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A B S T R A C T   

In sustainable manufacturing, the comparison of different production processes has become increasingly 
important in recent years due to societal and political demands on companies to obtain a more sustainable 
business structure. At the shop floor level, production planning based on existing processes is usually approached 
through mathematical optimization, leading to a Pareto front under multiple conflicting criteria. The decision to 
exchange production processes then leads to the comparison and evaluation of different Pareto fronts. Here, 
analyzing the structure of Pareto fronts via performance indicators—such as hypervolume, Euclidean distances, 
etc.—are often the order of the day. However, respective indicators are often neither easy to communicate to 
decision-makers nor meaningful regarding economic and environmental impacts when processes are changed. 
Consequently, we propose a Center of Gravity-based indicator to handle these issues and analyze the efficacy of 
the proposed method through a bicriteria energy-efficient lot-sizing and scheduling numerical scenario analysis; 
the conflicting criteria under consideration are electricity costs and indirect emissions. Ultimately, we discuss the 
selected theoretical properties and approximation features of the proposed concept, and elaborate on the 
communicational benefits of the new tool.   

1. Introduction 

Today, sustainability is a key issue forcing companies to achieve a 
more sustainable business structure, especially due to the societal and 
political pressure. This is especially true for manufacturing companies, 
which are responsible for a large portion of global CO2 emissions and 
have made improving their environmental footprint a top environ
mental goal (e.g., Li et al., 2022; Tiwari et al., 2015; Wang & Wang, 
2022; Wichmann et al., 2019a). As a consequence, the corporate re
sponsibility of manufacturing companies is embedded in the Sustainable 
Development Goals (SDGs)—like SDG 12 for responsible consumption 
and production (United Nations (UN), 2015). 

In Europe, for example, the Industrial Strategy 2020 calls for com
panies to move towards more sustainable business models, including the 
adoption of more resource-efficient processes in particular (EU-COM – 
European Commission, 2020). However, changing production processes 

requires a comparison of an existing process with its possible alterna
tives. For example, a company is considering replacing existing ma
chines with ones that have special features (speed scaling, etc.) or that 
are probably more resource efficient. To underpin a restructering deci
sion, the assessed alternatives—here, different compositions of machi
nes—must be compared. Typically, in consecutive planning horizons, a 
company must solve similar production planning problems (i.e., lot- 
sizing and/or scheduling) at the shop floor level, differing only in the 
demand to be met. Thus, potential processes to be adopted can be 
evaluated with respect to the class of planning problems to be solved (e. 
g., Dong et al., 2016; Liang et al., 2019). In this situation, multi-objective 
optimization techniques come into play because solving respective 
planning problems typically involves multiple conflicting criteria such 
as energy costs and cycle time etc. (e.g., Oukil et al., 2022). The eval
uation of different processes then requires the compression and com
parison of the Pareto fronts obtained. 
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The literature reports several indicators for comparing different 
Pareto fronts, such as hypervolume ratio, etc. (e.g., Audet et al., 2021). 
However, a point that is widely neglected is that the result of a Pareto 
front comparison must ultimately be communicated to a decision-maker 
so that they can decide to restructure and select the process alternative 
to be chosen. Therefore, an indicator value must be meaningful and 
easy-to-interpret, especially concerning economic and ecological state
ments. For this purpose, we propose a novel Center of Gravity-based 
(CoG) indicator that allows just this. 

In this context, the main research questions of this study are: 

• Are the most common Pareto front indicators suitable for commu
nication purposes? 

• How can an easy-to-use indicator be designed that enables a mean
ingful interpretation?  

• How does a meaningful indicator support decision-making in a 
business case? 

To answer these questions, we will present and discuss common in
dicators from the literature with respect to their practicality for a 
communication purpose. In contrast, our Center of Gravity-based indi
cator will be put to the test and its weaknesses and remedies will be 
discussed. The applicability of the novel indicator is then demonstrated 
using a sustainable bicriteria production planning problem from a metal 
working company. 

The remainder of the article is as follows. Section 2 presents a 
literature-based and business-related motivation for the proposed 
approach, followed by the mathematical conceptualization of the new 
indicator. Selected properties of the novel indicator will be discussed. In 
Section 3, an energy-efficient bicriteria mixed-integer problem for 
reducing indirect emissions and electricity costs is developed to show 
the usefulness of the novel indicator. The indicator is exemplified in a 
computational study in Section 4. Section 5 concludes this work. 

2. Indicators for comparing Pareto fronts 

2.1. Motivation for sustainability-driven process comparisons 

In past decades, economic criteria such as production costs or 
tardiness have been the key performance measures in production man
agement (e.g., Maecker & Shen, 2020; Meng et al., 2020). In recent 
years, however, a paradigm shift has been initiated worldwide, 

particularly through the growing green movement (e.g., Cui & Lu, 2021; 
Yenipazarli & Vakharia, 2017). As a result, performance in production is 
measured not only by the economic result, but also simultaneously by 
ecological criteria such as indirect carbon emissions (e.g., Alexopoulos 
et al., 2018; Dong & Ye, 2022; Jaehn, 2016). Accordingly, production 
planning—lot-sizing and/or scheduling—will be carried out via multi
criteria optimization, resulting in Pareto fronts, provided that a conflict 
of objectives exists (Chen et al., 2020; Copil et al., 2017; T’kindt & 
Billaut, 2006). 

Furthermore, the comparison of production processes in terms of 
their ecological performance, especially carbon emissions, has received 
increasing attention in recent years (e.g., Gong & Zhou, 2013). 

Now, as motivated in the previous section, the comparison of 
different processes regarding their sustainability performance—i.e., an 
economic outcome such as electricity cost and an ecological outcome 
such as indirect emissions—with respect to the same production plan
ning problem implies the comparison of different Pareto fronts, as 
depicted in Fig. 1. The literature on comparing different (approximate) 
Pareto fronts is extensive, but mainly in the context of the performance 
of metaheuristics (e.g.: Audet et al., 2021; Zitzler et al., 2008; Collette & 
Siarry, 2004; Riquelme et al., 2015; Zitzler et al., 2003, etc.). Indicators 
such as S-metric, D-indicators, etc. can be named here, but communi
cation of the result when using an indicator for Pareto front comparison 
is not considered at all, although this is an essential part of decision 
support and decision making in business. This is because the design and 
application of an indicator is primarily considered from an analyst’s 
perspective. However, as empirical research shows, communicating the 
results cannot be neglected because a decision-maker may lack the 
mathematical intuition to interpret the results accurately (Hogarth & 
Soyer, 2015); Fig. 1 illustrates this issue. 

To substantiate the need for a new indicator, we will present the 
essence of the most common indicators in the following. 

2.2. Performance indicators in multi-objective optimization 

2.2.1. Preliminaries 
We now propose studying a production planning problem based on 

two different production processes. The problem at hand for the two 
processes can be described via a multicriteria mixed-integer minimiza
tion model each. 

In general, a multicriteria mixed-integer minimization model can be 
formulated as follows: 

Fig. 1. Assessment and communication of competing processes.  
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min
x∈S

{f1(x) ,…, fK(x) } (MP)  

with fk : S →ℝ, k ∈ {1,…,K} and K ∈ ℕ, being the objective functions 
and S defining the feasible region. In constrained mixed-integer opti
mization, S is a subspace of the decision variable space, which will be in 
the following ℝn1 × ℤn2 with n1, n2 ∈ ℕ (Kallrath, 2021; Miettinen, 
1998). Since processes A and B are similar and involve only a different 
mix of machine types (for example, throttleable and non-throttleable 
machines), the corresponding model for a planning problem for each 
process varies only in its feasible region. Consequently, for processes A 
and B, we have S A and S B instead of S in (MP) with S A ∕= S B. We 
obtain: 

min
x∈S A

{f1(x) ,…, fK(x) } (MP1)  

min
x∈S B

{f1(x) ,…, fK(x) } (MP2) 

In single-criterion optimization, differences between two production 
processes regarding the same planning problem can be revealed by the 
relation’ ≤ ‘, i.e. we just compare the unique optimal objective function 
values obtained (Zitzler et al., 2008). However, in a multicriteria setting 
comprising conflicting objectives, we obtain multiple Pareto-optimal 
solutions with different degrees of achievement regarding each 
objective—we obtain a Pareto front instead of a single optimum (Ehr
gott, 2005). Consequently, we need to compare two Pareto fronts A and 
B in the case of two processes A and B, where the first might relate to 
MP1 and the second to MP2. See Fig. 2 for an illustration of two different 
Pareto fronts in a bicriteria case. Note that all Pareto fronts presented in 
this article are discrete; they are finite sets of points. 

In this paper, it is sufficient to deal with objective vectors corre
sponding to a particular solution in the feasible region. Thus, when we 
mention the Pareto front A, we mean the set A of K-dimensional 
objective vectors shaping this front. Consequently, we will use con
cepts—such as Pareto dominance, etc.—solely at the level of the 
objective space (Zitzler et al., 2003). In this context, Definition 1 clar
ifies the concept of dominance (Audet et al., 2021). 

Definition 1. (Dominance relations in objective space). Given two 
Pareto fronts A and B and a = (a1,…, aK)

⊤
∈ A, b = (b1,…, bK)

⊤
∈ B. 

Then,  

• a⪯b (a weakly dominates b) if ak ≤ bk ∀ k ∈ {1,…,K}; i.e., a is not 
worse than b in all components.  

• a ≺ b (a dominates b) if a⪯b and ∃ k ∈ {1,…,K} such that ak < bk; i.e., a 
is not worse than b in all components and better in at least one component.  

• A⪯B (A weakly dominates B) if ∀ b ∈ B ∃ a ∈ A such that a⪯b; i.e., 
every b ∈ B is weakly dominated by at least one a ∈ A. A ≺ B (A 
dominates B) is defined accordingly. 

Before presenting the most popular indicators for compressing in
formation on Pareto fronts, we must recall some well-established con
ventions and definitions. 

Assumption 1. Let A and B be two Pareto fronts. Either A⪯B or B⪯A 
applies. 

With Assumption 1, we presuppose that there is a natural order on 
the set of Pareto fronts. This is typical for performance assessment in 
multi-objective optimization, and most papers implicitly assume it is 
fulfilled (Zitzler et al., 2003). In particular, when comparing production 
processes via Pareto fronts, Assumption 1 is often valid (Weckenborg 
et al., 2022). However, with Assumption 1, we get the following: 

Definition 2. If A⪯B and A ∕= B, then A is called better than B, 
abbreviated A▹B. 

There are many indicator-based concepts for measuring the goodness 
or quality of Pareto front approximations (Audet et al., 2021; Collette & 
Siarry, 2004; Riquelme et al., 2015; Wang et al., 2022; Zitzler et al., 
2008). They lead to more precise quantitative statements instead of 
qualifying via A▹B only. More precisely, a quality indicator is a mapping 
of a Pareto front approximation to a real value (Zitzler et al., 2008). Such 
indicators (especially convergence indicators) quantify the distance be
tween two sets of points in objective space, allowing a statement on the 
advantageousness between different approximation algorithms (Audet 
et al., 2021; Deb & Jain, 2004; Riquelme et al., 2015). 

In principle, these distance-based concepts might also be suitable for 
technology comparisons. However, we aim to compare exact Pareto 
fronts and not the performance of approximation algorithms. Therefore, 
we prefer the notion of the comparative indicator: 

Definition 3. (Binary vector-valued comparative indicator). Let Ψ 
be a set containing different Pareto fronts. A binary vector-valued 
comparative indicator is a relation I : Ψ × Ψ→ℝd with d ∈ ℕ, which as
signs a real numbered d-dimensional vector to two exact Pareto fronts. 

For d = 1, the indicator assigns a single real number. Since the in
dicator serves as an information tool for a decision-maker, however, it 
may be practical to embed several types of information in a d-tuple (Deb 
& Jain, 2004; Zitzler et al., 2003). 

A very important transitivity property of a comparative indicator 
should be as follows: 

Fig. 2. Exemplary Pareto fronts in two-dimensional space.  

M. Hilbert et al.                                                                                                                                                                                                                                 



Computers & Industrial Engineering 185 (2023) 109618

4

Definition 4. (Comparative monotonicity). Let A⪯B as well as B⪯C 
for three Pareto fronts A,B,C ∈ Ψ. Then, A⪯C and I(A,B) ≤ I(A,C). 

Definition 4 means that the natural order on the set of Pareto fronts, 
if any, should be reflected by the indicator. 

In summary, a comparative indicator should reveal the (dis-)ad
vantageousness of processes and adequately support the decision- 
making process. Since the communication of respective results to a 
decision-maker is an essential step in this process, in the next sections, 
we will present classical indicators and discuss their informative value 
with respect to such a purpose. 

2.2.2. Performance indicators 
Let A,B be two Pareto fronts, where a ∈ A is an element of A with a =

(a1,…, aK)
⊤, ak being the k-th component corresponding to the k-th 

objective; this also applies analogously to b ∈ B. Furthermore, we as
sume A ⪯ B. Next, we present popular indicators used in the literature 
but adapted to the notion of binary comparative indicators.  

• Generational Distance and Inverted Generational Distance (IGD 
and IIGD): 

The Generational Distance and Inverted Generational Distance, 
respectively, are given by 

IGD(A,B) =
1
|B|

(
∑

b∈B
min
a∈A

‖b − a‖p
2

)1
p

, (1)  

IIGD(A,B) = IGD(B,A). (2) 

With p = 1, IGD measures the averaged minimal Euclidean distance 
between every point of Pareto front B and its nearest neighbor of Pareto 
front A. IIGD is defined accordingly, except that A and B are swapped, see 
Eq. (2) (Coello & Cortés, 2005; Van Veldhuizen, 1999).  

• D Indicator family (ID1 and ID2): 

The D indicators ID1 and ID2 are somewhat similar to IGD or IIGD: they 
measure the average and worst-case component-wise distance in 
objective space, respectively (Zitzler et al., 2008). The indicators are 
defined by eqs. (3, 4) (Czyzżak & Jaszkiewicz, 1998). 

ID1(A,B) =
1
|A|

(
∑

a∈A
min
b∈B

max
1≤k≤K

{0,wk(bk − ak) }

)

(3)  

ID2(A,B) = max
a∈A

min
b∈B

max
1≤k≤K

{0,wk(bk − ak) } (4) 

In general, the weights form a convex combination, i.e. 
∑

k
wk = 1 and 

wk ≥ 0 ∀ k. En equal weighting w1 = … = wK = 1
K is a common 

specification.  

• Binary multiplicative epsilon indicator (I∊): 

The epsilon indicator equals the minimal factor ∊ by which each 
objective vector of A must be multiplied such that the resulting trans
formed Pareto front becomes weakly dominated by front B: 

I∊(A,B) = inf
∊∈ℝ

{∀a ∈ A ∃ b ∈ B : b⪯∊a}, (5)  

where ⪯∊ denotes the ∊-dominance relation: b⪯∊a ⇔ ∀k : bk ≤ ∊⋅ak (Zit
zler et al., 2008).  

• Hypervolume Ratio (Iz*

HV): 

The hypervolume (S-metric)—one of the most widely used 
indicators— yields the volume of the K-dimensional objective space, 
which is weakly dominated by a set of points bounded by a reference 
point z* ∈ ℝK and thus strongly depends on the chosen reference point 
(Zitzler and Thiele (1998); Audet et al., 2021). The unary hypervolume 
indicator is given by 

HVz* (A) = λK

(⋃

a∈A
(a, z*]

)
, (6)  

where λK is the K-dimensional Lebesque measure. However, to compare 
two Pareto fronts, the binary hypervolume ratio is often used, see Eq. (7) 
(Collette & Siarry, 2004): 

Iz*

HV(A,B) =
HVz* (B)
HVz* (A)

(7) 

Note here that the volumes covered by fronts A and B are calculated 
using the same reference point z*. The nadir point (plus an arbitrarily 
small vector ε > 0) of the dominated front B, znad

B + ε, is a common 
choice for z* due to Assumption 1 (Knowles & Come, 2002; Lewis et al., 
2008). 

The following Table 1 summarizes the indicators presented so far and 
their outcome with respect to Fig. 2. In general, the indicators are in 
principle suitable for comparing Pareto fronts (Audet et al., 2021; 
Riquelme et al., 2015). From a decision-maker’s point of view, however, 
it is questionable whether the values of the indicators are interpretable 
when analyzing changes in production processes. 

Consider the two Pareto fronts shown in Fig. 2, each resulting from 

Table 1 
Summary of presented indicators with application to Fig. 2.  

Indicator Formula Note Value 

IGD 
IGD(A,B) =

1
|B|

(
∑

b∈B
min
a∈A

‖b − a‖p
2

)1
p p = 2 for computational simplification 26.0207 

IIGD 
IIGD(A,B) =

1
|A|

(
∑

a∈A
min
b∈B

‖b − a‖p
2

)1
p p = 2 for computational simplification 38.1952 

ID1 ID1(A,B) =
1
|A|

(
∑

a∈A
min
b∈B

max
1≤k≤K

{0,wk(bk − ak) }

)

w1 = … = wK =
1
K 

365.9067 

ID2 ID2(A,B) = max
a∈A

min
b∈B

max
1≤k≤K

{0,wk(bk − ak) } w1 = … = wK =
1
K 

380.7864 

I∊ I∊(A,B) = inf
∊∈ℝ

{∀a ∈ A∃b ∈ B : b⪯∊a} – 1.1572 

Iz*

HV Iz*

HV(A,B) =

λK

(
⋃

b∈B
(b, z*]

)

λK

(
⋃

a∈A
(a, z*]

)
z* = znad

B +

⎛

⎝
0.0001

…
0.0001

⎞

⎠ 0.0209  
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solving a production planning problem that considers either Process A or 
Process B. But how can these values in Table 1 be interpreted to draw 
business implications, and how can these implications be communicated 
to a decision-maker as a key performance indicator? The indicators 
IGD(A,B), IIGD(A,B) and ID1(A,B) as well as ID2(A,B) show the com
pressed distances between the two fronts; the ∊-indicator implies that 
Pareto front A can be multiplied by approximately 1.16 before it be
comes dominated by Pareto front B. From all these numbers, we learn 
that Pareto front A dominates Pareto front B, and as a consequence, 
A▹B. However, this conclusion can also be drawn by visual inspection of 
Fig. 2. The same holds true for the Hypervolume Ratio Iz*

HV(A,B) because 
the hypervolume of Pareto front B covers approximately 2% of the 
hypervolume of Pareto front A. However, concrete economic or 
ecological implications—such as efficiency rates, etc.—can hardly be 
derived from these numbers, especially not for a decision-maker. 
Therefore, we propose a new indicator designed for such a communi
cation purpose in the next section. 

2.3. A Center of Gravity-based indicator 

The indicators presented so far give some idea of how two Pareto 
fronts differ from each other, but without characterizing the gain or loss 
in terms of the objective functions in an intelligible way. Second, the 
indicators are quite computationally expensive. For example, the costs 
for computing the Hypervolume Ratio are exponential in the number of 
objectives (Dyer & Frieze, 1988; Zitzler et al., 2008). Therefore, we 
propose a novel indicator based on the Center of Gravity (CoG) of a 
Pareto front to obtain a more tangible and less computationally expen
sive instrument. Figs. 3 and 4 show the essence of the idea in a bicriteria 
setting. 

Obviously, the CoG is given by the arithmetic mean of each 
component of the points of a Pareto front; the following definition 
provides the calculation of the CoG. 

Definition 5. (Center of Gravity (CoG)). Let A ∈ Ψ be a Pareto front 
with al =

(
al

1,…, al
K
)⊤

∈ ℝK being the points of A for l = 1,…, ∣A∣. The 
CoG of A is now given by 

fCoG(A) =

(
1
|A|

∑|A|

l=1
al

1,…,
1
|A|

∑|A|

l=1
al

K

)⊤

. (8)  

Based on the CoGs of both Pareto fronts A and B, the deviation in 
percent is easy to assess, see again Fig. 4. The new binary CoG-based 
indicator then reads 

ICoG(A,B) = 1 − w⊤(fCoG(A)∘ ̂fCoG(B) ), (9)  

where ̂fCoG(B) is the Hadamard inverse of fCoG(B), i.e., the component- 
wise vector inversion, and fCoG(A)∘ ̂fCoG(B) is the Hadamard product, i. 
e., the component-wise vector multiplication. Here, we assume that A⪯ 
B,A ∕= B and fCoG(B) ∕= (0,…,0)⊤ such that the Hadamard inverse 
̂fCoG(B) of fCoG(B) is well defined. Furthermore, the weights w⊤ = (w1,… 

,wK) must be specified a priori and should meet 
∑

k
wk = 1 with 

wk ≥ 0 ∀ k. Then, ICoG(A,B) provides the weighted average relative 
improvement potential regarding each objective when altering the 
processes from B to A. 

However, it is also possible to decompose the new indicator to 
formulate an unweighted version of ICoG(A,B), which then provides the 
average relative improvement potential for each objective. The 
component-wise version reads: 

Icomp
CoG (A,B) = 1→− (fCoG(A)∘ ̂fCoG(B) ). (10) 

Note here that Icomp
CoG (A,B) is a K-tuple instead of a single number as 

obtained with (9) and 1→ a vector of ones. In addition, ICoG can be ob
tained by computing the weighted sum of the tuple obtained by (10). 

About our numerical example (Fig. 2), Table 2 compares the values 
of the presented indicators. Using ICoG with w1 = w2 = 1

2,we now obtain 
the following contextual statement: Changing the processes from B to A 
concerning the underlying planning problem can reduce the equally 
weighted achievement of both production objectives by about 10% on 
average. Applying Icomp

CoG , we obtain the statement that the average 
achievement of the first objective can be reduced by about 6% and that 
of the second by about 14%. 

Alltogether, due to the following main features, ICoG(A,B) is bene
ficial compared to the other presented indicators:  

a. ICoG(A,B) has a clear meaning: If ICoG(A,B) = q ≥ 0 (< 0), then 
technology A improves (worsens) our outcomes by q percent on 
average compared to B. 

b. From a computational point of view, its calculation is only propor
tional to the elements of the two Pareto fronts.  

c. ICoG(A,B) can just as easily be used for higher dimensions, i.e. K > 2, 
and still retains its basic informative value. 

d. A component-by-component version of ICoG(A,B) can be easily ob
tained and will retain all of the features of ICoG(A,B). 

Fig. 3. Center of Gravity of a Pareto front.  

Fig. 4. Center of Gravity-based deviations.  
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e. ICoG(A,B) can be easily approximated a priori, which reduces the 
computational effort enormously; for more information on this 
subject, refer to Section 4.3. 

The next section illuminates some properties of ICoG(A,B). 

2.4. Selected properties of ICoG 

When we introduced ICoG(A,B) in Fig. 4 (or see Fig. 2 as well), we 
assumed that A⪯B given two Pareto fronts A and B. However, the 
calculated Pareto fronts in Fig. 4 (or Fig. 2) have a stronger relationship 
than just A ⪯ B. It applied that every point of Pareto front A weakly 
dominates every point of Pareto front B. We call this relation weakly total 
dominance: 

Definition 6. (Weakly total dominance). Given Pareto fronts A and 
B, then A weakly totally dominates B if for every a ∈ A it holds that 
a⪯b∀b ∈ B. 

Note that Definition 6 also implies A⪯ B and A∕= B. If Definition 6 
does not apply to A and B, caution is advised when drawing implications 
from ICoG. Three possible cases are demonstrated:  

• 1st case: overlapping CoGs: 

Fig. 5 visualizes two Pareto fronts A,B with overlapping CoGs. In this 
case, ICoG(A,B) = 0. When drawing implications from this—without a 
visual inspection—, it might be assumed that both process A and process 
B are equally good at carrying out an underlying production plan. 
However, A⪯B and A ∕= B, following that A▹B according to Definition 2.  

• 2nd case: reversed ordered CoGs: 

Here, the CoG of the dominated front B is smaller than the CoG of A, 
see Fig. 6; this implies ICoG(A,B) < 0 and thus a misclassification of the 
performance of the processes because A▹B.  

• 3rd case: unorderable CoGs: 

In Fig. 7, both CoGs are unorderable, i.e. fCoG(A) ≤ fCoG(B) does not 
hold or vice versa; here, ICoG(A,B) < 0. This again misclassifies the 
performance because A▹B. 

The above examples show that, in some cases, the natural order on 
the Pareto fronts remains unrevealed when calculating the ICoG without 
any further treatment. Additionally, ICoG might show non-monotonic 
behavior—the same applies to the other indicators except the unary 
hypervolume indicator (Zitzler et al., 2008)—as illustrated in Fig. 8. 
Here, one can observe A⪯B and B⪯C but ICoG(A,B) > ICoG(A,C). How
ever, this monotonicity property is always satisfied if Pareto front A 
weakly totally dominates Pareto front B and Pareto front B weakly 
totally dominates Pareto front C; the following Lemma 1 and Theorem 1 
specify this assertion. 

Lemma 1. Let A,B be two Pareto fronts in K-dimensional space ℝK, with 
A⪯B and A ∕= B. If every point of A weakly dominates every point of B, then it 

Table 2 
Indicator values with respect to Fig. 2.  

IGD IIGD ID1 ID2 I∊ Iz*

HV 
ICoG Icomp

CoG 

26.0207 38.1952 365.9067 380.7864 1.1572 0.0209 0.0998 (0.0611,0.1384)⊤

Fig. 5. Overlapping CoGs.  

Fig. 6. Reversed order.  

Fig. 7. Unorderable CoGs.  
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holds that fCoG(A) ≤ fCoG(B). 
Proof: 
Given that A weakly totally dominates B. Let anadir =

(
anadir

1 ,…, anadir
K

)⊤
∈ ℝK be the nadir point of Pareto front A. It then holds 

that anadir weakly dominates every point of B. 
Assume that this does not hold. Then, there exists a point b ∈ B that is 

not weakly dominated by anadir. It follows that one of the K components 
of anadir is greater than the respective component of point b, which 
contradicts the assumption that every point of A weakly dominates 
every point of B. Consequently, anadir weakly dominates every point of B. 
We then have  

where bl are the points of B, with l = 1,…, ∣B∣. This completes the proof. 
□ 

Based on this lemma, we propose: 

Theorem 1. (Qualification criterion for monotony (QC)). Let A, B 
and C be three Pareto fronts in K-dimensional space ℝK with A⪯B⪯C and 
A ∕= B ∕= C. If it holds that A weakly totally dominates B as well as B weakly 
totally dominates C, then ICoG(A,B) ≤ ICoG(A,C). 

Proof: 
Due to Lemma 1 fCoG(A) ≤ fCoG(B) ≤ fCoG(C) holds, and the state

ment follows immediately. □ 

The new indicator should reflect the natural ordering of ordered 
Pareto fronts; if A does not weakly totally dominate B, however, the 
indicator may not meet this feature. Therefore, we propose two ap
proaches to remedy this flaw. The gist of both procedures is the pruning 
of a front in order to meet the aforementioned property. The first 
approach relies on the following definition: 

Definition 7. (Minimally pruned front). Let A, and B be two Pareto 
fronts in K-dimensional space ℝK and A⪯B. The set Ã = {a ∈ A ∣∃ b ∈ B 

with a⪯b}, Ã⪯B, is called the minimally pruned front, i.e., the maximal 
subset Ã of A that weakly dominates front B. 

The second pruning is based on a minimum Euclidean distance: 

Definition 8. (Euclidean-pruned front). Let A, B be two Pareto fronts 
in K-dimensional space ℝK and A⪯B. The multiset Â, with ∣Â∣ = ∣B∣ and 
Â⪯B, is called the Euclidean-pruned front if the following holds: Every 

point al ∈ Â is a solution of argmin
a∈A,a⪯bl

⃦
⃦
⃦a − bl

⃦
⃦
⃦

2 
for bl ∈ B, l = 1,…, ∣B∣. 

The latter definition states that every point of Â weakly dominates 
(at least) one point of B and has minimal Euclidean distance to this point 

Fig. 8. Non-monotonic behavior of ICoG. Fig. 9. Minimally pruned front.  

Fig. 10. Euclidean-pruned front.  

fCoG(B) =

(
1
|B|
∑|B|

l=1
bl

1 ,…,
1
|B|
∑|B|

l=1
bl

K

)⊤

≥

(
1
|B|
∑|B|

l=1
anadir

1 ,…,
1
|B|
∑|B|

l=1
anadir

K

)⊤

≥
(
anadir

1 ,…, anadir
K

)⊤
≥ fCoG(A),
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compared to the other points of A which also weakly dominate this point 
of B. Note there that Â is a multiset with the same cardinality as B. Of 
course, metrics other than the Euclidean metric can be used in Definition 
8; the differences in the pruning of a front may be a topic for future 
research. 

Based on the two Pareto fronts given in Fig. 7, Fig. 9 and Fig. 10 
illustrate the philosophies of the two definitions. 

A minimally pruned front—for example, as in Fig. 9—seems to be 
appealing because fewer points of Pareto front A may be deleted in 
contrast to the Euclidean-based version. Furthermore, if Pareto front A 

weakly totally dominates front B, then ICoG

(
Ã,B

)
and ICoG(A,B) coin

cide; see Proposition 1. 

Proposition 1. Let A,B be two Pareto fronts in K-dimensional space ℝK. If 
Pareto front A weakly totally dominates front B, then ICoG(A,B) =

ICoG

(
Ã,B

)
. 

Proof: 
Ã = A since A weakly totally dominates B. Consequently, 

ICoG

(
Ã,B

)
= ICoG(A,B). □ 

As can be seen in Fig. 9, however, a minimally pruned front does not 
prevent the 3rd case of unorderable CoGs. To remedy this deficit, we 
have developed the concept of a Euclidean-pruned front. The following 
theorem provides the corresponding result: 

Theorem 2. Let A, B be two Pareto fronts in K-dimensional space ℝK, with 
A⪯B and Â being the Euclidean-pruned front of A with respect to B. Then, we 
have fCoG(Â) ≤ fCoG(B) and, additionally, we get ICoG(Â,B) > 0 if A ∕= B 
and w1,…,wK > 0. 

Proof: 
The points of Pareto front B are denoted by b1,…, b|B| and â1,…, â|B|

for Â, respectively. Please note, ∣Â∣ = ∣B∣ according to the definition of a 
Euclidean-pruned front. 

Due to Definition 8, the following holds: ∀bl ∈ B (l = 1,…, |B|) ∃ â ∈

Â such that 
â⪯bl. Now, we sort the points ̂a1⪯b1, â2⪯b2,…, â|B|⪯b|B| accordingly. 

Then, we have 

fCoG(B) =

(
1
|B|
∑|B|

l=1
bl

1,…,
1
|B|
∑|B|

l=1
bl

K

)⊤

≥

(
1
|B|
∑|B|

l=1
âl

1,…,
1
|B|
∑|B|

l=1
âl

K

)⊤

= fCoG(A).

This shows fCoG(B) ≥ fCoG(Â). 
The second part of the theorem is that if A ∕= B, then ICoG(Â,B) > 0, 

applying positive weights w1,…,wK > 0. 
Because of A ∕= B, there exist at least one index l such that âl⪯bl and 

⃦
⃦
⃦âl − bl

⃦
⃦
⃦

2
> 0. Consequently, âl is at least strictly smaller in one 

component than bl. It follows that ICoG(Â,B) is at least strictly smaller in 
one component than fCoG(A,B), which completes the proof. □ 

Still, the conformity with the monotonicity property as described in 
Definition 4 is not yet guaranteed due to the sequence dependency when 

pruning Pareto fronts. Therefore, we present the concept of conditional 
monotonicity; it is a direct consequence of Theorem 2. 

Corollary 1. (Conditional monotonicity). Let A,B,C be three Pareto 
fronts, with A⪯B⪯C, with B̂ being the Euclidean-pruned front of B with 

respect to C, and ̂̂A being the Euclidean-pruned front of A with respect to B̂, 

then it holds that ICoG(
̂̂A , B̂) ≤ ICoG(B̂,C). 

Proof: 

Due to Theorem 2, fCoG(
̂̂A) ≤ fCoG(B̂) ≤ fCoG(C) applies and the 

assertion follows from it. □ 

However, a possible drawback of the second approach might be 
found in the following fact: If A weakly totally dominates B, then the 
Euclidean-pruned front of A is a multiset containing ∣B∣ times the same 
point of A. Hence, ICoG(Â,B) underestimates the average improvement 
between A and B given by ICoG(A,B). Consequently, an analyst should 

apply and check the triplet ICoG(A,B), ICoG

(
Ã,B

)
and ICoG(Â,B), as 

demonstrated in Table 3 for selected scenarios. 
A possible interpretation of the triplet when Assumption 1 holds is 

presented in Table 4, where the third component—the Euclidean-pruned 
variant—serves as a first signal component: If it is positive, then A▹B. 
The smallest positive component of the triplet is then used as a 
communication vehicle, which informs about the smallest average 
relative improvement potential. Otherwise, if ICoG(Â,B) < 0, the highest 
average relative deterioration potential charaterizes the situation. This 
reading is therefore a kind of prudence principle. 

With Table 4 at hand, Table 3 then reads as follows: In the first 
row—the case of overlapping CoGs—, we see that ICoG(Â,B) > 0 and 
therefore A▹B; ICoG(A,B) = 0 does not reflect this order. Because the 

second component is the smallest positive component, ICoG

(
Ã,B

)
=

0.0006, we use this component for interpretation. The interpretation of 
that scenario is then as follows: The pessimistic average weighted per
formance can be improved on average by 0.06% by changing the pro
cesses from B to A. The interpretation of the second and third row of 
Table 3 is accordingly. 

The next section demonstrates the applicability of the novel indicator 
for a production-related planning problem. 

3. Sustainable bicriteria lot-sizing and scheduling 

3.1. Brief literature review on energy-efficient production planning 

In the following, we analyze an energy-efficient bicriteria single- 
stage parallel machine production planning problem to demonstrate 
the usefulness of the indicator ICoG. A practical justification for such 
planning problems is provided, for example, by Anghinolfi et al. (2021) 
or Moon et al. (2013). 

In the Energy Efficient Production Planning (EEPP) literature, 
studying trade-offs between electricity costs under price-dynamic elec
tricity tariffs (Bänsch et al., 2021) and classical criteria, like cycle time 
or total tardiness (e.g., Ding et al., 2021; Ho et al., 2022), is often the 
credo. To leverage electricity costs in such an environment, one can 
make use of the power-down approach and/or speed scaling (Biel & 
Glock, 2016; Ding et al., 2016; Liu & Huang, 2014; Luo et al., 2013; 
Mansouri et al., 2016; Schulz et al., 2020 and Wichmann et al., 2019b). 
Likewise, flexibility of manufacturing systems can be captured by 

Table 3 
Exemplification of the information triplet.  

Scenarios 
(

ICoG(A,B) , ICoG(Ã,B),ICoG(Â,B)
)

Pareto fronts A and B in Fig. 5, w1 = w2 =
1
2 

(0.0000,0.0006,0.0007)

Pareto fronts A and B in Fig. 6, w1 = w2 =
1
2 

( − 0.0004, 0.0003,0.0004)

Pareto fronts A and B in Fig. 7, w1 = w2 =
1
2  ( − 0.0002, 0.0002,0.0007)

Table 4 
Prudent interpretation of the information triplet.  

Signaling component Interpretation component 

ICoG(Â,B) > 0 ⟿ A▹B Smallest positive component of the triplet 

ICoG(Â,B) < 0 ⟿ B▹A Smallest negative component of the triplet  
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variable machine states (e.g. ‘on’, ‘off’, etc.) and/or different production 
speed levels and/or the embedding of parallel machines with different 
power requirements (Dellnitz et al., 2020; Giglio et al., 2017; Wang 
et al., 2022). 

While electricity costs is a well-established performance measure in 
EEPP, indirect carbon emissions are less frequently addressed in the 
literature, even though they are an inherent part of Scope 2 of the GHG 
Protocol. (https://ghgprotocol.org). Several articles address this issue in 
the literature, but with different philosophies; cf. Ding et al. (2016), Gu 
et al. (2021) and Dellnitz et al. (2020). In such analyses, time-of-use 
electricity tariffs are the order of the day (Schulz & Linß, 2020; Zhang 
et al., 2014; Holland & Mansur, 2008), and real-time pricing is less 
frequently considered (Dellnitz et al., 2020). 

Therefore, motivated by the literature related to EEPP, we will study 
the trade-offs between electricity costs and indirect emissions in the 
presence of a real-time pricing electricity tariff. To exploit system flex
ibiliy, a power-down and speed scaling approach in a parallel machine 
environment is taken into account. For a more detailed literature over
views on the above subjects, see Bänsch et al. (2021), Gahm et al. 
(2016), and Neufeld et al. (2022). 

3.2. Problem description 

We now investigate an application of the new indicator based on a 
production planning problem at the shop floor level from a metal- 
working company, which can be described via a bicriteria mixed- 
integer program. More precisely, we perform energy-efficient bicri
teria lot-sizing and scheduling for one working week in which a deter
ministic demand must be satisfied. That is, only the quantities to be 
produced to meet the weekly demanded jobs differ between different 
working weeks. The current single-stage parallel machine environment 
consists of four machines with non-identical power coefficients, and the 
production speed of the machines is constant, i.e., cannot be throttled. In 
the following, we refer to this as process B. 

Due to rising electricity prices and political pressure to achieve a 
more sustainable corporate structure, the company is now rethinking its 
processes:  

• Process B: The current machinery is not changed.  

• Process A: The machinery is similar to that of process B, i.e. the same 
power coefficients and the same maximum production output per 
hour, but the production speed is variable and each machine has a 
total of 10 different production speed levels.  

• Process A*: The machines have different power coefficients and 
have a higher maximum production output per hour than the ma
chines in processes A and B. The production speed is variable with 
less adjustable speed levels as in process A. 

Since production planning in the application example can be 
described by a bicriteria mixed-integer program, comparing and eval
uating the different processes is equivalent to comparing different Par
eto fronts. See Fig. 11 for an illustration of the applications’ background. 

The following assumptions are made when performing scheduling 
and lot-sizing:  

• The planning horizon is one working week Mon–Fri 0 AM - 12 PM, 
divided into 120 h.  

• All jobs are known at the beginning of the working week and the due 
dates are at the end of the working week.  

• The electricity for production is purchased from the power market at 
variable hourly electricity prices (real-time pricing).  

• The conflicting performance criteria are indirect emissions and 
electricity costs. 

• The single-stage parallel machine environment consists of 4 ma
chines whith non-identical electricity coefficients. This holds true in 
all processes A, A* and B. 

• A power-down approach is considered, i.e., there are different ma
chine states that satisfy the inequalities: off [kW] < standby [kW] <

Fig. 11. Applications’ background.  

Table 5 
Row-wise power ranking of the machines from best (=̂1) to worst (=̂4).  

State Machines m 

m = 1 m = 2 m = 3 m = 4 

Off 1 1 1 1 
Ramp up 2 3 4 1 
Standby 2 3 4 1 

Production 1 3 2 4  
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ramp up [kW] < production [kW]. The power hierarchy, which ap
plies to the three processes, is given in the following Table 5:  

• A speed scaling approach is also taken into account: The machines of 
processes A and A* have discrete production speed levels that allow 
for an hourly integer output; The machines of process B have one 
uniform production speed level. See Fig. 12 for an illustration. 

• The change in electricity consumption with variation of the pro
duction speed is calculated using the conversion formula found in 
Schulz et al. (2020).  

• Preemption and lot-splitting are possible.  
• A machine can process at most one job in one period, and the selected 

production speed cannot change in one period. The latter also applies 
to a selected machine state.  

• For simplicity, warehousing, backlog and machine tooling are 
neglected. 

The different processes include machines that differ in terms of the 
production speed: The machines of process B comprise constant pro
duction speed and those of processes A and A* encompasses throttleable 
production speed. To apply speed scaling, we require the following 
model-theoretic assumptions (Giglio et al., 2017; Schulz et al., 2020):  

• There is a proportional relationship between the output of a machine 
and its production speed, i.e., throttling by 10% leads to an output 
reduction of 10%.  

• Power consumption and production speed imply a non-proportional 
relationship.  

• The production speed is constant between two consecutive discrete 
points in time.  

• Only production speeds allowing an integer output per hour are 
feasible. 

Each machine has a maximal production output per hour, i.e. the 
output at highest possible production speed νmaximal. To operationalize 
the aforementioned requirements, we simply subdivide the production 
rates of the maximal speed case. For example, let 10 quantities be the 
production output in one hour at speed νmaximal; then, in total, 10 
different production speed levels ν ∈ N = {1,…,10} with correspond
ing integer outputs aprod

νj can be realized, e.g., 100% of νmaximal⟿aprod
1j =

10; 90% of νmaximal⟿aprod
2j = 9, etc. To delineate the nonlinear rela

tionship between power consumption and speed level in our lot-sizing 
and scheduling setting, we have adapted the transformation formula 
of Schulz et al. (2020), which was designed for pure scheduling 
problems: 

âelec I
νm =

[

1+ 0.6⋅

(
aprod

1j

aprod
νj

− 1

)2

− 1.4⋅

(
aprod

1j

aprod
νj

− 1

)]

⋅aelec
Im ⋅

aprod
νj

aprod
1j

, (11)  

where âelec I
νm is the resulting power consumption at speed level ν, aelec

Im is 
the power consumption when producing at normal speed in production 
state I on machine m—in our case I=̂i = 3. 

To briefly summarize this approach: The set of possible production 
speed levels is discrete, and the corresponding power consumption per 
hour of a machine at a given speed level can be calculated ex ante via 
(11); the resulting values then serve as input to the bicriterial mixed- 
integer program. An overview of the application setting is given in the 
following Table 6. For more details on the machines’ parameters, see 
Appendix A. 

3.3. Power market-related input data 

The key input data driving the model are electricity prices and in
direct emissions for the electricity mix purchased. They were deter
mined for the German electricity market for 2020 on an hourly basis 
(0− 23h) for a total of 4 working weeks (from Monday to Friday), one 
working week for each season (the data is taken from https://energy-ch 
arts.info and https://www.umweltbundesamt.de). 

Fig. 12. Power-down approach and speed scaling approach.  

Table 6 
Application setting.   

Process A Process A* Process B 

Environment    
Machines 4 in parallel 4 in parallel 4 in parallel 
Energy consumption Heterogeneous Heterogeneous Heterogeneous 
Process properties    
Preemption & lot 

splitting Yes Yes Yes 

Machine states 
(power-down) Yes Yes Yes 

Speed scaling Yes (10 discrete 
levels) 

Yes (5 discrete 
levels) 

No 

Production rate 
Variable but 

discrete 
(max 10 per hour) 

Variable but 
discrete 

(max 11 per hour) 

Constant 
(10 per hour) 

Planning horizon 1 week 1 week 1 week 
Demand Deterministic Deterministic Deterministic 
Due date of jobs End of week End of week End of week 
Performance criteria    
Energy costs Yes Yes Yes 
Energy-related 

emissions 
Yes Yes Yes  
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Typical seasonal weather patterns have been used to obtain a more 
reliable picture (week 4, week 15, week 29, and week 41 of 2020), i.e., 
high wind and low solar in winter, mixed wind and solar in spring and 
fall, and low wind but high solar in summer. Fig. 13 illustrates an 
exemplary power generation profile and corresponding power prices for 
week 4 of 2020. In our study, we have used the hourly day-ahead prices 
from EPEX SPOT and calculated the hourly emission factors by applying 
the average values of the electricity source-specific emissions and their 
relative share in the hourly electricity mix. 

To make the market-related conflict between electricity prices and 
emissions more transparent, we present electricity prices and average 
energy-related emissions for week 42,020 in Fig. 14. A visual inspection 
of Fig. 14 shows that the two features of the dataset—electricity prices 
and average emissions—do not appear to be collinear. To illustrate this, 

we perform unsupervised learning and want to partition the data points 
into three clusters according to three diagonal cuts as depicted in Fig. 15. 
Here, we want to obtain clusters where electricity prices are low, me
dium, and high relative to the corresponding average indirect emissions. 
Accordingly, we use K-means-based clustering with K = 3 and use cosine 
similarity as the similarity measure to obtain diagonal cuts (instead of 
the Euclidean similarity); see James et al. (2021). 

Here, the abscissa shows the hourly average emissions [kg/kWh] and 
the ordinate the corresponding hourly electricity prices [€/kWh]. Obvi
ously, electricity prices and energy-related average emissions are not 
perfectly positively correlated because the blue cluster contains data 
points with relatively low average emissions but relatively high elec
tricity prices and vice versa in the case of the red one. The green cluster 
contains—more or less—non-conflicting points: the smaller the price, 

Fig. 13. Electricity production and spot prices in Germany in week 4 (2020).  

Fig. 14. Electricity prices and emissions.  Fig. 15. K-means-based clustering.  
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the smaller the emissions, and vice versa. The other 3 weeks show 
similar effects but are skipped to avoid overloading the paper. 

3.4. Model setup 

Table 7 provides the symbolics used in our mixed-integer optimiza
tion problem given by Eqs. (12)–(20). This program is suitable for 
modeling all three processes since only the coefficients and speed levels 
of the machines vary with respect to processes A, A* and B. In process B, 
for example, the machines have only one production speed level and 
thus, ν ∈ N = {1}.

min C =
∑T

t=0
celec

t ⋅sbuy
t (12)  

min E =
∑T

t=0
eelec

t ⋅sbuy
t (13)  

s.t.
∑N

ν=1

∑T

t=0

∑M

m=1
aprod

νj ⋅xjmtν = dj ∀ j ∈ J (14)  

∑I

i=0
δstate

imt = 1 ∀ m ∈ M , t ∈ T (15)  

δ̂
state I
mtν −

∑J

j=1
xjmtν = 0 ∀ t ∈ T ,m ∈ M , ν ∈ N (16)  

δstate
Imt −

∑N

ν=1
δ̂

state I
mtν = 0 ∀ t ∈ T ,m ∈ M (17)  

δstate
im,t− 1 + δstate

hmt ≤ 1+ γtran
ih ∀ i, h ∈ I ,m ∈ M , t ∈ T \{0} (18)  

∑N

ν=1

∑M

m=1
âelec I

νm ⋅δ̂
state I
mtν +

∑I

i=0

i∕=I

∑M

m=1
aelec

im ⋅δstate
imt = sbuy

t ∀ t ∈ T (19)  

xjmtν, δstate
imt , δ̂

state I
mtν ∈ {0, 1}; sbuy

t ≥ 0 ∀ t ∈ T , j ∈ J , i ∈ I ,m ∈ M , ν ∈ N

(20) 

In this lot-sizing and scheduling problem, we minimize total energy 
costs C and total indirect emissions E, see (12) and (13). The objectives 
are determined by multiplying the electricity cost rate celec

t or emission 
factor eelec

t for each period t by the energy consumption sbuy
t and aggre

gating accordingly. 
Applying (14), we model an equality condition for meeting the de

mand dj exactly concerning each job j, assuming there is no delay in the 
completion of orders—for simplification for this article. Eqs. (15) ensure 
that a machine has only one state in a period t and never becomes 
stateless. Eqs. (16) in combination with (17) control the production state 

in tandem with the speed level. That is, ̂δ
state I
mtν equals 1 if any xjmtν equals 

1 in (16). The latter is only the case when one job j is assigned to ma

chine m at speed level ν in period t; otherwise, we have δ̂
state I
mtν = 0. (17) 

couples the production mode i = I (i = 3 in our case) of a machine m 

with one-speed level exclusively. Consequently, the sum over δ̂
state I
mtν is 1 

or 0 otherwise. 
In order to control the state transitions of a machine between two 

consecutive periods, we use (18). Here, a machine can either retain a 
state δstate

im,t− 1 + δstate
hmt = 2, with h = i and 1+ γtran

ih = 2, or can change it, 
with h ∕= i. However, the latter case is only possible if the transition from 
state i to state h is feasible; if a transition is infeasible, γtran

ih is 0. Bear in 
mind that γtran

ih is a transition parameter given as input (see again 
Fig. 12). For further details, see Appendix A. 

Eqs. (19) ensure that electricity consumption and purchased elec
tricity sbuy

t are always in balance. Here, the electricity consumption for 
the production state (first doublesum) is treated separately from the 
other states (second doublesum) due to the finer-grained decomposition 
regarding the speed levels. (20) are typical binary and non-negativity 
conditions. 

We initialize the model with the setting that all machines are in off 
mode in t = 0 and the machines should also be switched off at the end of 
a working week (t = T, here T = 120). 

All calculations of Pareto fronts are conducted via GAMS using 
CPLEX. The calculations of the presented indicators for all Pareto fronts 
are conducted via MATLAB. Instances of the presented model are solved 
applying the ε-constraint method with a dynamically adaption of the ε 
stepsizes. The increase of the ε values is predominantly equidistant; 
however, when consecutive solutions differ, the algorithm checks this 
gap with a smaller stepsize. On the one hand, this reduces redundant 
computations that can occur if the preselected equidistant ε stepsizes are 
too small. On the other hand, a (discrete) Pareto front can be determined 
accurately this way. In addition, we apply a Pareto filter to weed out 
weakly efficient solutions. However, the anchor points of a Pareto front 
(i.e., the ideal point and nadir point), which determine the range of ε 
values to be varied, are obtained from the payoff table. More precisely, 
in the bicriteria case, a point that minimizes one objective leads to a 
tight upper bound for the other objective with respect to the Pareto front 
(if lexicographically optimized). For more details, see Chircop and 
Zammit-Mangion (2013) or Miettinen (1998). 

4. Practicability of the new indicator 

4.1. Scenario analysis: jobs with identical quantity requirements 

Now we compute representations of Pareto fronts for the mixed- 
integer programs with respect to processes A, A*, and B. In this sec
tion, a scenario analysis is performed with 5 jobs and equal demand for 
each job in each scenario. In total, we generate 11 scenarios (S1, …, S11) 
in which the demand for each job increases uniformly up to approxi
mately full capacity (based on the machinery in place) in the last sce
nario, see Table 8. 

To demonstrate the practicality of the new indicator, corresponding 
indicator numbers for the Pareto front comparisons are calculated and 
compared with the classical indicators from Section 2.2. A justification 

Table 7 
Indices, parameters, and variables.  

Indices 

m Machine m ∈ M = {1,…,M}

j Job j ∈ J = {1,…, J}

i,h 
States i,h ∈ I = {0,…, I}; ‘off’ (i = 0), ‘ramp up’ (i = 1), ‘standby’ (i = 2), 
‘production’ (i = 3) 

t Period (a working hour) t ∈ T = {0,…,T}, t = 0 serves as initialization 
ν Production speed level ν ∈ N = {1,…,N}

Parameters 
celec

t Cost rate [€/kWh] of the electricity purchased in period t 
eelec

t Carbon emission factor [kg/kWh] of the electricity mix purchased in period t 

aprod
νj Hourly production rate of job j on each machine at speed level ν 
dj Demand of job j 

γtran
ih 

Transition parameter from state i to h (1 if state transition is feasible, 
0 otherwise) 

aelec
im Electricity consumption of machine m in state i without i = I 

âelec I
νm Electricity consumption of machine m in production state I at speed level ν 

Decision variables 

xjmtν 
Equals 1 if job j will be processed on machine m in period t at speed level ν, 
otherwise 0 

δstate
imt Equals 1 if machine m has state i in period t, Otherwise 0 

δ̂
state I
mtν 

Equals 1 if machine m is in production state I at speed level ν in period t, 
otherwise 0 

C Equals the energy costs to be minimized 
E Equals the carbon emissions to be minimized 
sbuy
t Amount of electricity [kWh] to be purchased in period t  
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for identical jobs can be found in Pinedo (2016). A scenario analysis 
with non-identical order quantities will be performed in the next section. 

Comparison of process A and process B 
Fig. 16 shows the results for the winter season, i.e., week 4 of 2020. 
A visual inspection of Fig. 16 reveals that the short-term production 

plans with respect to process B result in generally higher energy costs 
and indirect emissions than those with respect to process A. The dif
ferences become smaller the higher the capacity utilization. In the latter 
scenario, the advantage of process A over process B almost disappears. 
Therefore, a process change from B to A is only recommended if there is 
capacity flexibility to meet the requested quantities. In the latter 

scenarios, however, this is rarely the case, as the machines must produce 
at maximum speed in almost every time slot to meet demand. 

However, all graphs, methods, and respective results or observa
tions—that also fit the other weeks—are easily accessible for pro
fessionals; this may not always apply to a decision-maker. In addition, 
here, visual inspection provides only approximate information. 
Condensing this information into a quantitative statement is a more 
accurate means of aiding decision making. Therefore, Table 9 summa
rizes the results regarding all indicators presented, applying w1 = 0.5,
w2 = 0.5. As reference value in Iz*

HV , we use the nadir point of front B 
(depending on the scenario) plus the vector (0.001,0.001)⊤. 

Table 8 
Evenly distributed machine utilization.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

Utilization ≈57% ≈61% ≈66% ≈70% ≈74% ≈78% ≈83% ≈87% ≈91% ≈95% ≈100%  

Fig. 16. Pareto fronts for all scenarios (processes A and B).  

Table 9 
Results for week 4 of 2020 (processes A and B).   

IGD IIGD ID1 ID2 I∊ Iz*

HV 
ICoG ICoG-triplet 

S1 534.3574 426.8832 6759.4689 6791.191 2.9658 0.0059 0.6606 (0.6606, 0.6606, 0.6595) 
S2 558.707 333.6682 6688.5549 6744.2083 2.5046 0.0066 0.5982 (0.5982, 0.5982, 0.596) 
S3 521.3813 327.7379 6525.0019 6588.5607 2.1698 0.0069 0.5359 (0.5359, 0.5359, 0.5329) 
S4 470.42 284.6783 6223.0565 6299.202 1.9057 0.0074 0.4719 (0.4719, 0.4719, 0.4685) 
S5 466.5214 231.0403 5760.6626 5853.7847 1.6932 0.0082 0.4065 (0.4065, 0.4065, 0.4023) 
S6 390.8624 190.0559 5136.6367 5253.2654 1.5206 0.0071 0.3401 (0.3401, 0.3401, 0.3352) 
S7 413.5806 151.391 4365.647 4500.8771 1.3798 0.0063 0.2747 (0.2747, 0.2747, 0.2698) 
S8 361.3616 126.8028 3500.6304 3630.1881 1.2696 0.0069 0.2086 (0.2086, 0.2086, 0.2049) 
S9 425.0256 97.7548 2512.6275 2633.278 1.175 0.0076 0.1433 (0.1433, 0.1433, 0.1414) 
S10 273.9165 69.8954 1417.6945 1492.6292 1.0896 0.0072 0.0771 (0.0771, 0.0771, 0.077) 
S11 148.2886 29.7958 153.5602 163.5763 1.009 0.0089 0.0081 (0.0081, 0.0081, 0.0083) 
∅ 414.9475 206.3366 4458.5037 4540.9783 1.6984 0.0072 0.3386 (0.3386, 0.3386, 0.336)  

Table 10 
Results for four weeks of 2020: Component-wise indicator Icomp

CoG .  

Icomp
CoG 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

(
0.6557
0.6655

) (
0.5944
0.602

) (
0.5316
0.5402

) (
0.4671
0.4766

) (
0.4035
0.4094

) (
0.3392
0.341

) (
0.2787
0.2707

) (
0.2134
0.2039

) (
0.1492
0.1374

) (
0.0808
0.0733

) (
0.0087
0.0075

)
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From this Table 9, one can learn that the indicator values IIGD, ID1 and 
ID2 decrease monotonically but are associated with high absolute values 
compared to the other indicators in each scenario. Neither IGD nor IHV 
shows a monotonic behavior, see, e.g., S6–S10. The values of I∊ also 
decrease monotonically but on a lower absolute level than IIGD, ID1 and 
ID2. However, all these indicators do not allow for a more precise 
objective-related statement, while this is the case with ICoG. It shows a 
monotonic behavior and allows concrete statements such as: “in sce
nario S1, energy costs, and indirect emissions can be improved by 
approx. 66.1% on average when changing processes from B to A.” 

In the last column of Table 9, we give the numbers of the ICoG-triplet, 
that is, the value of ICoG with respect to an unpruned front (first 
component) and a minimally and Euclidean-pruned front, respectively 
(second and third components). Since all components are positive, we 
can infer that A▹B, i.e., front A is better than front B in every scenario. 
However, the interpretation is then based on the smallest positive 
component (see again Table 4). 

In all scenarios, we calculated the values of ICoG using the weights 
w1 = 0.5, w2 = 0.5. However, we can use Icomp

CoG for the unweighted 
version of ICoG, which gives us the average percentage deviation for each 

objective, see Table 10. 
Overall, the process A is superior to process B. More specifically, 

based on the ICoG, the energy costs and indirect emissions can be 
improved on average by about 34.86% (see the last row of Table 9) when 
swapping from process B to process A. Such meaningful statements 
cannot be derived from the other indicators presented. 

Comparison of Process A and Process A* 
So far, we have observed that process A is preferred over process B. 

Now we compare process A to A* accordingly. 
Fig. 17 shows the Pareto fronts with respect to processes A and A* for 

all scenarios. Figs. 18 and 19 highlight the Pareto fronts for selected 
scenarios. As observed, the Pareto fronts’ order changes throughout the 
scenarios. More precisely, Pareto front A is preferred over A* in sce
narios 1 and 2, i.e., at about 57% and 61% capacity utilization. Pareto 
front A* is preferred over Pareto front A in the remaining scenarios. In 
Fig. 19, one Pareto front does not weakly totally dominate the other 
Pareto front (see Definition 6), as was the case in Fig. 16 when 
comparing processes A and B. As a result, the shortcomings of ICoG may 
come into play, but can be remedied by applying the pruning strategies 

Fig. 17. Pareto fronts for all scenarios (processes A and A*).  

Fig. 18. Pareto fronts for scenario S1-S3.  

Fig. 19. Pareto fronts for scenario S6-S9.  
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developed in Section 2.4 and using the ICoG-triplet. 
Overall, the visual inspection could lead to the conclusion that pro

cess A* is the process of choice in the transformation of the company 
structure because this process is superior from a capacity utilization of 
about 61% than process A. However, we want to compress this result in a 
quantitive statement for communication purposes. Table 11 depicts the 
corresponding numbers of the indicators. Again, applying w1 = 0.5,
w2 = 0.5 and as reference value in Iz*

HV , we use a vector that is worse than 
each of the nadir points of front A and A* in a scenario. 

Here, we apply Pareto front A as the first input and front A* as the 
second input to compute the respective binary indicators. However, the 
order of the Pareto fronts changes from scenario S3 onwards. The in
dicators IGD and IIGD fail to identify this change. The indicators ID1, ID2, 
I∊ and Iz*

HV illustrate the change in the order, but their values remain 
questionable in terms of concrete economic and/or ecological implica
tions. Even worse, for the indicators IGD and IIGD as well as ID1, ID2, the 
order of the Pareto fronts has to be determined theoretically a priori, and 
the calculations have to be adjusted on the basis of the determined 
structure. When a large number of scenarios is calculated, visual iden
tification is very time-consuming, if possible at all. Therefore, the order 
of the fronts has to be determined algorithmically. 

However, Table 11 reveals the superiority of the novel indicator 
regarding communication purposes. First, the ICoG-triplet shows the 
change in the order of the Pareto fronts (see again Table 4). Mis
classifications like in scenario S7 are detected and removed by the 
developed pruning strategies. Overall, taking the average of all sce
narios, the interpretation is as follows: On average, the relative perfor
mance with respect to the performance measures under consideration 
deteriorates by about 0.5% when swapping from process A* to process 
A. 

For completeness, Table 12 shows the ICoG values for the comparison 

between Process A* and Process B. 

4.2. Scenario analysis: jobs with non-identical quantity requirements 

We now relax the requirement that the jobs have identical order 
requirements. More specifically, the integer number of orders is gener
ated uniformly at random, ranging from 5 to 8 orders. The demanded 
quantities of a job are also randomly generated, and the total demanded 
quantities range from about 65% to 85% of the capacity utilization of 
the existing machines (i.e., with respect to process B). Consequently, a 
total of 30 different settings is generated. Tables 13 and 14 show an 
excerpt of the results (for the complete tables, see Tables B1 and B2 in 
Appendix B). Here, since fronts A or A* weakly totally dominate B, the 
values of ICoG are sufficient instead of the triplet. 

While the already established indicators show only limited applica
bility for communication purposes, the ICoG allows an overall statement 
over the course of the scenarios. More precisely, when changing from 
process B to process A, the performance objectives improve by an 
average of about 38.64%. However, the average improvement potential 
regarding the performance objectives is by about 0.6% larger when 
changing from process B to process A*. 

As a secondary result, Table 15 shows the average computation times 
for calculating the indicators across all scenarios. It can be seen that the 
proposed indicator ICoG requires less computation time (and thus less 
effort) than the other indicators. However, the computational effort 
required to calculate the indicators is negligible for the present study, 
but could become relevant in more complex problems (e.g., in cases with 
more than two objectives). 

Next, we will show that ICoG can be approximated a priori to reduce 
the computational cost of solving instances of the mixed-integer pro
gram given by (12)–(20). 

Table 11 
Results for week 4 of 2020 (processes A and A*).   

IGD IIGD ID1 ID2 I∊ Iz*

HV 
ICoG-triplet 

S1 13.9635 15.7003 114.2463 146.5043 1.0426 0.9613 (0.0408, 0.0408, 0.0376) 
S2 1.3142 3.4377 22.5156 58.2164 1.013 0.984 (0.0118, 0.0118, 0.0105) 
S3 4.3252 5.8455 0 0 0.9977 1.0091 (− 0.0093, − 0.0093, − 0.0081) 
S4 24.3827 11.5808 0 0 0.99 1.0347 (− 0.0215, − 0.0215, − 0.0162) 
S5 12.6663 8.5396 0 0 0.9881 1.0368 (− 0.0173, − 0.0173, − 0.0138) 
S6 2.9108 2.9976 0 0 0.9941 1.0311 (− 0.0096, − 0.0096, − 0.0088) 
S7 0.9016 0.7906 0 0 0.999 1.0283 (0.0012, − 0.0038, − 0.0047) 
S8 1.0658 0.8869 0 0 0.9984 1.0454 (− 0.004, − 0.0041, − 0.0044) 
S9 3.514 1.6454 0 0 0.9965 1.1029 (− 0.0064, − 0.0069, − 0.0076) 
S10 6.6709 4.2295 0 0 0.9915 1.3624 (− 0.0123, − 0.0124, − 0.0142) 
S11 20.9549 25.1575 0 0 0.9822 13.8594 (− 0.0246, − 0.0247, − 0.024) 
∅ 8.4245 7.3465 12.4329 18.6110 0.9994 2.2232 (− 0.0047, − 0.0052, − 0.0049)  

Table 12 
Results for week 4 of 2020 (processes A* and B).   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 ∅ 

ICoG 0.646 0.593 0.5398 0.483 0.4162 0.3458 0.2766 0.2113 0.1481 0.088 0.0318 0.3436  

Table 13 
Results for week 4 of 2020 (processes A and B).   

IGD IIGD ID1 ID2 I∊ Iz*

HV 
ICoG 

S1 (≈77%) 1287.9949 576.2229 5321.1144 5447.1953 1.5686 0.0078 0.3615 
S2 (≈77%) 1200.6199 824.7776 5370.2364 5475.7738 1.5768 0.0080 0.3648 
S3 (≈69%) 1256.1310 990.3451 6259.0106 6350.6096 1.9415 0.0073 0.4829 
… … … … … … … … 
S28 (≈71%) 1341.6428 1356.1072 6040.6451 6160.3926 1.8258 0.0072 0.4495 
S29 (≈80%) 1146.1918 568.3365 4834.3542 5003.5188 1.4681 0.0070 0.3180 
S30 (≈79%) 1091.2970 812.1745 5018.9691 5148.9065 1.4977 0.0058 0.3307 
∅ 1264.3897 871.1103 5431.7627 5558.7466 1.6673 0.0069 0.3864  
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4.3. Approximation of the new indicator ICoG 

Due to the generally high computational complexity of a mixed- 
integer problem, determining an exact Pareto front is often very time- 
consuming, especially in bicriteria production planning (Seeanner & 
Meyr, 2013; Meyr, 2002; Brüggemann & Jahnke, 2000). In our analysis, 
for example, for processes A and B, the smallest capacity utilization 
scenarios took a few hours to obtain the Pareto fronts. To approximate 
the new indicator ICoG, we make use of a principle we call the principle of 
fixed data; the following proposition provides it: 

Proposition 2. (Principle of fixed data). Suppose the electricity prices 
and emission factors are constant, i.e. celec

t = cfix, eelec
t = efix∀t ∈ T and 

positive cfix, efix ∈ ℝ>0. Then, ICoG based on (12)–(20) is independent of cfix,

efix. 
Proof: 
Let cfix,efix > 0. An optimal solution exists since the feasible set given 

by (14)–(20) is compact. For (12) and (13), we then get 

C =
∑T

t=0
cfix⋅sbuy

t = cfix
∑T

t=0
sbuy

t ;E =
∑T

t=0
efix⋅sbuy

t = efix
∑T

t=0
sbuy

t .

It follows that minimizing C and E leads to minimizing 
∑T

t=0sbuy
t , since 

sbuy
t is independent of cfix and efix in (14)–(20) ∀t, leading to a singleton 

Pareto front. 
Now, let s*

A > 0 and s*
B > 0 be the minmal aggregated energy con

sumption for Process A and Process B—wrt. (14)–(20)—for any arbitrary 
scenario. The indicator ICoG then reads: 

ICoG

(

s*
A⋅
(

cfix

efix

)

, s*
B⋅
(

cfix

efix

))

= 1 −
(

w1⋅
s*

A⋅cfix

s*
B⋅cfix +w2⋅

s*
A⋅efix

s*
B⋅efix

)

= 1 − (w1 + w2)
⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟

=1

⋅
s*

A

s*
B
= 1 −

s*
A

s*
B
.

Here, assuming s*
B > 0 and s*

A > 0 precludes non-production or zero- 
demand scenarios. As a consequence, the indicator ICoG is independent of 
cfix, efix. □ 

Due to the principle of fixed data, we can approximate the indicator 
ICoG solving only two instances of the model given by (12)–(20), one for 

each process B and A (or A*), respectively. For week 4 of 2020, the 
approximation results are presented in Table 16. 

Here, the maximal absolute deviation ∣Δ∣ is 0.0128 in S3, i.e., it 
differs by about 1.28% from the exact value. Obviously, this is a fairly 
good method for determining the overall—economic and ecologi
cal—advantage of production process changes. 

As proven above, the approximation is independent of the electricity 
prices and emissions; however, the quality of the approximation also 
depends on the dispersion of the input data of course. In Table 17, the 
empirical standard deviations for the input data are determined. We see 
that if the empirical standard deviation increases, then the maximal 
absolute approximation error also tends to increase; the highest 
approximation error can be found in week 15 of 2020. 

Overall, we have uncovered the potential of the new indicator and its 
very good approximation results. The next section concludes this article. 

5. Conclusions 

In this paper, we have developed an indicator based on the Centers of 
Gravity (CoG) of different Pareto fronts—derived from bicriteria pro
duction planning problems. The novel indicator shows great potential 
when, for example, analyzing production process transformations due to 
its efficiency change-related statement, which can be directly applied to 
the individual criteria. Additionally, the indicator still provides inter
pretable information when it comes to higher dimensions, i.e., more 
than two objective functions. This might be an essential indicator 
feature, especially when the Pareto fronts cannot be adequately visual
ized. From a computational point of view, the indicator is less expensive 
than the most common indicators in literature. The superiority of our 
indicator is demonstrated via a sustainable bicriteria lot-sizing and 

Table 14 
Results for week 4 of 2020 (processes A* and B).   

IGD IIGD ID1 ID2 I∊ Iz*

HV 
ICoG 

S1 (≈77%) 1321.0200 2371.4556 5410.7762 5531.6068 1.5845 0.0076 0.3672 
S2 (≈77%) 1228.0492 10,609.0477 5281.0532 5281.0532 1.5794 0.0081 0.3684 
S3 (≈69%) 1296.6797 1427.8247 6440.9774 6506.8217 1.9874 0.0071 0.4929 
… … … … … … … … 
S28 (≈71%) 1393.6498 2319.6247 6221.9583 6337.7514 1.8705 0.0069 0.4604 
S29 (≈80%) 1160.8658 1809.1696 4933.1835 5041.9389 1.4761 0.0068 0.3214 
S30 (≈79%) 1116.7594 4102.5809 5002.5003 5197.6869 1.5049 0.0056 0.3334 
∅ 1294.1766 2833.7128 5516.5407 5633.1416 1.6890 0.0067 0.3924  

Table 15 
Mean computation times of the indicators over S1-S30.   

IGD IIGD ID1 ID2 I∊ Iz*

HV 
ICoG 

∅-CPU in sec. (A and B) 0.0294 0.0781 0.0777 0.0779 0.0779 0.0843 0.0002 
∅-CPU in sec. (A* and B) 0.0293 0.0195 0.0202 0.0199 0.0198 0.0857 0.0002  

Table 16 
Approximation results for week 4 of 2020 – identical order requirements.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

IApprox
CoG 0.6694 0.6098 0.5487 0.4823 0.416 0.3482 0.2792 0.2094 0.142 0.0748 0.0068 

ICoG 0.6606 0.5982 0.5359 0.4719 0.4065 0.3401 0.2747 0.2086 0.1433 0.0771 0.0081 
∣Δ∣ 0.0088 0.0116 0.0128 0.0104 0.0095 0.0081 0.0045 0.0008 0.0013 0.0023 0.0013  

Table 17 
Dispersion aspects.   

week 4 week 15 week 29 week 41 

SD of electricity prices 0.01 0.0087 0.0076 0.0112 
SD of emission factors 0.0605 0.1063 0.0807 0.0664 
maximal ∣Δ∣ 0.0128 0.0253 0.0126 0.0188  
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scheduling problem, performing a scenario analysis for a metal-working 
company, where time-dependent energy costs and indirect carbon di
oxide emissions are minimized simultaneously. In this context, we have 
developed an a priori approximation approach which leads to promising 
results. However, the CoG-based indicator can be distorted if, for 
example, the diameters or spreading of Pareto fronts are relatively large. 
For such cases, we develop pruning concepts and algorithms to retain 
the indicator’s properties. Several aspects could be useful for further 
research. First, can we generalize the indicator to compare Pareto fronts 
that are unorderable from a dominance analysis-based perspective? 
Second, how do different metrics affect the pruning of a Pareto front and 
thus the CoG-based indicator? Third, production planning under more 
than two performance criteria or in interaction with metaheuristic 
procedures can be analyzed. These aspects could be rewarding topics for 
future research. 
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