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Abstract
Socially responsible procurement includes diversity and inclusion, andmany companies have
found diverse sourcing plays a substantial role in their success. Supplier diversity and inclu-
sion initiatives can significantly impact innovation, reputation, employee engagement, and
organizational retention. This paper presents a novel fuzzy general best–worst method for
considering diversity and inclusion in supplier selection programs. The proposed approach
considers the causal relationships between the criteria in the evaluation process within a
network with complex intertwined components and a hierarchical structure. The uncer-
tainty consideration method integrated into the proposed approach allows experts to consider
ambiguous and imprecise judgments in the assessment process. We present a supplier selec-
tion case study with scenario analysis for a clean energy public–private partnership in the
wind farm industry to demonstrate the applicability and efficacy of the proposed approach.
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1 Introduction

Many organizations have recognized demographic shifts in the workforce by launching var-
ious diversity and inclusion initiatives. Minority business owners create jobs, improve the
economy, and build stronger communities. They have the potential to initiate positive change
and boost the economy and standard of living. Despite that, many face diversity and inclu-
sion barriers (Fujimoto & Uddin, 2021; Rahman et al., 2018). Diversity programs are needed
to eliminate these barriers in many business opportunities, including procurement and sup-
plier selection (Klocek et al., 2014; Versavel et al., 2023). In light of this, supplier diversity
programs encourage the participation of underrepresented groups in the production supply
networks (Mani et al., 2018; Miguel & Tonelli, 2023). However, supplier diversity programs
are often expensive and challenging (Miguel & Tonelli, 2023; Sordi et al., 2022). On the
positive side, these programs boost organizational performance and improve stakeholder
relationships (Silva et al., 2023). There is a correlation between supplier diversity and a
reduction in minority unemployment since minority-owned businesses are more likely to
employ employees of the same group (Blount & Li, 2021; Park et al., 2024). Supplier diver-
sity can also reduce economic disparity between minority groups and large corporations (van
Hoek et al., 2023); it can be required due to stakeholder pressure and regulatory requirements
(Miguel & Tonelli, 2023). Thus, many businesses use supplier diversity as a public statement
of their commitment to addressing economic inequality and social unrest in underserved
communities (Modgil et al., 2023).

Supplier diversity programs can potentially benefit the entire society and industrial sys-
tem. Still, choosing the right business partners and suppliers is a strategic decision that will
have long-term consequences for the success of any company (Mukherjee, 2016). Yang et al.
(2024) explain enterprises encounter substantial limitations when attempting to increase
supplier diversity or create inclusive models. Without a well-thought plan and a standard
procedure for best-fit supplier selections, any decision could severely impact the corporation
and other sectors of the economy (Lajimi et al., 2021). Our primary research objective is to
propose a decision-support framework with diversity and inclusion since the current litera-
ture is still evolving (Blount & Li, 2021; Liern & Pérez-Gladish, 2022; Sordi et al., 2022).
Although supplier diversity has been known for years, most organizations and government
agencies demand more research in the field because of its importance due to racial unrest
and social polarization worldwide (Sordi et al., 2022). This is a complex task since choosing
suitable suppliers from among a broad pool of candidates, each with their own unique set
of potentials and capabilities, is a difficult task that necessitates complex models with inter-
twined relationships. The supplier selection process aims to find the companies with the best
strategic fit for supplying a business with the goods and services they require (Guarnieri &
Trojan, 2019; Pamucar et al., 2023). Supplier selection is a critical process in organizations
because it significantly impacts the company’s overall performance and success (Alavi et al.,
2021; Mina et al., 2021).

The supplier selection problem has been the subject of numerous studies on the company’s
financial, environmental, and sustainability needs (Kannan et al., 2020; Li et al., 2020).
A recent literature review on supplier selection methods shows several methods are used
in supplier selection problems, including the analytic hierarchy process (AHP), analytic
network process (ANP), activity-based costing, multi-objective programming, mixed integer
programming, goal programming, the technique for order preference by similarity to ideal
solution, genetic algorithm, case-based reasoning, data mining, data envelopment analysis,
cluster analysis, rough sets theory, and quality function deployment (Mukherjee, 2016).
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A supplier selection problem is complex, and a multi-criteria decision-making (MCDM)
model is often needed to consider relevant tangible or intangible criteria and weights (Koc
et al., 2023; Nasr et al., 2021; Rasmussen et al., 2023). It is argued that the decision criteria
and attributes (sub-criteria) are necessary to facilitate best-fit supplier selection (Alikhani
et al., 2019; Govindan et al., 2020). MCDM can ensure that the supplier selection process is
systematic, objective, and unbiased (Awasthi et al., 2018).

Althoughmanymethods forMCDMexist, theAHP andANP are themost popularMCDM
methods for supplier selection (Ebrahim Qazvini et al., 2021; Nasri et al., 2023). While
the AHP helps organize the complexities of a problem into a hierarchy, the ANP provides
a more comprehensive way of depicting the interplay between them (Janeš et al., 2018).
However, AHP and ANP have shortcomings. With the recent emergence of the best–worst
method (BWM), attention has shifted from AHP to BWM since BWM has fewer pairwise
comparisons and higher consistency than AHP and ANP (Pamučar et al., 2020; Rezaei,
2015; Tavana et al., 2023a). In this regard, Tavana et al. (2023b) presented an approach to
evaluate circular suppliers in the renewable energy sector by integrating the fuzzy BWM and
a fuzzy inference system. They calculated the weight of the criteria using the fuzzy BWM
method and determined the final score of the suppliers. Ghamari et al. (2022) combined
BWM and TOPSIS methods and proposed a practical framework for ranking suppliers in
the steel industry. Amiri et al. (2021) developed a new approach based on BWM to evaluate
sustainable suppliers in the automotive manufacturing industry. Literature review shows that
BWM has been widely used in supplier selection problems in various sectors such as the
healthcare industry (Rostami et al., 2023), garment industry (Nasr et al., 2021), agriculture
industry (Zhu & Wang, 2023), oil industry (Hailiang et al., 2023), and appliance industry
(Govindan et al., 2023), among others.

Both AHP and BWM were intended to function with simplified versions of connections
between criteria/alternatives. While there is limited research that would allow us to list selec-
tion criteria for supplier diversity programs, studies that focus on areas other than supplier
diversity do provide evidence of a possible interdependency among supplier selection crite-
ria (Nasrollahi et al., 2021). Yet, the hybridization of the BWM with other methods was an
approach to address intertwined relations (Govindan et al., 2022; Kumar et al., 2023; Yazdani
et al., 2020). Although the number of applications of BWM for supplier selection is on the
rise, the method also has drawbacks (Liang et al., 2020; Pamučar et al., 2020). The general
best–worst method (GBWM) proposed by Tavana et al. (2023a) has addressed those draw-
backs by generalizing the classic BWM with the added ability to factor in dependencies and
the value of those dependencies among the selection criteria through their proposed relative
influence-intensity weights. The GBWM has been well-tested and demonstrated applicabil-
ity and efficacy in dealing with complex problems involving several interdependent decision
criteria and sub-criteria (Tavana et al., 2023a).

Although GBWM has the potential to aid practicing managers in the supplier selection
process for diversity programs, it frequently needs to be modified to address uncertainty
inherent in real-world problems. Inmany real-world contexts, decision-makers often struggle
to provide precise numeric judgments on confusing and partial decision inputs (Chai et al.,
2023). Fuzzy set theory is a natural fit for addressing this uncertainty in supplier selection
(Mahmoudi et al., 2022; Masoomi et al., 2022). Therefore, we will reformulate the GBWM
with a fuzzy approach and put it to the test in a case study to see if it helps us achieve
our primary research objectives. Thus, along with the practical contributions, this study
also consists of methodological contributions with the introduction and application of fuzzy
GBWM.This study aims to answer the following questions: (1)Which criteria are appropriate
for evaluating suppliers from the diversity and inclusion perspective? (2) What approach is
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suitable for evaluating diverse suppliers in complex and intertwined networks? (3) How
is the effectiveness of the proposed approach evaluated? Accordingly, the contributions of
this study are as follows: (1) Identifying a set of diversity and inclusion criteria and sub-
criteria to evaluate supplier diversity programs; (2) Developing a novel approach based on
fuzzy GBWM for evaluation of diverse suppliers in networks with hierarchical structure and
intertwined components; and (3) Validating the applicability and efficacy of the proposed
approach through a case study.

The remainder of this article is organized as follows. In Sect. 2, we present the proposed
approach. A case study to demonstrate the applicability of the proposed framework is imple-
mented in Sect. 3. Sections 4 and 5 present our comparative study and sensitivity analysis.
Finally, Sect. 5 concludes with our conclusions.

2 Methodology

This section briefly introduces BWM and GBWM before presenting the fuzzy arithmetics
and the approach proposed in this study.

2.1 BWM

BWMis a recentMCDMmethod introducedbyRezaei (2015). Thismethod is based onpaired
comparisons, has fewer paired comparisons, and has higher consistency than conventional
AHP. For further clarification, the number of pairwise comparisons in AHP is n(n−1)

2 , where n
represents the number of factors. In contrast, the number of pairwise comparisons in BWM is
2n-3. Unlike AHP, where all factors are compared in pairs, only the best and worst factors are
comparedwith other factors inBWM. It should be noted thatBWMisbasedon amathematical
model that aims to minimize the maximum absolute difference among the weight ratios and
their corresponding comparisons. The mathematical model of the BWM proposed by Rezaei
(2015) was non-linear. The results of this model may have multiple optimal solutions. To
solve this problem, Rezaei (2016) presented the linear version of BWM, which always has a
unique optimal solution.

2.2 GBWM

In addition to its advantages, BWM ignores the interdependencies between factors in the
weighting process. To overcome this challenge, researchers often combine this method
with other methods such as DEMATEL and weighted influence non-linear gauge system
(WINGS). A literature review reveals that until Tavana et al. (2023a), there was no integrated
method based on BWM for weighting the intertwined factors. Tavana et al. (2023a) showed
that in some problems, the factors are intertwined and should not be assumed to be indepen-
dent. In this vein, they introduced the GBWM by proposing the influence intensity of the
factors on each other, structuring the influence intensity matrix using the BWM provided
by Rezaei (2016), and applying it to independent weights of the factors in multiple criteria
decision-making problems with intertwined factors.
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2.3 Triangular fuzzy number

Fuzzy set theory was first introduced in 1965 by Zadeh (1965). This theory provides the
possibility of solving problems under uncertainty. Triangular fuzzy numbers are the most
widely used numbers in fuzzy set theory. In this paper, we use triangular fuzzy numbers to
fuzzify GBWM. To structure the fuzzy GBWM, we use the following fuzzy arithmetics:

(1) Addition of two triangular fuzzy numbers:

ã + b̃ = (al + bl , am + bm, au + bu) (1)

(2) Subtraction of two triangular fuzzy numbers:

ã − b̃ = (al − bu, am − bm, au − bl) (2)

(3) Multiplication of two triangular fuzzy numbers:

ã × b̃ = (al × bl , am × bm, au × bu) (3)

(4) Division of two triangular fuzzy numbers:

ã

b̃
= (

al

bu
,
am

bm
,
au

bl
) (4)

(5) Defuzzification using graded mean integration representation (GMIR) (Guo & Zhao,
2017):

aDef = al + 4 × am + au

6
(5)

where ã = (al , am, au) and b̃ = (a, b, c) represent triangular fuzzy numbers, and aDef is
the defuzzified value of ã.

2.4 Proposed approach

The invitation ofmore andmoreminority- andwomen-owned business enterprises to compete
in such a business can lead to an increased degree of resilience, innovation, and sound
competition using the value chain. Moreover, this can unlock additional values. A more
desirable workplace can be created by utilizing diversity, where great performance and social
advancement can result. For this reason, governments and enterprises have concentrated
on improving their suppliers’ diversity for many years. Governments oblige companies to
cooperate with diverse suppliers, even in some public and private projects. Companies need
a scoring system to evaluate diverse suppliers and select the best available suppliers in such
a situation. This article aims to develop a practical approach for assessing diverse suppliers
under uncertainty. The general structure of the proposed approach is depicted in Fig. 1.

The presented approach includes the following 14 steps:

Step 1: In this paper, diversity, equity, and inclusion criteria, including diversity leadership,
diversity analytics, diversity equity, diversity climate, and diversity training, are considered
supplier evaluation criteria. The sub-criteria of these criteria are identified by reviewing the
literature and applying the experts’ knowledge.
Step 2: The experts determine the most important (the best) and the least important (the
worst) criteria and sub-criteria.
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Fig. 1 The proposed approach for evaluating diverse suppliers

Step 3: This step compares the most important criterion/sub-criterion to other criteria/sub-
criteria in pairs using the linguistic terms shown in Table 1 to extract the fuzzy best-to-others
(BO) vector.
Step 4: This step compares the least important criterion/sub-criterion to other criteria/sub-
criteria in pairs using the same linguistic to extract the fuzzy others-to-worst (OW) vector.
Step 5: In this step, the fuzzy linear programming model presented by Govindan et al. (2022)
is structured using fuzzy BO and fuzzy OW vectors.
Notations

i, j ∈ {1, 2, ..., n} Criterion/Sub-criterion
β̃i = (βa

i , βb
i , βc

i ) The fuzzy BO vector
ω̃i = (ωa

i , ω
b
i , ω

c
i ) The fuzzy OW vector

x̃B = (xaB , xbB , xcB) Fuzzy weight of the best criterion/sub-criterion
x̃W = (xaW , xbW , xcW ) Fuzzy weight of the worst criterion/sub-criterion
x̃i = (xai , xbi , xci ) Fuzzy weight of the criterion/sub-criterion i

Table 1 The fuzzy linguistic
terms for pairwise comparison
(Govindan et al., 2022)

Linguistic terms Triangular fuzzy numbers

Equally significant (1, 1, 1)

Slightly significant (2/3, 1, 3/2)

Significant (3/2, 2, 5/2)

Very significant (5/2, 3, 7/2)

Absolutely significant (7/2, 4, 9/2)
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γ̃ = (γ a, γ b, γ c) Max
{∣∣∣x̃B − x̃i × β̃i

∣∣∣, |x̃i − x̃W × ω̃i |
}

xDef
i Defuzzified weight of the criterion/sub-criterion i.

Mathematical model

Min γ̃

s.t .∣∣∣x̃B − x̃i × β̃i

∣∣∣ ≤ γ̃ ∀i
∣∣∣x̃B − x̃i × β̃i

∣∣∣ ≤ γ̃ ∀i
n∑

i=1

xai + 4 × xbi + xci
6

= 1

xai ≤ xbi ≤ xci
xai ≥ 0

(6)

If we consider γ ∗ as the optimal value of the objective function (γ ∗ ≤ γ a), the proposed
model can be developed as follows.

Min γ ∗

s.t .∣∣∣(xaB , xbB , xcB) − (xai , xbi , xci ) × (βa
i , βb

i , βc
i )

∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) ∀i
∣∣∣(xai , xbi , xci ) − (xaW , xbW , xcW ) × (ωa

i , ω
b
i , ω

c
i )

∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) ∀i
n∑

i=1

xai + 4 × xbi + xci
6

= 1

xai ≤ xbi ≤ xci
xai ≥ 0

(7)

The optimal fuzzy independent criteria/sub-criteria weights can be calculated by running
the proposed model in commercial optimization software such as GAMS. If the calculated
optimal value for γ ∗ is less than 0.1, the consistency in pairwise comparisons is acceptable.
Otherwise, the pairwise comparisons should be revised. Note that the threshold value of 0.1
to accept consistency has been widely used in pairwise comparisons since the inception of
AHP (Saaty, 1980) and has been confirmed byRezaei (2016). After confirming consistency in
pairwise comparisons, defuzzifiedweights of criteria/sub-criteria are calculated usingEq. (8).

xDef
i = xai + 4 × xbi + xci

6
(8)

Step 6: Experts determine the causal relationship between criteria and sub-criteria. It should
be noted that considering the causal relationship between sub-criteria has a higher com-
putational complexity than the causal relationship between criteria. Therefore, practicing
managers often only consider the causal relationship between criteria to reduce and manage
the necessary computational complexities.
Step 7: Based on the causal diagram obtained from the previous step, we form the fuzzy initial
influence-intensity matrix. In this regard, the experts are asked to determine the influence
intensity of the criteria on each other using the linguistic terms presented in Table 2.
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Table 2 The fuzzy
influence-intensity scale
(Govindan et al., 2022)

Linguistic terms Triangular fuzzy numbers

Equally influence (1, 1, 1)

Slightly influence (2/3, 1, 3/2)

Strongly influence (3/2, 2, 5/2)

Very strongly influence (5/2, 3, 7/2)

Absolutely influence (7/2, 4, 9/2)

Step 8: The fuzzy most-influential-intense-to-others (MIITO) vectors are extracted in this
step. For this purpose, we identify the most influential criterion for each column of the fuzzy
initial influence-intensity matrix and divide it by the numbers in that column. Note that these
operations are done separately for each column.
Step 9: The fuzzy others-to-least-influential-intense (OTLII) vectors are extracted in this step.
For this purpose, we identify the least influential criterion for each column of the fuzzy initial
influence-intensity matrix and divide the numbers by that column. Note that these operations
are done separately for each column.
Step 10: In this step, same as step 5, the following fuzzy linear programming model is
structured using fuzzy MIITO and fuzzy OTLII vectors.
Notations

α̃CB
j

= (αa
CB

j
, αb

CB
j
, αc

CB
j
) The fuzzy MIITO vector.

δ̃CW
j

= (δa
CW

j
, δb

CW
j
, δc

CW
j
) The fuzzy OTLII vector.

x̃C B
j

= (xa
CB

j
, xb

CB
j
, xc

CB
j
) Fuzz influence intensity weight of the best criterion on sub-

criterion j.
x̃CW

j
= (xa

CW
j
, xb

CW
j
, xc

CW
j
) Fuzzy influence intensity weight of the criterion j on the worst

criterion.
x̃Ci

j
= (xa

Ci
j
, xb

Ci
j
, xc

Ci
j
) Fuzzy influence intensity weight of criterion i on Criterion j

γ̃ j = (γ a
j , γ

b
j , γ

c
j ) Max

{∣∣∣x̃C B
j

− x̃Ci
j
× α̃CB

j

∣∣∣,
∣∣∣∣x̃Ci

j
− x̃

CiW
× δ̃Ci

W

∣∣∣∣
}

xDef
Ci

j
Defuzzified influence intensity weight of criterion i on Crite-

rion j.
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Mathematical model

Min γ̃ j

s.t .∣∣∣x̃C B
j

− x̃Ci
j
× α̃CB

j

∣∣∣ ≤ γ̃ j ∀i, j
∣∣∣∣x̃Ci

j
− x̃

CW
j

× α̃CW
j

∣∣∣∣ ≤ γ̃ j ∀i, j
n∑

i=1

xa
Ci

j
+ 4 × xb

Ci
j
+ xc

Ci
j

6
= 1 ∀ j

xa
Ci

j
≤ xb

Ci
j
≤ xc

Ci
j

xa
Ci

j
≥ 0

(9)

If we consider γ ∗
j as the optimal value of the objective function for column j (γ ∗

j ≤ γ a
j ), the

proposed model can be developed as follows.

Min γ ∗
j

s.t .∣∣∣∣(xaCB
j
, xb

CB
j
, xc

CB
j
) − (xa

Ci
j
, xb

Ci
j
, xc

Ci
j
) × (αa

CB
j
, αb

CB
j
, αc

CB
j
)

∣∣∣∣ ≤ (γ ∗
j , γ

∗
j , γ

∗
j ) ∀i, j

∣∣∣∣(xaCi
j
, xb

Ci
j
, xc

Ci
j
) − (xa

CW
j
, xb

CW
j
, xc

CW
j
) × (δa

CW
j
, δb

CW
j
, δc

CW
j
)

∣∣∣∣ ≤ (γ ∗
j , γ

∗
j , γ

∗
j )

n∑
i=1

xa
Ci

j
+ 4 × xb

Ci
j
+ xc

Ci
j

6
= 1 ∀ j

xa
Ci

j
≤ xb

Ci
j
≤ xc

Ci
j

xa
Ci

j
≥ 0

(10)

By running the developed model in GAMS software using CPLEX solver, the optimal value
of the objective function and the fuzzy influence-intensity weight of criterion i on criterion
j are calculated. Based on the obtained results, we form the fuzzy initial influence-intensity
matrix. It should be noted that in this matrix, the symbol “-” is placed on the main diameter,
and the symbol “N” indicates no effect.
Step 11: The fuzzy relative influence-intensity matrix is first calculated in this step. For this
purpose, we should put fuzzy numbers (1, 1, 1) and (0, 0, 0) instead of the symbols “-” and
“N” in the matrix obtained from the previous step, respectively. Then, the obtained matrix
is defuzzified by Eq. (11). The defuzzified matrix is called the relative influence-intensity
matrix.

xDef
Ci

j
=

xa
Ci

j
+ 4 × xb

Ci
j
+ xc

Ci
j

6
(11)

Step 12: The normalized relative influence-intensity matrix is calculated in this step. For this
end, we should divide the numbers in each column of the relative influence-intensity matrix
by the sum of the numbers in that column.
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Table 3 The fuzzy score for
supplier evaluation (Tavana et al.,
2023b)

Linguistic terms Fuzzy score Defuzzified score

Absolutely weak (0, 0, 0) 0

Very weak (0, 0.1, 0.2) 0.1

Weak (0.1, 0.2, 0.3) 0.2

Slightly weak (0.2, 0.3, 0.4) 0.3

Mid-weak (0.3, 0.4, 0.5) 0.4

Mid (0.4, 0.5, 0.6) 0.5

Mid-strong (0.5, 0.6, 0.7) 0.6

Slightly strong (0.6, 0.7, 0.8) 0.7

Strong (0.7, 0.8, 0.9) 0.8

Very strong (0.8, 0.9, 1) 0.9

Absolutely strong (1, 1, 1) 1

Step 13: In this step, the final dependent weights of criteria are calculated by multiplying
the normalized relative influence intensity matrix into the independent weights of criteria
obtained from step 1.5. Finally, to calculate the global weights of sub-criteria, we should
multiply the dependent criteria weights by the independent weights of sub-criteria.
Step 14: The experts evaluate the suppliers for each sub-criterion using the linguistic terms
presented in Table 3. Finally, we use average or median values obtained from expert opinions
as the supplier scores for each sub-criterion. We will further explain when to use the mean or
median in Step 14 of the case study. Note that there are different scoring scales in the literature
for evaluating suppliers. In this study, we apply the scales provided by Tavana et al. (2023b),
which provides a wide range of scoring for the experts. Note that the paired comparison
questionnaires are completed by consensus, while the supplier evaluation questionnaires are
completed separately by each expert for each sub-criteria.
Step 15: In this step, the final score of suppliers is calculated. For this purpose, we should
calculate the sum of the product of the sub-criteria weight in their evaluated scores.

3 Case study

The Virginia state government plans to add a new wind farm to the existing wind farms
in West Virginia to increase the use of wind energy for electricity production. This is a
state-sponsored public–private partnership, and Coastal Virginia Wind Power Company,1 an
engineering, construction, and project management company, has won the bid to implement
this project.One of the conditions of partnershipwith this company is that the company should
consider supplier diversity, equity, and inclusion factors in their supplier selection for project
implementation. Coastal Virginia Wind Power Company applied the proposed approach to
include diversity, equity, and inclusion factors in evaluating 23 suppliers to comply with this
requirement. Coastal Virginia Wind Power Company has appointed five experts, including
the project manager, quality control manager, HSE manager, project technical manager, and
design and construction manager, to manage the evaluation process consistent with the state
mandate. Demographic information of these experts is given in Table 4.

1 The name is changed to protect the company anonomity.
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Table 4 The demographic information of experts

Demographic attributes No. of experts

Male Female

Age 30–40 years 1 –

40–50 years 3 –

50–60 years 1 –

Experience 5–10 years 1 –

10–15 years 2 –

15–20 years 2 –

Expertise Project manager 1 –

Quality control manager 1 –

HSE manager 1 –

Project technical manager 1 –

Design and construction manager 1 –

In the following, the evaluation process of these suppliers is presented step by step.

Step 1: Literature review shows that although the supplier selection problem is popular and
widely used, there is a research gap in the field of diverse supplier evaluation, and so far, no
research has provided standard and well-known criteria for this issue. For this purpose, using
the knowledge of experts and literature review, a set of criteria and sub-criteria was extracted
for evaluating diverse suppliers, presented in Table 5.
Step 2: In this step, the experts determine the best and worst criteria and sub-criteria. Accord-
ing to expert opinions, Diversity Leadership and Diversity Analytics are the best and worst
criteria. The best and worst sub-criteria for each criterion are given in Table 6.
Step 3: In this step, experts compare the best criterion (sub-criterion) with other criteria
(sub-criteria) using linguistic terms shown in Table 1. The BO vectors obtained from pairwise
comparisons are presented in Tables 15.
Step 4: Similarly, in this step, experts compare the worst criterion (sub-criterion) with other
criteria (sub-criteria) via linguistic terms represented in Table 1. The OW vectors obtained
from pairwise comparisons are shown in Table 16.
Step 5: In this step, the model presented in Eq. (7) is developed using obtained BO and OW
vectors. For example, the proposed model for criteria is formulated as follows.

Min γ ∗ (12)

s.t .
∣∣∣∣(xaDL , xbDL , xcDL ) − (

7

2
, 4,

9

2
) × (xaDA, xbDA, xcDA)

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.1)
∣∣∣∣(xaDL , xbDL , xcDL ) − (

2

3
, 1,

3

2
) × (xaDE , xbDE , xcDE )

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.2)
∣∣∣∣(xaDL , xbDL , xcDL ) − (

5

2
, 3,

7

2
) × (xaDC , xbDC , xcDC )

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.3)
∣∣∣∣(xaDL , xbDL , xcDL ) − (

3

2
, 2,

5

2
) × (xaDT , xbDT , xcDT )

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.4)
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Table 5 Criteria and sub-criteria for diverse supplier evaluation

Criteria Sub-criteria Description References

Diversity leadership
(DL)

Parity success (DL1) The parity of women
and men, and the
equality of white
males and
underrepresented
minorities

Berenguer et al. (2024)

Disparity plans (DL2) Short-term and
long-term plans to
address disparities

Miguel and Tonelli
(2023)

Hierarchical Plans (DL3) Relevance of diversity
to every leader, or
only the responsibility
of a Chief Diversity
Officer or similar

Miguel and Tonelli
(2023)

Parity spending (dl4) Investment in diversity
expertise and hiring a
well-resourced team
of diversity experts

Berenguer et al. (2024)

Leadership review (DL5) Leadership frequency
review of diversity
policies

Sordi et al. (2022)

Diversity analytics
(DA)

Diversity program review
(DA1)

Diversity program goals
and data frequency

van Hoek et al. (2023)

Diversity benchmarking
(DA2)

Benchmark diversity
data

Holton (2005)

Diversity gap analysis
(DA3)

Frequency of diversity
gap analysis with
underrepresented
communities

Wang (2023)

Diversity scale (DA4) Recording and
considering small,
intersectional groups
in diversity data rather
than rolling everyone
up into broad groups

Steiger et al. (2020)

Diversity equity (DE) Internal pay transparency
(DE1)

Sharing pay
transparency
information with all
employees

Blount and Li (2021);
Miguel and Tonelli
(2023)

External pay
transparency (DE2)

Sharing pay
transparency
information publicly

Blount and Li (2021);
Miguel and Tonelli
(2023)

Competition pay
transparency (DE3)

Incorporating
competitors’ pay
transparency data into
salary plans

Blount and Li (2021);
Miguel and Tonelli
(2023)
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Table 5 (continued)

Criteria Sub-criteria Description References

Diversity climate (DC) Diversity scope (DC1) Diversity programs
incorporate all aspects
of identity
individually as well as
holistically

Steiger et al. (2020)

Diversity data reporting
(DC2)

Robust diversity data
capture and reporting
tools

Berenguer et al. (2024)

Diversity management
training (DC3)

Managers’ ability to
gain appropriate
diversity knowledge
and skills

Madera et al. (2018)

Diversity training (DT) Training scope (DT1) Diversity training
covers all aspects of
diversity, equity,
inclusion, and respect

Madera et al. (2018)

practical training (dt2) Diversity training
includes real-world
examples to help
ground the diversity
principles

Richard et al. (2015)

Training availability
(DT3)

Diversity training is
available to all
employees

Richard et al. (2015)

Table 6 The best and worst sub-criteria of each criterion

Criterion Best sub-criterion Worst sub-criterion

DL Parity success Hierarchical plans

DA Diversity benchmarking Diversity gap analysis

DE Internal pay transparency External pay transparency

DC Diversity management training Diversity scope

DT Training availability Training scope

∣∣∣∣(xaDE , xbDE , xcDE ) − (
5

2
, 3,

7

2
) × (xaDA, xbDA, xcDA)

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.5)
∣∣∣∣(xaDC , xbDC , xcDC ) − (

2

3
, 1,

3

2
) × (xaDA, xbDA, xcDA)

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.6)
∣∣∣∣(xaDT , xbDT , xcDT ) − (

3

2
, 2,

5

2
) × (xaDA, xbDA, xcDA)

∣∣∣∣ ≤ (γ ∗, γ ∗, γ ∗) (12.7)

xaDL + 4 × xbDL + xcDL

6
+ xaDA + 4 × xbDA + xcDA

6
+ xaDE + 4 × xbDE + xcDE

6

+ xaDC + 4 × xbDC + xcDC

6
+ xaDT + 4 × xbDT + xcDT

6
= 1

(12.8)
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xaDL ≤ xbDL ≤ xcDL ; xaDA ≤ xbDA ≤ xcDA; xaDE ≤ xbDE ≤ xcDE ;
xaDC ≤ xbDC ≤ xcDC ; xaDT ≤ xbDT ≤ xcDT

(12.9)

xaDL ≥ 0; xaDA ≥ 0; xaDE ≥ 0; xaDC ≥ 0; xaDT ≥ 0 (12.10)

Constraints (12.1) to (12.4) indicate the relationship between the best criterion and other
criteria in pairs. Also, the relationship between the worst criterion and other criteria is shown
in constraints (12.5) to (12.7). Constraint (12.8) guarantees that the sum of the defuzzified
weights of the criteria is equal to 1. The relationship between triangular fuzzy numbers’
lower, middle, and upper bounds is given in constraint (12.9). Constraint (12.10) guarantees
that the calculated weights take values greater than or equal to zero.
We expand Eq. (12) inAppendix B as Eq. (12B). By running themodel presented in Eq. (12B)
in GAMS software via CPLEX solver, the optimal fuzzy independent weights of criteria are
calculated. Similarly, we can calculate the fuzzy independent weights of sub-criteria. Finally,
the fuzzy weights are defuzzified using Eq. (8). Table 7 shows the optimal value of γ ∗ the
fuzzy and defuzzified independent criteria weights and their sub-criteria.
Step 6: Experts depict the causal relationship between the criteria in this step. Figure 2 shows
the causal relationships between the criteria. Also, the general structure of the investigated
hierarchical network is presented in Fig. 3. Figure 3a depicts the hierarchical relationship
between criteria, sub-criteria, and alternatives (suppliers). Note that the sub-criteria are not
drawn completely to reduce the visual complexity of the presented figure. For example, the
criterionDL includes five sub-criteria. Instead of drawing each, DL1:DL5 denotesDL1,DL2,
DL3, DL4, and DL5. Additionally, for greater clarity, Fig. 3b zooms in on the relationship
between the DA criterion, its subcriteria, and suppliers.
Step 7: In this step, the experts determine the influence intensity of criteria on each other
with the help of linguistic terms shown in Table 2, and the fuzzy initial influence-intensity
matrix is formed. This matrix is given in Table 17.
Step 8: In this step, in each column, we divide the most-influenced criterion by other criteria
to obtain the MIITO vector. The most-influenced criteria are shown in Table 17. Table 18
represents the fuzzy MIITO vectors.
Step 9: Similarly, in this step, in each column, we divide the other criteria by the least-
influenced criterion to obtain the OTLII vector. The least-influenced criteria are shown in
Table 17. Table 19 represents the fuzzy OTLII vectors.
Step 10: In this step, the fuzzy linear programming model presented in Eq. (10) is developed
using MIITO and OTLII vectors. For example, this model for the column related to the
criterion DL is formulated as follows.

Min γ ∗
DL (13)

s.t .
∣∣∣∣(xaCDA

DL
, xb

CDA
DL

, xc
CDA
DL

) − (1,
3

2
,
7

3
) × (xa

CDE
DL

, xb
CDE
DL

, xc
CDE
DL

)

∣∣∣∣ ≤ (γ ∗
DL , γ ∗

DL , γ ∗
DL )

(13.1)∣∣∣∣(xaCDA
DL

, xb
CDA
DL

, xc
CDA
DL

) − (1,
3

2
,
7

3
) × (xa

CDC
DL

, xb
CDC
DL

, xc
CDC
DL

)

∣∣∣∣ ≤ (γ ∗
DL , γ ∗

DL , γ ∗
DL )

(13.2)∣∣∣∣(xaCDA
DL

, xb
CDA
DL

, xc
CDA
DL

) − (
5

3
, 3,

21

4
) × (xa

CDT
DL

, xb
CDT
DL

, xc
CDT
DL

)

∣∣∣∣ ≤ (γ ∗
DL , γ ∗

DL , γ ∗
DL )

(13.3)
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Table 7 The independent weights of criteria and sub-criteria

Criteria Fuzzy independent
weight (γ ∗ = 0.036)

Defuzzified
independent
weight

Sub-criteria Fuzzy
independent
weight

Defuzzified
independent
weight

DL
(γ ∗ =
0.044)

(0.146, 0.346, 0.448) 0.3297 DL1 (0.12, 0.219,
0.878)

0.3123

DL2 (0.114, 0.176,
0.556)

0.229

DL3 (0.047, 0.066,
0.205)

0.086

DL4 (0.114, 0.176,
0.556)

0.229

DL5 (0.075, 0.11,
0.351)

0.1443

DA
(γ ∗ =
0.035)

(0.052,0.092,0.092) 0.0853 DA1 (0.161, 0.347,
0.533)

0.347

DA2 (0.142, 0.382,
0.764)

0.4057

DA3 (0.051, 0.104,
0.162)

0.1048

DA4 (0.068, 0.139,
0.228)

0.142

DE
(γ ∗ =
0.048)

(0.165, 0.31, 0.322) 0.2878 DE1 (0.133, 0.238,
1.619)

0.4507

DE2 (0.12, 0.143,
0.667)

0.2265

DE3 (0.128, 0.19,
1.048)

0.3227

DC
(γ ∗ =
0.03)

(0.07, 0.127, 0.138) 0.1193 DC1 (0.071, 0.121,
0.546)

0.1835

DC2 (0.078, 0.152,
0.789)

0.2458

DC3 (0.147, 0.334,
1.942)

0.5708

DT
(γ ∗ =
0.048)

(0.113, 0.191, 0.193) 0.1783 DT1 (0.12, 0.143,
0.667)

0.2265

DT2 (0.128, 0.19,
1.048)

0.3227

DT3 (0.133,
0.238,1.619)

0.4507

∣∣∣∣(xaCDE
DL

, xb
CDE
DL

, xc
CDE
DL

) − (1, 2,
15

4
) × (xa

CDT
DL

, xb
CDT
DL

, xc
CDT
DL

)

∣∣∣∣ ≤ (γ ∗
DL , γ ∗

DL , γ ∗
DL )

(13.4)
∣∣∣∣(xaCDC

DL
, xb

CDC
DL

, xc
CDC
DL

) − (1, 2,
15

4
) × (xa

CDT
DL

, xb
CDT
DL

, xc
CDT
DL

)

∣∣∣∣ ≤ (γ ∗
DL , γ ∗

DL , γ ∗
DL )

(13.5)
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Fig. 2 Causal relationship among
criteria

Fig. 3 The general structure of investigated diverse supplier selection problem

123

Annals of Operations Research (2025) 353:281–320296



xa
CDA
DL

+ 4 × xb
CDA
DL

+ xc
CDA
DL

6
+

xa
CDE
DL

+ 4 × xb
CDE
DL

+ xc
CDE
DL

6
+

xa
CDC
DL

+ 4 × xb
CDC
DL

+ xc
CDC
DL

6
+

xa
CDT
DL

+ 4 × xb
CDT
DL

+ xc
CDT
DL

6
= 1

(13.6)

xa
CDA
DL

≤ xb
CDA
DL

≤ xc
CDA
DL

; xa
CDE
DL

≤ xb
CDE
DL

≤ xc
CDE
DL

;
xa
CDC
DL

≤ xb
CDC
DL

≤ xc
CDC
DL

; xa
CDT
DL

≤ xb
CDT
DL

≤ xc
CDT
DL

(13.7)

xa
CDA
DL

, xa
CDE
DL

, xa
CDC
DL

, xa
CDT
DL

≥ 0 (13.8)

Constraints (13.1) to (13.3) indicate the relationship between the most influential criterion
and other criteria in pairs. Also, the relationship between the least influential criterion and
other criteria is shown in constraints (13.4) and (13.5). Constraint (13.6) guarantees that the
sum of the defuzzified relative influence-intensity weights of the criteria is equal to 1. The
relationship between triangular fuzzy numbers’ lower, middle, and upper bounds is given in
constraint (13.7). Constraint (13.8) guarantees that the calculated relative influence-intensity
weights take values greater than or equal to zero.
We expand Eq. (13) in Appendix C as Eq. (13C). By running the model provided in Eq. (13B)
in GAMS software by CPLEX solver, fuzzy relative influence-intensity weights for columns
related to criterionDLare calculated. This operation is performed similarly for other columns.
The fuzzy initial influence-intensity matrix obtained from this operation is presented in
Table 20.
Step 11: The fuzzy relative influence-intensity matrix is first structured in this step. For this
purpose, in Table 20, instead of symbols “-” and “N”, it is enough to place the values (1, 1, 1)
and (0, 0, 0), respectively. Table 21 represents the fuzzy relative influence-intensity matrix.
Then, the fuzzy relative influence-intensity matrix is defuzzified using Eq. (11), which is
shown in Table 8.
Step 12: We should normalize the defuzzified relative influence-intensity matrix in this step.
For this purpose, we divide the numbers of each column of the matrix by the sum of the
numbers of that column. The normalized relative influence-intensity matrix is shown in
Table 9.
Step 13: In this step, the dependent weight of criteria is calculated by multiplying the normal-
ized matrix obtained from the previous step with the independent weight of criteria, which

Table 8 Defuzzified relative influence-intensity matrix

DL DA DE DC DT

DL 1 0.7012 0.3435 0.3435 0.3435

DA 0.385 1 0.2558 0.2558 0.2558

DE 0.259 0 1 0.2558 0.145

DC 0.259 0 0.145 1 0.2558

DT 0.097 0.2983 0.2558 0.145 1
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Table 9 Normalized relative influence-intensity matrix

DL DA DE DC DT

DL 0.5 0.3507 0.1717 0.1717 0.1717

DA 0.1925 0.5 0.1279 0.1279 0.1279

DE 0.1295 0 0.5 0.1279 0.0725

DC 0.1295 0 0.0725 0.5 0.1279

DT 0.0485 0.1493 0.1279 0.0725 0.5

is shown as follows:
⎡
⎢⎢⎢⎢⎢⎣

0.5 0.3507 0.1717 0.1717 0.1717
0.1925 0.5 0.1279 0.1279 0.1279
0.1295 0 0.5 0.1279 0.0725
0.1295 0 0.0725 0.5 0.1279
0.0485 0.1493 0.1279 0.0725 0.5

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

0.3297
0.0853
0.2878
0.1193
0.1783

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0.2951
0.1809
0.2147
0.146

0.1633

⎤
⎥⎥⎥⎥⎥⎦

Then, to calculate the global weight of sub-criteria, we shouldmultiply the dependentweights
of criteria by the independent weights of sub-criteria, which is represented in Fig. 4.
Step 14: The experts evaluated the suppliers’ performance for each sub-criterion using the
linguistic terms shown in Table 3. A normality test (Shapiro–Wilk test) is used to determine
whether sample data is drawn from a normally distributed population. We considered the
performance of each supplier for each sub-criterion as a variable and ran 414 variables, each
containing five observations, using the Shapiro–Wilk test in SPSS software. An abbreviated
output of the software is provided in Fig. 5.
As shown in Fig. 5, the Sig. (p-value) is greater than 0.05 for all variables, indicating data
normality. Of course, the Shapiro–Wilk test alone is insufficient when the number of samples
for each variable is small. Therefore, we identified the variables that included outlier data

Fig. 4 Defuzzified global weights of sub-criteria
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Variable Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

VAR00001 .304 5 .149 .817 5 .111

VAR00002 .286 5 .200* .813 5 .103

VAR00003 .254 5 .200* .914 5 .492

VAR00004 .243 5 .200* .894 5 .377

VAR00005 .300 5 .161 .921 5 .537

VAR00006 .237 5 .200* .961 5 .814

VAR00007 .237 5 .200* .961 5 .814

VAR00008 .258 5 .200* .925 5 .563

VAR00009 .220 5 .200* .956 5 .777

VAR00010 .250 5 .200* .885 5 .332

VAR00011 .292 5 .190 .845 5 .180

VAR00012 .252 5 .200* .845 5 .179

. . . . . . .

. . . . . . .

. . . . . . .
VAR00409 .254 5 .200* .803 5 .086

VAR00410 .261 5 .200* .823 5 .124

VAR00411 .243 5 .200* .922 5 .544

VAR00412 .300 5 .161 .833 5 .146

VAR00413 .287 5 .200* .914 5 .490

VAR00414 .273 5 .200* .931 5 .603

Fig. 5 The output of SPSS software

and used the median instead of the average. This led to the calculation of the final score of
each supplier in each sub-criterion, which is given in Table 22.
Step 15: In this step, the final score of the suppliers is calculated. For this end, we must
calculate the sum of the product of global weights of sub-criteria in the scores evaluated for
suppliers. The final score and rank of diverse suppliers are presented in Table 10.
The results shown in Table 10 show that suppliers 23, 2, and 20 are the suppliers that have
the highest score, and suppliers 17, 16, and 11 are the suppliers that have poor performance
compared to other suppliers. These results can help decision-makers make decisions related
to cooperation with diverse suppliers. The results of the proposed approach are compared
with the results of a method presented in the literature in the next section.

4 Comparative analysis

In this section, we examine the reliability of the results obtained from the proposed approach
by comparing them with those from two commonly used fuzzy approaches in the literature.
We show the performance of fuzzy GBWM is significantly different from that of fuzzy BWM
and similar to fuzzy ANP. Note that a fair comparison requires the results obtained from the
proposed approach to (1) be based on pairwise comparisons, (2) use the linguistic terms used
in the proposed approach for comparisons, and (3) consider the interdependencies between
criteria. The literature review shows that the fuzzy ANP method presented by Dağdeviren
and Yüksel (2010) has all the comparative features. In addition, we use the fuzzy BWM
provided by Govindan et al. (2022) method to show the effect of interdependency on the
final weight of sub-criteria. This method is the same as Steps 1 through 5 of the proposed
approach, with one exception in Step 5, where the independent weight of criteria is multiplied
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Table 10 Final score and rank of
diverse suppliers Supplier Final score Rank

Supplier 1 0.4926 18

Supplier 2 0.5609 2

Supplier 3 0.5273 9

Supplier 4 0.5103 15

Supplier 5 0.5294 8

Supplier 6 0.5068 16

Supplier 7 0.5044 17

Supplier 8 0.5302 7

Supplier 9 0.5135 14

Supplier 10 0.5407 6

Supplier 11 0.4861 20

Supplier 12 0.5257 10

Supplier 13 0.5414 5

Supplier 14 0.5188 13

Supplier 15 0.5248 11

Supplier 16 0.4826 21

Supplier 17 0.4711 22

Supplier 18 0.5294 8

Supplier 19 0.5208 12

Supplier 20 0.5437 3

Supplier 21 0.5416 4

Supplier 22 0.4894 19

Supplier 23 0.5731 1

by the independent weight of sub-criteria to calculate the global independent weights. In the
following, we first evaluate the suppliers and then check the accuracy of the results obtained
from the proposed approach by applying the fuzzy ANP method provided by Dağdeviren
and Yüksel (2010). We then calculate the global independent weights of sub-criteria using
the fuzzy BWM method and report the resulting weights. The following is the evaluation
process using fuzzy ANP provided by Dağdeviren and Yüksel (2010).

Step 1: In this step, criteria and sub-criteria are identified. Table 5 shows the criteria and
sub-criteria.
Step 2: The pairwise comparison matrices are structured using the linguistic terms shown in
Table 1. The paired comparisons matrix for the criteria is given in Table 11. Also, pairwise
comparison matrices for the sub-criteria are represented in the Appendix.
Step 3: In this step, the following non-linear programming model is developed using the
pairwise comparisons matrix presented in Table 11, and by running it in GAMS software via
CONOPT solver, the independent weights of criteria are calculated. Similarly, the indepen-
dent weights of sub-criteria can also be calculated. Table 12 shows the independent weights
of criteria and their sub-criteria. Also, the consistency check index for the criteria and their
sub-criteria is reported in this table. Based on the fuzzyANPmethod presented byDağdeviren
and Yüksel (2010), if λ∗ is greater than zero, consistency in pairwise comparisons is accept-
able. Pairwise comparisons should be revisited if the value of this variable is less than zero.

123

Annals of Operations Research (2025) 353:281–320300



Table 11 Pairwise comparisons matrix for criteria

DL DA DE DC DT

DL (1, 1, 1) (7/2, 4, 9/2) (2/3,1,3/2) (5/2, 3, 7/2) (3/2, 2, 5/2)

DA (2/9, 1/4, 2/7) (1, 1, 1) (2/7, 1/3, 2/5) (2/3, 1, 3/2) (2/5,1/2,2/3)

DE (2/3, 1, 3/2) (5/2, 3, 7/2) (1, 1, 1) (3/2, 2, 5/2) (2/3,1,3/2)

DC (2/7, 1/3, 2/5) (2/3, 1, 3/2) (2/5, 1/2, 2/3) (1,1,1) (2/3, 1, 3/2)

DT (2/5, ½ ,2/3) (3/2, 2, 5/2) (2/3, 1, 3/2) (2/3,1,3/2) (1, 1, 1)

Table 12 Independent weights of criteria and their sub-criteria obtained from fuzzy ANP

Criteria Independent weight (λ∗ = 0.205) Sub-criteria Independent weight

DL (λ∗ = 0.394) 0.346 DL1 0.296

DL2 0.227

DL3 0.077

DL4 0.227

DL5 0.174

DA (λ∗ = 0.376) 0.096 DA1 0.329

DA2 0.416

DA3 0.113

DA4 0.142

DE
(γ ∗ = 0.359)

0.249 DE1 0.425

DE2 0.253

DE3 0.322

DC (λ∗ = 0.472) 0.131 DC1 0.203

DC2 0.246

DC3 0.551

DT (λ∗ = 0.342) 0.178 DT1 0.255

DT2 0.327

DT3 0.418

As seen in Table 12, the value λ∗ is positive for the criteria and their sub-criteria. Therefore,
all pairwise comparisons are consistent and acceptable.
Step 4: In this step, the interdependence matrix is constructed. The causal relationship in
Fig. 2 and Tables 28, 29, 30, 31, 32 is used to build this matrix. The dependent weight of
criteria is obtained by multiplying the interdependence matrix with the independent criteria
weights. The results of this operation are given below.

⎡
⎢⎢⎢⎢⎢⎣

0.5 0.3335 0.161 0.16 0.161
0.16 0.5 0.1215 0.123 0.1215
0.123 0 0.5 0.123 0.0955
0.123 0 0.0955 0.5 0.1215
0.0945 0.1665 0.1215 0.0945 0.5

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

0.346
0.096
0.249
0.131
0.178

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0.2947
0.1714
0.2002
0.1535
0.1803

⎤
⎥⎥⎥⎥⎥⎦
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Fig. 6 The global weight of sub-criteria obtained from fuzzy ANP

The global weight of sub-criteria is calculated bymultiplying the dependent weight of criteria
by the independent weights. Figure 6 shows the global weight of sub-criteria.
Step 5: In this step, the final score of suppliers is calculated. For this purpose, the sum of the
product of global weights of sub-criteria in the scores shown in Table 22 is calculated. The
final score and rank of diverse suppliers are presented in Table 13.

Comparing the results obtained from fuzzyANP and our proposed approach shows that the
difference between the results of these two methods in calculating the score of 23 suppliers
is very small, and in no case does this difference exceed 0.9%. These two methods differ
by 0.35%, which is insignificant. Therefore, the correctness of the results obtained from the
proposed approach is confirmed. Compared to fuzzy ANP, the proposed approach uses fewer
pairwise comparisons and is more consistent.

After examining the validity of the results obtained from the proposed approach, we
investigate the effect of interdependency on the weights of the criteria and their sub-criteria.
Table 7 shows the independent weights of the criteria and their sub-criteria. To calculate
the global independent weights of sub-criteria, we must multiply the independent weights
of the criteria by the independent weights of their sub-criteria. Table 14 shows the global
independent weights of sub-criteria. Also, the difference between the weights calculated by
fuzzy BWM and our proposed approach is presented in this table.

Comparing the results obtained from fuzzy BWM and our proposed approach reveals
significant differences in four caseswhere the difference is 112%ormore. These twomethods
differ by 37.3% inweight,which is noticeable.We conclude that considering interdependency
can significantly affect the weights of criteria and sub-criteria and the final score of suppliers.

5 Sensitivity analysis

In this section, we analyze the sensitivity of the proposed approach to the changes in inter-
dependencies between criteria. In other words, we will investigate how the results change
when the interdependency between two or more criteria is ignored. We define the sensitivity
analysis process by applying changes in the interdependency between the DL criterion and
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Table 13 The final score of diverse suppliers obtained from fuzzy ANP and our approach

Supplier Final score
∣∣∣ Fuzzy AN P−Our approach

Fuzzy AN P

∣∣∣ × 100 (%)

Fuzzy ANP Our approach

Supplier 1 0.4907 0.4926 0.387

Supplier 2 0.5599 0.5609 0.179

Supplier 3 0.5301 0.5273 0.528

Supplier 4 0.5089 0.5103 0.275

Supplier 5 0.5294 0.5294 0

Supplier 6 0.5039 0.5068 0.576

Supplier 7 0.5020 0.5044 0.478

Supplier 8 0.5317 0.5302 0.282

Supplier 9 0.5179 0.5135 0.850

Supplier 10 0.5449 0.5407 0.771

Supplier 11 0.4861 0.4861 0

Supplier 12 0.5291 0.5257 0.643

Supplier 13 0.5432 0.5414 0.331

Supplier 14 0.5195 0.5188 0.135

Supplier 15 0.5235 0.5248 0.248

Supplier 16 0.4815 0.4826 0.228

Supplier 17 0.4707 0.4711 0.085

Supplier 18 0.5311 0.5294 0.320

Supplier 19 0.5197 0.5208 0.212

Supplier 20 0.5444 0.5437 0.129

Supplier 21 0.5441 0.5416 0.459

Supplier 22 0.4937 0.4894 0.871

Supplier 23 0.5719 0.5731 0.210

Mean – – 0.356

other criteria. A total of six scenarios are presented. Scenario 1 is the base case. In scenario
2, it is assumed that the DL and DA criteria are independent. Scenario 3 assumes that DL
and DE criteria do not influence each other and are independent of each other. Scenario 4
assumes that the DL and DC criteria are independent and not intertwined. In scenario 5, DL
and DT criteria are considered independent. Finally, scenario 6 assumes that the network
is not intertwined and all criteria are independent. The proposed what-if analysis is imple-
mented for each scenario, and the final score and ranking of the suppliers are calculated for
all scenarios. It should be noted that steps 1 to 5 are constant in all scenarios and steps 6 to 14
will change with the abovementioned scenarios. Table 33 and Fig. 7 present the sub-criteria
weights for different scenarios. The suppliers’ final score and rank for various scenarios are
presented in Table 34. In addition, the suppliers’ rankings in other scenarios are depicted in
Fig. 8.

The results presented in Table 33 and Fig. 7 show the significant changes in the sub-criteria
weights in different scenarios. This considerable weight variation shows the interdependen-
cies between the criteria can substantially impact the final weight of the sub-criteria. In this
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Table 14 The global weights obtained from fuzzy BWM and our approach

Sub-criteria Global weight
∣∣∣ Fuzzy BWM−Our approach

Fuzzy BWM

∣∣∣ × 100 (%)

Fuzzy BWM Our approach

DL1 0.103 0.0922 10.49

DL2 0.0755 0.0676 10.46

DL3 0.0284 0.0254 10.56

DL4 0.0755 0.0676 10.46

DL5 0.0476 0.0426 10.5

DA1 0.0296 0.0628 112.16

DA2 0.0346 0.0734 112.14

DA3 0.0089 0.019 113.48

DA4 0.0121 0.0257 112.4

DE1 0.1297 0.0968 25.37

DE2 0.0652 0.0486 25.46

DE3 0.0929 0.0693 25.4

DC1 0.0219 0.0268 22.37

DC2 0.0293 0.0359 22.53

DC3 0.0681 0.0833 22.32

DT1 0.0404 0.037 8.42

DT2 0.0575 0.0527 8.35

DT3 0.0804 0.0736 8.46

Mean – – 37.30

Fig. 7 Sub-criteria weights in different scenarios
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Fig. 8 Suppliers’ rankings in different scenarios

regard, a change in the weight of sub-criteria leads to a change in suppliers’ final scores and
rankings, as shown in Table 34 and Fig. 8.

6 Managerial implications

Diversity and inclusion are central to creating a more just and sustainable business, and
cooperation with diverse suppliers is a competitive advantage that can play an essential role
in a company’s success. Strengthening relationships with diverse suppliers also leads to the
development of local communities and brings vibrant social effects.Despite these advantages,
the diverse supplier selection problem is a new and complex problem with multiple and often
conflicting criteria. While supplier selection criteria are well-researched, the diversity and
inclusion criteria are new and less explored in the supplier selection literature. This study
highlights the importance of diversity and inclusion in supplier selection within a complex
multi-criteria environment with hierarchical and interdependent factors. Practicing managers
can use the method proposed in this study to determine the criteria weights by considering
their interdependency under uncertainty. The fuzzy GBWMmethod analyzes the interwoven
relationships between the diversity selection criteria in a networkwith a hierarchical structure
and calculates their weights under uncertainty.

While cooperationwith diverse suppliers is considered a competitive advantage, it does not
mean organizations must do business with every diverse supplier. A systematic approach is
needed to efficiently and effectively evaluate all potential suppliers and select those suppliers
who add the most value to the company’s profitability and sustainability goals. The proposed
approach as a decision support system can help organizations achieve this goal and strengthen
their competitiveness while improving their profitability. Cooperation with diverse suppliers
can also help enhance the reputation and branding of organizations. This forward-looking
research has presented a structured andnovel evaluation approachwith newdiversity selection
criteria for sustainable suppliers.
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7 Conclusion

Selecting suitable diverse suppliers reduces risk, increases efficiency, and brings constructive
social effects in supply chain management. Over the past decade, many organizations have
included diversity and inclusion in their policies and operating practices. Despite the impor-
tance of supplier diversity, diversity and inclusion have not yet received adequate attention in
manufacturing and supply chain research. This study identified critical diversity criteria for
supplier selection through a literature review and proposed a practical and novel approach
to evaluate and select the most suitable suppliers systematically. A novel fuzzy GBWM was
developed to assess 23 suppliers under uncertainty at Coastal Virginia Wind Power Com-
pany through a public–private partnership project with a state government agency. Finally,
the performance of the proposed approach was evaluated by comparing it with the bench-
mark fuzzy ANP method and fuzzy BWM. The comparative analysis results confirmed the
applicability and effectiveness of the approach proposed in this study. A sensitivity analysis
was performed to investigate the effect of interdependencies between criteria on the weight
of sub-criteria and the final score and rankings of the suppliers.

In this study, suppliers are evaluated from a diversity perspective. A comprehensive set
of mature diversity criteria is needed for sustainable supplier selection. It is suggested that
future researchers focus on the supplier diversity problem and help develop an extensive set
of evaluation criteria, including economic, environmental, and social factors. It is suggested
that a more inclusive, diverse supplier selection and order allocation model be developed
in future research by integrating mathematical programming techniques in complex, multi-
faceted, and multi-criteria models.
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Table 15 The fuzzy BO vector

Criteria Fuzzy BO vector Sub-criteria Fuzzy BO vector

Diversity leadership (1, 1, 1) DL1 (1, 1, 1)

DL2 (2/3, 1, 3/2)

DL3 (7/2, 4, 9/2)

DL4 (2/3, 1, 3/2)

DL5 (3/2, 2, 5/2)

Diversity analytics (7/2, 4, 9/2) DA1 (2/3, 1, 3/2)

DA2 (1, 1, 1)

DA3 (7/2, 4, 9/2)

DA4 (5/2, 3, 7/2)

Diversity equity (2/3, 1, 3/2) DE1 (1, 1, 1)

DE2 (3/2, 2, 5/2)

DE3 (2/3, 1, 3/2)

Diversity climate (5/2, 3, 7/2) DC1 (5/2, 3, 7/2)

DC2 (3/2, 2, 5/2)

DC3 (1, 1, 1)

Diversity training (3/2, 2, 5/2) DT1 (3/2, 2, 5/2)

DT2 (2/3, 1, 3/2)

DT3 (1, 1, 1)

Table 16 The fuzzy OW vector

Criteria Fuzzy OW vector Sub-criteria Fuzzy OW vector

Diversity leadership (7/2, 4, 9/2) DL1 (7/2, 4, 9/2)

DL2 (3/2, 2, 5/2)

DL3 (1, 1, 1)

DL4 (3/2, 2, 5/2)

DL5 (2/3, 1, 3/2)

Diversity analytics (1, 1, 1) DA1 (5/2, 3, 7/2)

DA2 (7/2, 4, 9/2)

DA3 (1, 1, 1)

DA4 (2/3, 1, 3/2)

Diversity equity (5/2, 3, 7/2) DE1 (3/2, 2, 5/2)

DE2 (1, 1, 1)

DE3 (2/3, 1, 3/2)

Diversity climate (2/3, 1, 3/2) DC1 (1, 1, 1)

DC2 (2/3, 1, 3/2)

DC3 (5/2, 3, 7/2)

Diversity training (3/2, 2, 5/2) DT1 (1, 1, 1)

DT2 (2/3, 1, 3/2)

DT3 (3/2, 2, 5/2)
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Table 17 Fuzzy influence-intensity matrix

DL DA DE DC DT

DL – (3/2, 2, 5/2)** (7/2, 4, 9/2)** (7/2, 4, 9/2)** (7/2, 4, 9/2)**

DA (5/2, 3, 7/2)** – (5/2, 3, 7/2) (5/2, 3, 7/2) (5/2, 3, 7/2)

DE (3/2, 2, 5/2) N – (5/2, 3, 7/2) (3/2, 2, 5/2)*

DC (3/2, 2, 5/2) N (3/2, 2, 5/2)* – (5/2, 3, 7/2)

DT (2/3, 1, 3/2)* (2/3, 1, 3/2)* (5/2, 3, 7/2) (3/2, 2, 5/2)* –

**Most-influenced and * Least-influenced

Appendix B

Min γ ∗

s.t .

xaDL ≤ 7

2
× xaDA + γ ∗; xbDL ≤ 4 × xbDA + γ ∗; xcDL ≤ γ ∗ + 9

2
× xcDA

xaDL ≥ 7

2
× xaDA − γ ∗; xbDL ≥ 4 × xbDA − γ ∗; xcDL ≥ 9

2
× xcDA − γ ∗

xaDL ≤ 2

3
× xaDE + γ ∗; xbDL ≤ xbDE + γ ∗; xcDL ≤ 3

2
× xcDE + γ ∗

xaDL ≥ 2

3
× xaDE − γ ∗; xbDL ≥ xbDE − γ ∗; xcDL ≥ 3

2
× xcDE − γ ∗

xaDL ≤ 5

2
× xaDC + γ ∗; xbDL ≤ 3 × xbDC + γ ∗; xcDL ≤ 7

2
× xcDC + γ ∗

xaDL ≥ 5

2
× xaDC − γ ∗; xbDL ≥ 3 × xbDC − γ ∗; xcDL ≥ 7

2
× xcDC − γ ∗

xaDL ≤ 3

2
× xaDT + γ ∗; xbDL ≤ 2 × xbDT + γ ∗; xcDL ≤ 5

2
× xcDT + γ ∗

xaDL ≥ 3

2
× xaDT − γ ∗; xbDL ≥ 2 × xbDT − γ ∗; xcDL ≥ 5

2
× xcDT − γ ∗

xaDE ≤ 5

2
xaDA + γ ∗; xbDE ≤ 3 × xbDA + γ ∗; xcDE ≤ 7

2
× xcDA + γ ∗

xaDE ≥ 5

2
xaDA − γ ∗; xbDE ≥ 3 × xbDA − γ ∗; xcDE ≥ 7

2
× xcDA − γ ∗

xaDC ≤ 2

3
× xaDA + γ ∗; xbDC ≤ xbDA + γ ∗; xcDC ≤ 3

2
× xcDA + γ ∗

xaDC ≥ 2

3
× xaDA − γ ∗; xbDC ≥ xbDA − γ ∗; xcDC ≥ 3

2
× xcDA − γ ∗

xaDT ≤ 3

2
xaDA + γ ∗; xbDT ≤ 2 × xbDA + γ ∗; xcDT ≤ 5

2
× xcDA + γ ∗

xaDT ≥ 3

2
xaDA − γ ∗; xbDT ≥ 2 × xbDA − γ ∗; xcDT ≥ 5

2
× xcDA − γ ∗

xaDL + 4 × xbDL + xcDL

6
+ xaDA + 4 × xbDA + xcDA

6
+ xaDE + 4 × xbDE + xcDE

6
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Table 20 Fuzzy initial influence-intensity matrix

DL (γ ∗ = 0.079) DA
(γ ∗ = 0)

DE (γ ∗ = 0.046) DC
(γ ∗ = 0.046)

DT
(γ ∗ = 0.046)

DL – (0, 0.716,
1.343)

(0.236, 0.336,
0.481)

(0.236, 0.336,
0.481)

(0.236, 0.336,
0.481)

DA (0.241, 0.37,
0.589)

– (0.191, 0.263,
0.292)

(0.191, 0.263,
0.292)

(0.191, 0.263,
0.292)

DE (0.176, 0.273,
0.286)

N – (0.191, 0.263,
0.292)

(0.145, 0.145,
0.145)

DC (0.176, 0.273,
0.286)

N (0.145, 0.145,
0.145)

– (0.191, 0.263,
0.292)

DT (0.097, 0.097,
0.097)

(0, 0.358,
0.358)

(0.191, 0.263,
0.292)

(0.145, 0.145,
0.145)

–

N means non-influence and is equal to (0,0,0)

Table 21 Fuzzy relative influence-intensity matrix

DL DA DE DC DT

DL (1, 1, 1) (0, 0.716,
1.343)

(0.236, 0.336,
0.481)

(0.236, 0.336,
0.481)

(0.236, 0.336,
0.481)

DA (0.241, 0.37,
0.589)

(1, 1, 1) (0.191, 0.263,
0.292)

(0.191,
0.263,0.292)

(0.191, 0.263,
0.292)

DE (0.176, 0.273,
0.286)

(0, 0, 0) (1, 1, 1) (0.191, 0.263,
0.292)

(0.145, 0.145,
0.145)

DC (0.176, 0.273,
0.286)

(0,0,0) (0.145, 0.145,
0.145)

(1, 1, 1) (0.191, 0.263,
0.292)

DT (0.097,
0.097,0.097)

(0, 0.358,
0.358)

(0.191, 0.263,
0.292)

(0.145, 0.145,
0.145)

(1, 1, 1)

+ xaDC + 4 × xbDC + xcDC

6
+ xaDT + 4 × xbDT + xcDT

6
= 1

xaDL ≤ xbDL ≤ xcDL ; xaDA ≤ xbDA ≤ xcDA; xaDE ≤ xbDE ≤ xcDE ;
xaDC ≤ xbDC ≤ xcDC ; xaDT ≤ xbDT ≤ xcDT

xaDL , xaDA, xaDE , xaDC , xaDT > 0 (12B)

123

Annals of Operations Research (2025) 353:281–320 311



Table 22 The final score of suppliers for each sub-criterion

Supplier DL1 DL2 DL3 DL4 DL5 DA1 DA2 DA3 DA4 DE1 DE2 DE3 DC1 DC2 DC3 DT1 DT2 DT3
Supplier 1 0.4 0.34 0.56 0.38 0.6 0.44 0.66 0.5 0.44 0.58 0.66 0.64 0.36 0.4 0.4 0.32 0.52 0.56

Supplier 2 0.72 0.72 0.38 0.54 0.42 0.62 0.44 0.48 0.46 0.46 0.56 0.68 0.62 0.32 0.54 0.54 0.58 0.64

Supplier 3 0.54 0.58 0.6 0.42 0.6 0.54 0.4 0.4 0.66 0.48 0.5 0.38 0.6 0.62 0.7 0.58 0.5 0.54

Supplier 4 0.42 0.7 0.6 0.52 0.22 0.46 0.32 0.74 0.72 0.44 0.46 0.54 0.64 0.78 0.64 0.46 0.36 0.58

Supplier 5 0.48 0.52 0.58 0.48 0.46 0.42 0.5 0.6 0.42 0.58 0.5 0.68 0.4 0.66 0.44 0.54 0.64 0.62

Supplier 6 0.46 0.58 0.5 0.58 0.46 0.56 0.52 0.48 0.64 0.58 0.44 0.46 0.52 0.3 0.62 0.34 0.54 0.38

Supplier 7 0.74 0.42 0.6 0.5 0.36 0.46 0.56 0.42 0.48 0.6 0.3 0.48 0.54 0.42 0.44 0.6 0.64 0.34

Supplier 8 0.26 0.58 0.58 0.56 0.44 0.66 0.5 0.58 0.6 0.5 0.66 0.6 0.5 0.72 0.46 0.64 0.56 0.52

Supplier 9 0.38 0.4 0.48 0.3 0.66 0.62 0.52 0.46 0.42 0.46 0.58 0.66 0.6 0.6 0.52 0.6 0.68 0.5

Supplier 10 0.38 0.72 0.76 0.34 0.42 0.66 0.62 0.7 0.46 0.36 0.62 0.5 0.6 0.6 0.38 0.74 0.7 0.7

Supplier 11 0.56 0.7 0.42 0.3 0.42 0.7 0.42 0.52 0.6 0.32 0.7 0.42 0.46 0.6 0.52 0.42 0.5 0.34

Supplier 12 0.58 0.44 0.76 0.66 0.82 0.32 0.48 0.54 0.5 0.44 0.64 0.36 0.46 0.7 0.68 0.4 0.34 0.54

Supplier 13 0.38 0.66 0.62 0.46 0.54 0.62 0.58 0.4 0.46 0.54 0.48 0.42 0.68 0.52 0.6 0.48 0.6 0.68

Supplier 14 0.42 0.64 0.62 0.58 0.34 0.58 0.32 0.5 0.74 0.44 0.56 0.46 0.64 0.58 0.62 0.48 0.6 0.52

Supplier 15 0.68 0.58 0.72 0.3 0.58 0.46 0.38 0.66 0.54 0.56 0.56 0.58 0.5 0.4 0.52 0.54 0.4 0.58

Supplier 16 0.4 0.46 0.46 0.32 0.58 0.62 0.5 0.4 0.48 0.72 0.54 0.36 0.56 0.56 0.38 0.48 0.44 0.44

Supplier 17 0.52 0.42 0.48 0.26 0.36 0.46 0.34 0.76 0.5 0.46 0.66 0.62 0.5 0.52 0.56 0.46 0.48 0.38

Supplier 18 0.7 0.44 0.44 0.36 0.72 0.42 0.52 0.44 0.58 0.54 0.54 0.6 0.34 0.52 0.62 0.72 0.4 0.46

Supplier 19 0.38 0.58 0.48 0.5 0.48 0.62 0.54 0.48 0.6 0.6 0.52 0.48 0.64 0.36 0.64 0.5 0.44 0.48

Supplier 20 0.56 0.68 0.42 0.42 0.5 0.54 0.48 0.52 0.5 0.54 0.42 0.62 0.44 0.56 0.54 0.64 0.58 0.64

Supplier 21 0.44 0.58 0.44 0.56 0.5 0.5 0.52 0.58 0.36 0.62 0.4 0.56 0.7 0.72 0.48 0.6 0.7 0.54

Supplier 22 0.48 0.34 0.58 0.6 0.5 0.54 0.52 0.38 0.4 0.36 0.56 0.4 0.54 0.5 0.52 0.68 0.54 0.5

Supplier 23 0.46 0.66 0.3 0.62 0.42 0.68 0.74 0.48 0.56 0.58 0.6 0.66 0.66 0.54 0.52 0.5 0.68 0.44

Table 23 Pairwise comparisons matrix for DL’s sub-criteria

DL1 DL2 DL3 DL4 DL5

DL1 (1, 1, 1) (2/3, 1, 3/2) (7/2, 4, 9/2) (2/3, 1, 3/2) (3/2, 2, 5/2)

DL2 (2/3, 1, 3/2) (1, 1, 1) (5/2, 3, 7/2) (1, 1, 1) (2/3, 1, 3/2)

DL3 (2/9, 1/4, 2/7) (2/7, 1/3, 2/5) (1, 1, 1) (2/7, 1/3, 2/5) (2/5, 1/2, 2/3)

DL4 (2/3, 1, 3/2) (1, 1, 1) (5/2, 3, 7/2) (1, 1, 1) (2/3, 1, 3/2)

DL5 (2/5, 1/2, 2/3) (2/3, 1, 3/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

Table 24 Pairwise comparisons matrix for DA’s sub-criteria

DA1 DA2 DA3 DA4

DA1 (1, 1, 1) (2/3, 1, 3/2) (5/2, 3, 7/2) (3/2, 2, 5/2)

DA2 (2/3, 1, 3/2) (1, 1, 1) (7/2, 4, 9/2) (5/2, 3, 7/2)

DA3 (2/7, 1/3, 2/5) (2/9, 1/4, 2/7) (1, 1, 1) (2/3, 1, 3/2)

DA4 (2/5, 1/2, 2/3) (2/7, 1/3 2/5) (2/3, 1, 3/2) (1, 1, 1)
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Table 25 Pairwise comparisons
matrix for DE’s sub-criteria DE1 DE2 DE3

DE1 (1, 1, 1) (3/2, 2, 5/2) (2/3, 1, 3/2)

DE2 (2/5, 1/2, 2/3) (1, 1, 1) (2/3, 1, 3/2)

DE3 (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1)

Table 26 Pairwise comparisons
matrix for DC’s sub-criteria DC1 DC2 DC3

DC1 (1, 1, 1) (2/3, 1, 3/2) (2/7, 1/3, 2/5)

DC2 (2/3, 1, 3/2) (1, 1, 1) (2/5, 1/2, 2/3)

DC3 (5/2, 3, 7/2) (3/2, 2, 5/2) (1, 1, 1)

Table 27 Pairwise comparisons
matrix for DT’s sub-criteria DT1 DT2 DT3

DT1 (1, 1, 1) (2/3, 1, 3/2) (2/5, 1/2, 2/3)

DT2 (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2)

DT3 (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

Table 28 Inner dependence matrix of the criteria for DL

DA DE DC DT

DA (1, 1, 1) (2/3, 1, 3/2) (2/3, 1, 3/2) (3/2, 2, 5/2)

DE (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2)

DC (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2)

DT (2/5, 1/2 , 2/3) (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1)

Table 29 Inner dependence
matrix of the criteria for DA DL DT

DL (1, 1, 1) (3/2, 2, 5/2)

DT (2/5, 1/2, 2/3) (1, 1, 1)

Table 30 Inner dependence matrix of the criteria for DE

DL DA DC DT

DL (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (2/3, 1, 3/2)

DA (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2) (1, 1, 1)

DC (2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2)

DT (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2) (1, 1, 1)
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Table 31 Inner dependence matrix of the criteria for DC

DL DA DE DT

DL (1, 1, 1) (2/3, 1, 3/2) (2/3, 1, 3/2) (3/2, 2, 5/2)

DA (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2)

DE (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2)

DT (2/5,1/2,2/3) (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1)

Table 32 Inner dependence matrix of the criteria for DT

DL DA DE DC

DL (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (2/3, 1, 3/2)

DA (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2) (1, 1, 1)

DE (2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2)

DC (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2) (1, 1, 1)

Table 33 Weights of the sub-criteria in different scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

DL1 0.0922 0.0828 0.0767 0.0858 0.0826 0.1029

DL2 0.0676 0.0607 0.0563 0.0629 0.0606 0.0754

DL3 0.0254 0.0228 0.0211 0.0236 0.0227 0.0283

DL4 0.0676 0.0607 0.0563 0.0629 0.0606 0.0754

DL5 0.0426 0.0383 0.0355 0.0396 0.0382 0.0475

DA1 0.0628 0.0408 0.0782 0.0737 0.0716 0.0566

DA2 0.0734 0.0477 0.0915 0.0861 0.0837 0.0662

DA3 0.019 0.0123 0.0236 0.0222 0.0216 0.0171

DA4 0.0257 0.0167 0.032 0.0301 0.0293 0.0232

DE1 0.0968 0.1103 0.0776 0.1071 0.099 0.083

DE2 0.0486 0.0554 0.039 0.0538 0.0497 0.0417

DE3 0.0693 0.079 0.0555 0.0767 0.0709 0.0594

DC1 0.0268 0.0323 0.0301 0.019 0.0297 0.0223

DC2 0.0359 0.0433 0.0403 0.0254 0.0398 0.0299

DC3 0.0833 0.1005 0.0937 0.059 0.0925 0.0695

DT1 0.037 0.0446 0.0434 0.0387 0.0334 0.0457

DT2 0.0527 0.0635 0.0618 0.0551 0.0475 0.0651

DT3 0.0736 0.0887 0.0863 0.077 0.0664 0.0909
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Appendix C

Min γ ∗
DL

s.t .

xa
CDA
DL

≤ xa
CDE
DL

+ γ ∗
DL ; xb

CDA
DL

≤ 3

2
× xb

CDE
DL

+ γ ∗
DL ; xb

CDA
DL
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3
× xc

CDE
DL

+ γ ∗
DL

xa
CDA
DL
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CDE
DL

− γ ∗
DL ; xb

CDA
DL

≥ 3
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CDE
DL

− γ ∗
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(13C)

References

Alavi, B., Tavana,M.,&Mina, H. (2021). A dynamic decision support system for sustainable supplier selection
in circular economy. Sustainable Production and Consumption, 27, 905–920.

Alikhani, R., Torabi, S. A.,&Altay, N. (2019). Strategic supplier selection under sustainability and risk criteria.
International Journal of Production Economics, 208, 69–82.

Amiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E. K., &
Banaitis, A. (2021). A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in
supply chain management. International Journal of Sustainable Development & World Ecology, 28(2),
125–142.

123

Annals of Operations Research (2025) 353:281–320 317



Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy
AHP-VIKOR based approach. International Journal of Production Economics, 195, 106–117.

Berenguer, G., Lorenzo, N. C., & de Tejada Cuenca, A. S. (2024). EXPRESS: The state of supplier diver-
sity initiatives for large corporations: The new sustainable supply chain? Production and Operations
Management. https://doi.org/10.1177/10591478241240123

Blount, I., & Li, M. (2021). How buyers’ attitudes toward supplier diversity affect their expenditures with
ethnic minority businesses. Journal of Supply Chain Management, 57(3), 3–24.

Chai, N., Zhou,W.,& Jiang, Z. (2023). Sustainable supplier selection using an intuitionistic and interval-valued
fuzzy MCDM approach based on cumulative prospect theory. Information Sciences, 626, 710–737.
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