56 56 56 56 58 58 58 58 
DMU12 28 28 13 20 26 27 33 34 31 27 
DMU13 48 45 53 53 53 53 41 42 40 50 
DMU14 11 11 10 11 20 20 19 6 15 9 
DMU15 54 54 46 46 49 49 52 51 54 53 
DMU16 34 34 17 22 25 29 44 44 37 34 
DMU17 55 56 58 58 58 58 38 39 45 57 
DMU18 51 50 45 45 48 48 53 52 46 51 
DMU19 2 5 15 6 24 16 2 2 15 1 
DMU20 31 31 30 31 36 38 34 35 32 30 
DMU21 39 39 55 55 55 55 26 28 43 39 
DMU22 53 53 49 49 51 51 54 54 55 52 
DMU23 4 1 31 3 37 3 14 1 15 13 
DMU24 47 48 43 43 46 46 27 29 36 37 
DMU25 17 21 5 14 17 23 24 27 26 19 
DMU26 3 13 3 10 15 19 9 19 2 2 
DMU27 12 16 40 40 45 45 3 12 3 14 
DMU28 23 23 25 26 31 33 6 16 24 29 
DMU29 57 57 52 52 52 52 50 53 57 56 
DMU30 1 3 2 1 1 1 1 4 15 4 
DMU31 30 30 33 33 39 40 15 23 29 31 
DMU32 27 25 35 35 40 41 16 24 25 26 
DMU33 13 17 18 23 26 30 4 13 17 12 
DMU34 21 20 27 28 33 35 12 22 23 18 
DMU35 42 42 36 36 41 42 47 47 50 45 
DMU36 20 9 20 7 27 16 29 10 15 22 
DMU37 22 22 4 13 16 22 31 32 15 25 
DMU38 26 24 24 25 30 32 30 31 22 16 
DMU39 35 35 39 39 44 44 10 20 35 33 
DMU40 17 19 6 16 18 24 20 26 19 17 
DMU41 43 43 51 51 52 52 40 41 44 46 
DMU42 14 7 22 12 28 21 25 9 15 10 
DMU43 9 2 1 2 1 2 43 11 15 20 
DMU44 38 38 29 30 35 37 49 49 41 40 
DMU45 29 29 23 24 28 31 35 36 30 28 
DMU46 15 18 7 15 18 24 17 25 18 8 
DMU47 36 36 28 29 34 36 36 37 39 38 
DMU48 46 47 34 34 40 41 48 48 48 44 
DMU49 16 10 21 8 27 17 22 8 1 15 
DMU50 5 6 16 4 24 4 14 3 15 6 
DMU51 52 52 47 47 50 50 57 57 56 54 
DMU52 56 55 57 57 57 57 45 45 47 55 
DMU53 49 49 42 42 46 46 51 50 51 49 
DMU54 50 51 50 50 52 52 56 56 53 48 
DMU55 8 14 8 18 19 25 8 18 20 7 
DMU56 45 46 54 54 54 54 28 30 38 47 
DMU57 33 33 37 37 41 42 11 21 34 36 
DMU58 6 12 11 17 21 24 18 14 15 3  
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the corresponding alternative is placed in the lowest position available 
among the remaining ones. Ties are broken arbitrarily. The row and 
column corresponding to alternative i are eliminated from the agree
ment matrix. 

Step 5. Set/Rename n − 1 = n. 
Step 6. If n > 1, go back to Step 2. If n = 1, place the final alternative 

in the highest position available among the remaining ones and stop. 

6. A real-world application 

In this application, we use the proposed methods to rank 58 branches 
of the Peoples Bank1 in Iran. We consider three inputs and four outputs. 
A brief description of the inputs and outputs is presented next. The 
variables selected are standard to the efficiency models applied to study 
financial intermediaries (Khalili-Damghani et al., 2016), with inputs 
reflecting the inflow of funds into the bank and outputs considering the 
main consequences of the use of these funds. The data was retrieved 
through 2018 and provided by the managers of the 58 bank branches 
studied. 

6.1. Inputs:  

• Staffing score (Input 1): This input is a composite score reflecting a 
series of quantitative and qualitative criteria used by the human 
resources department at the bank. The staffing score is the weighted 
sum of the workforce size, level of training, and education provided 
to the bank employees.  

• Interests paid (Input 2): Interests paid are the interests banks pay 
for savings deposits or money borrowed from the government to 
attract new customers and maintain the ones they have. These in
terests are expenses for the bank  

• Arrears (Input 3): Banks grant loans to their personal and business 
account holders. Some customers may experience financial diffi
culties and pay late or never pay back their loans. Bank arrears are 
obligations or liabilities that have not received payment by their due 
dates. These late payments or unpaid loan obligations are expenses 
for the bank. 

6.2. Outputs: 

• Total resources (Output 1): Banks collect deposits from their per
sonal or business account holders. In addition, banks receive gov
ernment incentives or low-interest loans, investment properties, and 
stocks and bonds. Total Resources are considered assets for the bank.  

• Loans offered (Output 2): The amounts of bank loans offered to 
personal or business customers are considered output in a bank.  

• Charges received (Output 3): Banks collect service charges or bank 
fees for services such as ATM charges or credit card maintenance 
fees. These bank charges are revenues for the bank.  

• Interests received (Output 4): Banks lend money to their personal 
or business customers and, in turn, receive interest on these loans. 
These interests are revenues for the bank. 

Table 4 provides a statistical summary of the input and output data. 
The whole set of input and output data for the 58 branches of the Peoples 
Bank is presented in Appendix C. 

6.3. Numerical results 

Fig. 2 compares the ranking results for the 58 branches of the Peoples 
Bank for different super-efficiency and slack-based methods previously 
discussed in the DEA literature and Sexton’s example within Section 4. 
In the ranking methods displayed in this figure, the results are based on 
an efficiency score or a super-efficiency score obtained by each DMU. 
What is certain – despite the similarity of the rankings – is that each 
method ranks the DMUs from a different perspective and may lead to 
different results from other methods. In this paper, we have examined 
those ranking methods in which a DMU is ranked not only by consid
ering its best performance score but also by considering its performance 
score compared to other DMUs. We believe that this feature can increase 
confidence in the results. 

Table 5 presents the rankings obtained for the 58 branches of the 
Peoples Bank according to the hybrid DEA methods proposed in this 
study. 

The ten methods presented in Table 5 all apply pairwise compari
sons. Next, we compare the ten ranking results through the RAD method. 
We use Eq. (18) and determine the following RAD scores (0⩽RAD⩽1) for 
the ten methods in the order of most similar to least similar to others:  

1. RADAHP-Benevolent = 0.1310  
2. RADAHP-Aggressive = 0.1328  
3. RADBM-Aggressive = 0.1422  
4. RADBWM-Aggressive = 0.1424  
5. RADMACBETH-Aggressive = 0.1448  
6. RADMACBETH-Benevolent = 0.1598  
7. RADBM-Benevolent = 0.1663  
8. RADBWM-Benevolent = 0.1675  
9. RADWM-Aggressive = 0.1945  

10. RADWM-Benevolent = 0.2482 

The AHP-Benevolent method was selected in the current study case 
since RADAHP - Benevolent = min

k
RADk. It should be noted that this choice 

varies in different applications depending on the ranking scores. In this 
regard, one of the main objectives of the manuscript is to highlight the 
differences in the rankings delivered by the set of hybrid models. Note 
that we are operating with vectors when dealing with the BWM, BM, and 

Fig. 3. Position differences between the rankings derived from the RAD and MAH consensus methods.  

1 The name is changed to protect the anonymity of the bank. 
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WM. Equations (10) and (11) define the pairwise comparisons in these 
models and describe vectors, with the best and worst DMUs acting as the 
benchmarks determining the comparisons with other DMUs. It also 
makes intuitive sense that the values in Equations (10) and (11) are 
higher than one, which allows for the implementation of the BWM 
directly. 

However, when moving to MACBETH, the constraints shift from 
vectors of pairwise comparisons – relative to the best and neutral or 
worse references – to matrices comparing all elements. It is, therefore, 
natural that the results obtained from different DEA ranking models 
differ since each model ranks DMUs from a concrete formal perspective. 
For example, BWM ranks DMUs using 2n+1 pairwise comparisons, 
which the BM and WM techniques reduce to a total of n. MACBETH 
requires a substantially larger number of pairwise comparisons, namely, 
(n + 2)(n + 1)/2. This will increase both the sensitivity of the model to 
the optimal weights selected from Model (1) when defining the benev
olent and aggressive perspectives and the potential inconsistency of the 
results. As a consequence, DMUs 8, 27, 30, 49, and 58 display extreme 
ranks under MACBETH, whose compatibility restrictions introduce 
modifications that deviate the ranking from the consensus ones 
described in the paper. 

All in all, the rankings derived from these models will present 
considerable differences. We elaborate further on these features in the 
next section. 

6.4. Comparing hybrid ranking techniques 

We now define two distinct sets of results based on the different 
rankings obtained. First, we compare the results derived from RAD – 
which selects the AHP-Benevolent method as the one most similar to 
others – with those of a standard MAH consensus approach by 
computing the differences in positions between both rankings for each 
DMU. Fig. 3 illustrates the similarity between both ranking patterns in 
these terms. 

Note how both methods generally rank DMUs within a range of (-2,3) 
positions of difference. This similarity is preserved through both rank
ings with the exceptions of DMUs 27 – which displays the largest dif
ference between rankings –, 24, 23, and 21 with a difference of 9 
positions each. More importantly, both techniques coincide in ranking 
the first three DMUs, namely, 30, 19, and 26. 

Additional intuition can be obtained by computing the Spearman 
correlation among the different hybrid methods. The results are pre
sented in Table 6 and validate the intuition derived from the previous 
analyses. The WM-Benevolent and WM-Aggressive hybrid methods 
display relatively lower correlation coefficients than the other tech
niques, which are highly correlated among themselves and with the 
consensus ranking. 

The second set of results builds on Fig. 4, which illustrates the dif
ferences in ranking positions between the BM-aggressive and AHP- 
aggressive hybrid methods relative to the MAH consensus ranking, 
respectively. Note how the BM-aggressive hybrid method displays a 
higher variability relative to the consensus when compared to the AHP- 
aggressive technique. A similar result arises when considering the AHP- 
benevolent hybrid method, which defines the RAD ranking. However, 
the differences are not substantial, as the correlation analysis has shown. 

We have illustrated how the RAD and consensus methods deliver 
very similar rankings, coinciding with the first three alternatives. When 
considering the different hybrid techniques, AHP-Benevolent displays 
the highest similarity in terms of RAD. However, BM-Aggressive pro
vides a good approximation – and is computationally and consistently 
simpler –. We have validated this idea through correlation analyses, 
illustrating how most techniques deliver highly correlated rankings. The 
visual analysis of the ranking differences between techniques provides a 
more intuitive approach, emphasizing the idea that a simpler method 
such as BM-Aggressive delivers a highly correlated ranking with the 
main consensus approaches. However, other than when considering the Ta
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Fig. 4. Ranking position differences between the BM-aggressive and AHP-aggressive hybrids and the MAH consensus method.  

Table B1 
Ranking matrix.  

DMU Method1 (M1) Method2 (M2) Method3 (M3) Method4 (M4)
DMU1 2 1 2 5
DMU2 1 3 1 2
DMU3 3 5 4 4
DMU4 4 2 3 1
DMU5 5 4 5 3

Table B2 
Rank deviation matrices.  

Method1 (M1) Method3 (M3)
DMU DMU1 DMU2 DMU3 DMU4 DMU5 DMU1 DMU2 DMU3 DMU4 DMU5

DMU1 0 0 1 1 1 0 0 1 1 1
DMU2 1 0 1 1 1 1 0 1 1 1
DMU3 0 0 0 1 1 0 0 0 0 1
DMU4 0 0 0 0 1 0 0 1 0 1
DMU5 0 0 0 0 0 0 0 0 0 0
DMU1 0 1 1 1 1 0 0 0 0 0
DMU2 0 0 1 0 1 1 0 1 0 1
DMU3 0 0 0 0 0 1 0 0 0 0
DMU4 0 1 1 0 1 1 1 1 0 1
DMU5 0 0 0 1 0 1 0 1 0 0

Method2 (M2) Method4 (M4)

Table B3 
RAD Results.  
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initial alternatives composing the rankings, differences naturally arise 
among techniques. 

7. Conclusion and future research directions 

This study has established an important and noteworthy relationship 
between DEA and MADM. We have discussed the strengths and weak
nesses of each ranking method and studied several strategies to diminish 
the weaknesses of a method with the strengths of the other. We have 
introduced several new hybrid MADM-DEA techniques of different 
computational complexity and consistency and showed that the two 
methods are a match made in heaven. 

Each method ranks the business units from a different perspective. 
Thus, we have developed a new RAD technique to evaluate the similarity 
among multiple ranking results in MADM. Unlike preferential voting, 
the MAH, and the Copeland method, which combine multiple rankings 
into one consensus ranking, RAD defines a similarity score designed to 
search for more suitable rankings. The central premise of RAD is the 
selection of the methods producing similar results for making informed 
decisions with confidence. Several examples and a real-world case study 
have been used to demonstrate the applicability and effectiveness of the 
new hybrid MADM-DEA methods, including MACBETH-DEA and RAD. 

We have focused on highlighting how simpler hybrid MADM-DEA 
techniques deliver similar rankings to the consensus and benchmark 

Table C1 
Input and output data.  

Bank Branches Inputs Outputs 

Staffing score Interests Paid Arrears Total Resources Loans offered Charges received Interests received 

DMU1 33.98 1079358382 2086168200 91898780446 220469000000 72724247 9.06E+08 
DMU2 13.15 747456958 121796222 56646389489 101334000000 37738410 1458250548 
DMU3 6.04 311866711 164783100 23684649429 31746964459 26690662 8.73E+07 
DMU4 18.64 1031120275 1182161972 73363125327 158690000000 47258172 9.47E+08 
DMU5 4.54 209183080 820113418 15257878659 44842531204 29136145 2.24E+08 
DMU6 11 378307741 213817809 30281651888 50609705055 52000292 2.88E+08 
DMU7 16.31 730377583 6749810197 70908856674 83225550325 84525013 2.56E+08 
DMU8 4.26 213340711 58233105 20277684747 34481739099 13546827 1.67E+08 
DMU9 4.81 285196512 95456828 26345268063 22850208765 25795686 3.67E+07 
DMU10 20.94 2274754862 37853546276 129300039762 347812000000 55040708 4801018177 
DMU11 10.39 464246324 6331145727 33996467114 42914415082 54642451 1.67E+08 
DMU12 10.15 888386856 264435033 65359066067 38180659776 77909563 1.11E+08 
DMU13 9.65 569571327 1003502567 42636854807 34238312340 54213650 2.53E+08 
DMU14 7.51 647567555 812334511 54235717371 79434731566 30712579 667839912 
DMU15 12.18 732310630 4088977937 50134201956 67928353656 31106259 1.68E+08 
DMU16 12.85 503878040 6803910835 39942883553 120058000000 71588992 1.83E+08 
DMU17 4.38 215973701 138806808 15520778468 15425158663 14189010 4.70E+07 
DMU18 4.44 267680990 1003173193 19581326749 13766492606 19006713 1.23E+08 
DMU19 4.66 240327459 32400507 34199132981 22633744058 55525368 65953223 
DMU20 9.51 539621093 355824384 48437419923 57869744453 111001842 9.31E+07 
DMU21 4.85 258694781 390618794 18649320014 19261077765 44564778 3.02E+07 
DMU22 6.88 324327450 1761559332 25520659249 31392470715 48668845 1.01E+08 
DMU23 12.21 1151126508 100239722 101099612459 102374000000 381190572 310491516 
DMU24 4.65 303011951 20000000000 22745817944 21613603741 17890127 3.46E+08 
DMU25 6.53 513373118 233162000 45493103310 18653120532 25633080 8.38E+07 
DMU26 9.48 951481305 1717749529 76699002954 85410611350 97544683 3.31E+08 
DMU27 5.56 308080148 35381332 26689014980 20275988867 16247415 9.93E+07 
DMU28 2.67 204131635 60354794 15429139143 8481463453 4969623 1.14E+08 
DMU29 34.35 1694107282 15111611772 135894969932 161761000000 91378152 4.05E+08 
DMU30 6.12 431865745 1882957 36024728534 36565325297 49149445 159263836 
DMU31 5.67 282195319 82385214 24246450096 27052155548 25889624 2.01E+08 
DMU32 6.84 213896431 73706784 20041692851 30392894598 9503699 2.50E+08 
DMU33 4.76 237636396 156214731 27364531815 30782208801 6190712 1.57E+08 
DMU34 5.19 224872448 31112538 18090303486 26674432747 29419107 2.42E+08 
DMU35 26.3 763670673 8699223086 82141983526 147523000000 123174178 8.18E+07 
DMU36 8.85 147531933 4610966754 26626433427 56106390968 91150781 1.05E+07 
DMU37 12.2 410878532 9329126361 43696861637 125781000000 58704233 2.21E+06 
DMU38 7.5 333582109 2302732316 27473760066 60630371332 89521688 2.25E+08 
DMU39 4.29 197983646 76618478 19240770614 18018796009 12879448 1.37E+07 
DMU40 6.7 454272734 4328571212 41402957147 67720690717 60916995 5.27E+07 
DMU41 4.89 172163458 428165612 12505693070 13787129165 26931434 1.50E+08 
DMU42 4.05 141605450 362391084 14108905095 34017180746 3790591 424057749 
DMU43 4.8 112787061 6087334 10480341806 53704561791 9836718 340379388 
DMU44 5.92 197859023 1736948341 17177674685 47443669311 10912422 1.93E+07 
DMU45 11.23 1008144971 799888409 69519520671 50342813036 150201949 1.21E+08 
DMU46 12.04 1410965027 712052821 88431130203 73380424398 107951057 3.88E+08 
DMU47 10.55 718757712 3106946729 59083530442 67457583720 79202081 1.72E+08 
DMU48 5.72 299039079 3118411405 19769139505 44277668582 24740449 8.18E+06 
DMU49 6.47 454971307 3999989615 35186243162 59473584399 177263231 16672265 
DMU50 6.03 145330526 329595121 44294011009 26545626886 21646027 2732551 
DMU51 9.31 354774612 1033254371 26038732430 52324771345 20958898 2.47E+08 
DMU52 7.04 383065651 96678903 23740214769 18214008786 34995971 1.50E+08 
DMU53 8.12 606265050 2443557421 37809295924 47931834559 33380294 3.23E+08 
DMU54 8.78 176162886 880865398 16161780072 34771456232 12587454 3.65E+07 
DMU55 13.22 332839827 394388652 34253388199 65670887687 84799279 1.95E+08 
DMU56 4.89 258281304 270616937 19096094735 21953697669 3920575 1.41E+08 
DMU57 5.43 408549570 117132994 29237028213 25417664084 17678876 1.17E+08 
DMU58 6.89 306922751 506358795 31871953609 52445102264 28653660 620927500  
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DEA-AHP ones, the latter being more computationally and consistently 
demanding, with MACBETH-DEA providing additional evidence on this 
quality. These findings imply that computational complexity and strict 
consistency requirements may lead to substantial variations in the 
ranking, far from the consensus one, which can be approached via 
simpler methods. Clearly, in the current setting, the consensus ranking is 
based on a majority of similar techniques that reduce the relative 
importance of the MACBETH-DEA hybrid. However, the high correla
tion displayed with DEA-AHP provides additional intuition validating 
the results obtained. Despite this fact, the conclusions presented require 
additional validation through the introduction and analysis of further 
models. 

As suggestions for future research, expanding this established rela
tionship to other MADM techniques, including outranking methods such 
as ÉLimination Et Choix Traduisant la REalité (ELECTRE) and the 
Preference Ranking Organization METHod for Enrichment of Evalua
tions (PROMETHEE), and developing a fuzzy version of these models for 
decision-making problems under uncertainty could be considered 
valuable extensions of this study. 
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Appendix A 

Differentiating between benevolent and aggressive DEA perspectives 

The optimistic (benevolent) and pessimistic (aggressive) perspectives are determined by choice of optimal weights derived from Model (1). If 
Model (1) provides a unique optimal solution, both perspectives, benevolent and aggressive, coincide. However, if Model (1) has multiple optimal 
solutions, as is usually the case, the choice of each optimal solution can affect other units’ scores. If the optimal solution chosen is such that the DMU is 
evaluated in the best conditions, we have selected the benevolent view. On the other hand, if the optimal solution chosen is such that the DMU is 
evaluated in the worst-case conditions, we have chosen an aggressive view. In summary, the following models have been used in the DEA literature to 
define the benevolent and aggressive perspectives after solving Model (1).  

Benevolent perspective for DMUp Aggressive perspective for DMUp 
Eop = max

∑s
r=1uroyrp Eop = min

∑s
r=1uroyrp 

s.t. 
∑m

i=1vioxip = 1 s.t.
∑m

i=1vioxip = 1 
∑s

r=1uroyro − E*
oo
∑m

i=1vioxio = 0 
∑s

r=1uroyro − E*
oo
∑m

i=1vioxio = 0 
∑s

r=1uroyrj −
∑m

i=1vioxij⩽0; j = 1,2,…,n 
∑s

r=1uroyrj −
∑m

i=1vioxij⩽0; j = 1,2,…,n 
uro⩾0; r = 1,2,…, s uro⩾0; r = 1,2,…, s 
vio⩾0; i = 1,2,…,m vio⩾0; i = 1,2,…,m  

Appendix B 

The RAD solution for a simple example 

In this section, we illustrate the behavior of the RAD method with a simple example. Suppose five DMUs (n = 5) are ranked by four different 
methods (K = 4), as shown in Table B1. 

For each ranking method, a matrix is formed based on Eq. (16). Table B2 shows these matrices for the different ranking methods. 
We can now present the results in Table B3 based on Equations (17) and (18). As shown in Table B3, the third method (M3) produces the lowest 

rank deviation relative to the other three ranking methods, and therefore, we should choose this method over the other three potential ranking 
methods. 

Appendix C 

Peoples Bank data  
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