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A B S T R A C T

In the rapidly evolving landscape of hyperconnected digital manufacturing, known as Industry 4.0, achieving 
energy efficiency has become a critical priority. As manufacturers worldwide strive to meet sustainable devel
opment goals, enhancing energy efficiency is essential for reducing operational costs and minimizing environ
mental impact. In this context, line balancing is a pivotal strategy for optimizing energy consumption within 
manufacturing processes. This study presents a comprehensive literature review on the Line Balancing Problems 
(LBPs) focused on enhancing energy efficiency. The review aims to provide a holistic understanding of this 
domain by examining past, present, and future trends. A systematic literature review is conducted using the 
PRISMA method, incorporating both qualitative and quantitative analyses. The quantitative analysis identifies 
prevalent patterns and emerging trends in energy efficiency optimization within the LBP domain. Concurrently, 
the qualitative analysis explores various aspects of existing studies, including configurations of lines, managerial 
considerations, objectives, solution methodologies, and real-world applications. This review synthesizes current 
knowledge and highlights potential avenues for future research, underlining the importance of energy efficiency 
in driving sustainable practices in Industry 4.0 and the emerging Industry 5.0 paradigm.

1. Introduction

Energy efficiency is a crucial aspect of modern manufacturing, 
driven by the need for economic viability and environmental sustain
ability (Batouta et al., 2023). Energy efficiency significantly enhances 
manufacturers’ transition toward sustainable production within the In
dustry 4.0 framework (Ghobakhloo & Fathi, 2021), which relies on 
energy-intensive advanced technologies such as cyber-physical systems, 
IoT, big data analytics, and cloud computing (Chen et al., 2021). Energy- 
efficient manufacturing ensures regulatory compliance and provides a 
competitive edge by cutting production expenses and appealing to 
environmentally conscious consumers (Hao et al., 2022). As the industry 
evolves towards Industry 5.0, the focus shifts even more toward sus
tainable practices, prioritizing energy efficiency to achieve sustainabil
ity goals, optimize resource use, and build resilient manufacturing 

systems (Leng et al., 2023). Industry 5.0 relies on energy-efficient pro
duction systems to ensure adaptability to energy fluctuations and 
enhance overall operational resilience (Masoomi et al., 2023).

Production line balancing is critical in achieving energy efficiency 
within this advanced manufacturing landscape (Ramli & Ab Rashid, 
2022). Efficiently balanced lines ensure that production processes are 
streamlined, minimizing idle times and reducing the energy consump
tion of machinery, equipment, and digital technologies (Tian et al., 
2024). By aligning production rates and workloads across the produc
tion line, manufacturers can prevent bottlenecks and ensure continuous 
flow, thereby enhancing operational efficiency and reducing energy 
waste (Wang et al., 2021a). The role of line balancing-driven energy 
efficiency can be more salient within Industry 4.0 and 5.0 environments 
where integrating smart technologies can be a double-edged sword, 
ensuring optimal energy use at every stage or further skyrocketing the 
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overall energy consumption (Ghobakhloo et al., 2021). Consequently, 
the strategic importance of energy efficiency in driving advancements in 
manufacturing, fostering sustainability, and achieving long-term eco
nomic and environmental viability is further underscored (Tian et al., 
2024). This is why energy-efficient line balancing has become essential 
for the manufacturing sector to meet present and future challenges and 
contribute to a more efficient, resilient, and environmentally responsible 
industrial ecosystem (Dalle Mura & Dini, 2023).

In terms of production economics, to remain competitive in today’s 
mass-customized production landscape, manufacturing systems must 
quickly adapt to rapid market and product changes (Schulz et al., 2023). 
Under such circumstances, the line balancing problem (LBP) is among 
the most important decision steps to smoothen the path from the product 
design to the final product delivery (Battaïa & Dolgui, 2022). The LBP 
primarily intends to divide tasks among the workstations to optimize 
one or more objectives, such as efficiency, cycle time (CT), etc., while 
satisfying some constraints (Nourmohammadi et al., 2019; Fathi et al., 
2020; Boysen et al., 2022).

From the industrial environment perspective, the LBP can be 
considered for three line types: assembly, disassembly, and transfer/ 
machining lines (Battaïa & Dolgui, 2022). The assembly lines tradi
tionally add components to the final products, e.g., cars (Scholl, 1999). 
The disassembly lines recycle end-of-life products, e.g., hazardous parts 
(Bentaha et al., 2014). The transfer lines focus on the machining of the 
products, e.g., cylinder heads (Beldar et al., 2025; Delorme et al., 2009).

Since the first formulation of LBP by Salveson and Louisville (1955), 
the field has attracted much research by including additional real-world 
aspects. Considering the line layout, the main extensions to the tradi
tional straight line are the U-shaped line (Fathi et al., 2016; Fathi et al., 
2018; Işık & Yildiz, 2023; Li et al., 2023), two-sided line (Liang et al., 
2022; Liao et al., 2023) and parallel line (Aguilar et al., 2023). From the 
number of models’ perspectives, the main extensions are the mixed- 
model (Sawik, 2023; Sikora, 2024) and the multi-model (Jafari Asl 
et al., 2019; Pereira, 2018). Considering the level of automation, the 
main extensions are robotic (Albus et al., 2024; Aslan, 2023; Wu et al., 
2024) and human-robot collaboration (Nourmohammadi et al., 2024; 
Nourmohammadi et al., 2022; Stecke & Mokhtarzadeh, 2022) following 
the Industry 4.0 and 5.0 concepts.

LBPs have been extensively studied for over 70 years, and several 
review studies have been published on the topic, synthesizing various 
aspects of LBPs. Recent contributions include reviews by Chutima 
(2022), Boysen et al. (2022), Battaïa and Dolgui (2022), Ramli and Ab 
Rashid (2022), Fathi et al. (2024) and Güler et al. (2024). While these 
studies have advanced the field, they exhibit limitations in systemati
cally addressing energy efficiency in line balancing.

A major shortcoming of existing reviews is the lack of a structured 
categorization of energy efficiency efforts in LBPs. Most reviews do not 
comprehensively examine how energy efficiency is considered across 
different line configurations, layout designs, and production types. 
Additionally, the managerial aspects of energy efficiency, including 
macro and micro-level decision-making, remain underexplored. 
Furthermore, the relationship between energy efficiency and other key 
performance measures in production systems has not been sufficiently 
addressed, limiting the understanding of trade-offs and synergies be
tween energy consumption and operational efficiency.

A closer examination of the literature reveals that while some re
views touch on energy efficiency, they do not provide a focused and 
systematic analysis. For instance, Güler et al. (2024) reviewed disas
sembly lines but did not consider energy efficiency a central theme. 
Similarly, Chutima (2022) and Fathi et al. (2024) examined robotics and 
semi-robotic assembly lines, which are highly relevant to energy opti
mization. However, their discussions are mainly limited to identifying 
energy-related objectives rather than exploring detailed methodologies 
for energy consumption calculations or analyzing the challenges of 
balancing energy efficiency with other performance metrics. Boysen 
et al. (2022) and Battaïa and Dolgui (2022) provided extensive 

overviews of decades of LBP research but primarily focused on defining 
the field and its scope, dedicating only minimal attention to opportu
nities for optimizing energy consumption. Among the existing reviews, 
the study by Ramli and Ab Rashid (2022) is the most closely related to 
the present work. However, it is narrowly focused on assembly lines and 
exclusively examines studies employing metaheuristic solution 
methods. While it offers insights into optimization approaches, it lacks a 
broader perspective on different LBP types, energy assessment tech
niques, and managerial implications.

Despite these relevant contributions, there is still no systematic re
view that categorizes energy efficiency efforts in LBP research from 
multiple perspectives. The existing literature does not sufficiently 
explore how different line types, layouts, and production settings in
fluence energy efficiency, nor does it adequately address the role of 
managerial decision-making in achieving energy-efficient production 
systems. Additionally, limited research has been conducted on methods 
used to evaluate energy consumption and its relationship with other 
performance indicators such as cost, productivity, and sustainability. 
Furthermore, while various solution approaches in LBP studies incor
porate energy efficiency considerations, a comparative analysis of these 
methodologies remains absent.

This review study addresses these gaps by systematically examining 
LBP literature with an explicit focus on energy efficiency. Unlike prior 
reviews, it categorizes energy efficiency research across various line 
configurations—including assembly, disassembly, and machining/ 
transfer lines—and explores managerial drivers, real-world challenges, 
and the interplay between energy optimization and other production 
objectives. By adopting a comprehensive approach, this review con
tributes to understanding the fragmented and evolving research land
scape in this critical area. Moreover, it aligns with the growing emphasis 
on operational efficiency and sustainability within the frameworks of 
Industry 4.0 and Industry 5.0. By explicitly positioning energy efficiency 
as a central theme, this study integrates perspectives on energy con
sumption, managerial considerations, and solution methodologies, 
providing both theoretical contributions and practical insights. It also 
lays the groundwork for advancing research into underexplored areas, 
such as machining and transfer lines, while equipping practitioners with 
actionable knowledge to address real-world constraints and trade-offs.

To achieve these objectives, this review aims to answer the following 
research questions:

RQ1: Which types of line configurations are considered for opti
mizing energy efficiency in line balancing problems?

RQ2: What managerial aspects and drivers necessitate energy opti
mization, and what direct benefits can companies achieve from it in line 
balancing? In which sectors is energy efficiency optimization applied, 
and to what extent has it been implemented in the real world?

RQ3: Which objectives are used to calculate energy consumption in 
production lines, and what is the relationship between energy and other 
production measures?

RQ4: What methods are used to optimize energy efficiency in line 
balancing, and which are most frequently employed?

The remainder of the manuscript is organized as follows. Section 2
describes the methodological approach to the literature review. Section 
3 presents the quantitative analysis of the identified literature using a 
bibliometric method. Section 4 develops a classification scheme and 
provides a qualitative literature analysis. Section 5 discusses and sum
marizes the main findings of the review. Finally, Section 6 concludes the 
study by highlighting its contributions to practice and research, as well 
as its limitations and suggestions for future research.

2. Methodology

This study followed the Preferred Reporting Items for Systematic 
Reviews (PRISMA) guidelines (Page et al., 2021) to ensure the high 
quality and replicability of the review process. PRISMA provides a 
standardized, peer-accepted methodology using a flow chart diagram 
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and guideline checklist. Considering the PRISMA guideline, the research 
process was divided into “Literature Search,” “Literature Selection,” and 
“Analysis Process.” In the following subsections, the three process steps 
are described in detail.

2.1. Literature search

The literature search aims to identify a literature pool containing as 
many relevant publications as possible. Therefore, a literature search 
was conducted using the three scientific databases Science Direct, Sco
pus, and Web of Science. The applied search string is divided into three 
levels containing specific keywords. These parts are linked with the 
operator “AND” to search for the keywords simultaneously, as shown in 
Fig. 1. The first level limits the literature selection to “Balancing.” Since 
the term “Balancing” can be found in several scientific disciplines, the 
second level narrows the search to the line types of “Assembly Line”, 
“Disassembly Line,” “Transfer Line,” and “Machining Line”. The third 
level relates to the objective of the balancing method considered in this 
study, namely “Energy Efficiency.” Although this objective is usually 
pursued directly, energy consumption can also be reduced to achieve 
ecological goals such as reducing the carbon footprint. Considering this, 
the search string is differentiated into two branches in level 3. The left- 
hand branch focuses on the energy-specific keywords “Energy” and 
“Power Peak”, while the right-hand branch considers environmental- 
specific keywords “Carbon” and “Eco”. The literature search used title, 
abstract, and keywords for each level to achieve completeness. In 
conclusion, this process yielded a literature pool of 275 scientific 
publications.

2.2. Literature selection

The identified papers were analyzed in two steps in the literature 
selection process. Initially, the whole literature pool was screened for 
duplicates. Thereby, 83 duplicates have been identified and thus 
removed. Then, the remaining 192 papers were analyzed based on 
defined eligibility criteria. Table 1 outlines the utilized exclusion and 
inclusion criteria.

Since the research field is still developing and the available literature 
is limited, the literature selection includes all the peer-reviewed journal 
and conference papers to obtain a more comprehensive overview. Fig. 1
provides a detailed overview of the identification and selection process.

By applying exclusion criterion 1.1, 22 papers were removed ac
cording to the paper type, and 19 were removed due to the language. 
Then, the analysis of title, abstract, and keywords based on criterion 1.2 
resulted in 47 publications being identified as unsuitable. Finally, the 
full texts of the remaining 104 papers were examined, resulting in 15 

Fig. 1. PRISMA flow diagram.

Table 1 
Eligibility criteria.

Criteria Description

Exclusion The language of the paper is not English.
The paper type is not “journal article” or “conference paper,” or the 
paper is a review paper.
The search string identifies the paper, but the paper hardly relates to the 
topic.

Inclusion The focus is on production lines and line balancing.
At least one objective function relates to improving energy efficiency.
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papers not fulfilling the eligibility criteria. Hence, 89 publications have 
been selected from the initial literature pool.

Based on the literature selection, a snowball search was conducted. 
This method serves to identify further suitable papers based on the 
reference lists of a first starting set (Mahmoodi et al., 2022). Thus, the 
reference lists of the 89 identified papers were reviewed, and potentially 
suitable publications were analyzed according to the eligibility criteria. 
This procedure was repeated step by step for the newly identified papers. 
As a result, eight additional papers were included in the final literature 
selection. Thus, 97 eligible papers were identified for the literature 
review.

2.3. Analysis process

The required insights from the papers were extracted based on the 
grounded theory by Wolfswinkel et al. (2013). This method focuses on 
the three sequential process steps of “open coding,” “axial coding,” and 
“selective coding”. Hence, it provides a structured approach to extract
ing and categorizing the information needed to answer the research 
questions.

First, each paper was read to conceptualize any relevant findings. For 
these findings, abstract codes were generated according to their content. 
Second, the codes across all papers were compared to identify connec
tions. This approach allows codes to be grouped into categories. Hence, 
four categories were identified, namely “line types,” “managerial as
pects,” “objective aspects,” and “solution approach.” Third, these cate
gories were again compared and refined to elaborate high-level 
dimensions. The coding was documented in the software MAXQDA 2022 
to keep track of these steps.

3. Quantitative analysis

This section provides an analysis of the bibliometric data from the 
identified literature. In this regard, the literature pool is examined from 
three interconnected perspectives, namely, the milestones of research, 
the temporal development of the research field, and the keyword anal
ysis, as explained below: 

• Milestones of research:

Milestones of research are papers cited particularly often in other 
publications. During the quantitative analysis, the reference lists of the 
selected papers were examined for links to one another. The analysis 
revealed that researchers most frequently referred Mukund Nilakantan 
et al. (2015a) (30 times) and Li et al. (2016) (27 times), both focusing on 
including the energy aspect in the simple assembly lines. Thus, these 
papers can be considered milestones in the research area of line 
balancing for energy efficiency. These papers were published at the 
beginning of research on line balancing for increasing energy efficiency. 

• Temporal development:

Optimising Energy Efficiency through Line Balancing is a developing 
concept, with the first publication dating back to 2014. A general trend 
can be identified based on the distribution frequency of publications 
over time. The annual number of published papers is rising steadily, as 
shown in Fig. 2. Thus, the research area seems to have gained more 
relevance in recent years. 

• Keyword analysis:

The keywords analysis identifies the keywords mentioned most 
frequently and the temporal development. The analysis was conducted 
using the Software VosViewer. In detail, it considers 63 keywords 
mentioned at least two times in the literature pool. Fig. 3 depicts that the 
keywords “energy consumption,” “disassembly line balancing”, “multi- 
objective optimization,” and “assembly line balancing” are mentioned 
most often in the literature. Moreover, Fig. 5 reveals a temporal rela
tionship and development. In this regard, robotic-related keywords 
mainly occurred around 2019. Thus, the application of robotic tech
nology could have been a trigger for the considered research field.

Moreover, research seems to have focused initially on balancing on 
the assembly line and, later, on balancing on the disassembly line. 
Finally, environment-related keywords such as “green manufacturing” 
or “carbon emission” mainly appear after 2021. This development in
dicates a trend towards greater importance of environmental factors 
within production due to the recent sustainable and green 
manufacturing trends.

4. Qualitative analyses

To conduct a qualitative analysis of the literature, this study employs 
a categorization scheme to systematically classify the reviewed studies 
and address the research questions outlined in Section 1. The primary 
categories in this classification scheme include Line Configuration, 
Managerial Aspects, Objective Approaches, and Solution Approaches. 
These categories serve as a framework for analyzing LBP literature 
concerning energy efficiency. As discussed below, each primary cate
gory is further divided into subcategories to enhance analytical depth.

Line Configuration is categorized into Line Type, Layout, and Pro
duction Type. Line Type comprises three subcategories representing 
production environments: Assembly, Disassembly, and Machining. 
Layout is classified into four spatial configurations: Straight, U-shaped, 
Two-sided, and Parallel. Production Type is categorized into Single, 
Multi, and Mixed, indicating the number of product variants or models 
manufactured within the system.

Managerial Aspects are categorized into Drivers, Benefits, Specific 
Industries, and Real-world Cases. The Drivers include key factors 
influencing sustainable manufacturing, such as Climate Change, 

Fig. 2. Frequency distribution over time.

J. Petersen et al.                                                                                                                                                                                                                                 Computers & Industrial Engineering 205 (2025) 111144 

4 



Industry 4.0, the Energy Market, and the Market Situation. Benefits 
highlight the advantages of energy-efficient practices, including 
Reduction of Energy Costs, Improvement of Image, and Compliance with 
Regulations. Specific Industries encompass sectors adopting these 
practices, including Automotive, Home Appliances, Shipbuilding, 
Apparel, and Furniture. Real-world Cases provide practical examples of 
energy-efficient implementations in manufacturing.

Objective Approaches are divided into Energy Consideration and 
Relations. Energy Consideration includes six key aspects defining 
different energy consumption types in production systems: Total, Fixed, 
Standby, Operation, Auxiliary, and Power Peak. Relations describe in
teractions between energy consumption patterns, which can be Com
plementary (mutually beneficial energy interactions) or Conflicting 
(where energy demands create inefficiencies).

Fig. 3. Keyword development over time generated by VosViewer.

Fig. 4. Graphical representation of the classification scheme.

J. Petersen et al.                                                                                                                                                                                                                                 Computers & Industrial Engineering 205 (2025) 111144 

5 



Solution Approaches are classified into Exact, Heuristic, Meta- 
heuristic, and Deep Learning. Exact methods provide optimal solutions 
through mathematical programming. Heuristic approaches offer effi
cient approximations for complex problems. Meta-heuristic techniques 
explore large solution spaces to identify near-optimal solutions. Deep 
Learning leverages AI-based models to optimize production planning 
and energy management decision-making.

Fig. 4 provides a visual representation of this classification scheme, 
which is elaborated in detail in subsequent sections. Following the 
provided classification, the relevant information from the reviewed 
papers is extracted and reported in Table A1 in the Appendix to facilitate 
the examination of LBP literature in the context of energy efficiency. 
Unlike existing LBP literature classifications, our approach introduces a 
more detailed examination of Managerial Aspects and Objective Ap
proaches, incorporating lower-level subcategories that enhance the 
understanding of energy efficiency in production systems. This classifi
cation captures key drivers, benefits, and industry-specific insights and 
provides a structured breakdown of energy considerations and their 
interrelations, offering a more comprehensive framework for analyzing 
LBP with energy efficiency.

4.1. Configuration

This section aims to answer the RQ1. Therefore, it provides insights 
into the connection between the line configurations and the managerial 

aspects of energy efficiency in terms of different lines, layouts, and 
production types, as discussed below.

4.1.1. Line type
The line type comprises three main categories, namely assembly (43 

times), disassembly (53 times), and machining/transfer lines (one time).
Assembly line: The managerial aspects of energy optimization in as

sembly line studies are considered in Fig. 5(a). On the macro level, 
climate change (45 %), Industry 4.0 (30 %), and the energy market 
situation (25 %) are key drivers, respectively. On the micro level, the 
benefits are the reduction of energy costs (68 %), compliance with 
regulations (21 %), and improvement of corporate image (11 %), 
respectively. The energy optimization efforts are most prevalent in the 
automotive (72 %) and home appliance (20 %) industries, with other 
sectors like shipbuilding (3 %), apparel (3 %), and furniture (2 %) also 
engaging to a lesser extent.

Disassembly line: In the context of disassembly line studies, the 
managerial aspects of energy optimization are shown in Fig. 5(b). At the 
macro level, the primary drivers are climate change (83 %), followed by 
Industry 4.0 (17 %). At the micro level, the most notable benefit is the 
reduction of energy costs (67 %), followed by compliance with regula
tions (19 %) and improvement of corporate image (14 %). From a spe
cific industry perspective, the home appliance industry (62 %) leads in 
implementing energy-efficient practices, followed by the automation 
sector (38 %).

Fig. 5. Managerial aspects of energy efficiency in different line types.
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Machining line: A few studies consider the machining transfer line 
balancing with energy efficiency, e.g., Cerqueus et al. (2020). The 
analysis of this study showed that climate change and Industry 4.0 were 

among the main drivers, while cost reduction and company image 
improvement were considered the main benefits.

Fig. 6. Managerial aspects of energy efficiency in different line types.
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4.1.2. Layout type
The line layout comprises four main categories, namely Straight (72 

times), U-shape (13 times), Two-sided (9 times), and Parallel (7 times) 
layouts, as discussed below. It is worth mentioning that Liang et al. 
(2023c) compared the four different layouts with each other. For this 
reason, the layout numbers do not correspond to the total number of 
reviewed studies.

Straight line: In the context of straight-line studies, the managerial 
aspects of energy optimization are shown in Fig. 6(a). At the macro level, 
the primary drivers are climate change (60 %), followed by Industry 4.0 
(27 %) and the energy market situation (13 %). At the micro level, the 
most notable benefit is the reduction of energy costs (64 %), followed by 
compliance with regulations (20 %) and improvement of image (16 %). 
From a specific industry perspective, the automotive sector (52 %) leads 
in implementing energy-efficient practices, followed by the home 
appliance industry (44 %). Other sectors, such as furniture (2 %), 
shipbuilding (1 %), and apparel (1 %) show lower engagement.

U-shaped line: In the context of U-shaped line studies, the managerial 
aspects of energy optimization are shown in Fig. 6(b). At the macro 
level, the primary drivers are climate change (60 %), followed by In
dustry 4.0 (20 %) and energy market situation (20 %). At the micro 
level, the most notable benefit is the reduction of energy costs (86 %), 
followed by compliance with regulations (14 %). From a specific in
dustry perspective, the home appliance sector (53 %) leads in imple
menting energy-efficient practices in U-shaped layouts, followed by the 
automotive industry (47 %). Other sectors, such as furniture (0 %), 
shipbuilding (0 %), and apparel (0 %), show no engagement.

Two-sided line: In the context of two-sided line studies, the manage
rial aspects of energy optimization are shown in Fig. 6(c). At the macro 
level, the primary drivers are climate change (50 %), followed by In
dustry 4.0 (25 %) and the energy market situation (25 %). At the micro 
level, the most notable benefit is the reduction of energy costs (100 %), 
with no emphasis on compliance with regulations (0 %) or improvement 
of image (0 %). From a specific industry perspective, the automotive 
sector (62 %) leads in implementing energy-efficient practices in two- 
sided layouts, followed by the home appliance sector (38 %).

Parallel line: In the context of parallel line studies, the managerial 
aspects of energy optimization are shown in Fig. 6(d). At the macro 
level, the primary drivers are climate change (46 %), followed by In
dustry 4.0 (31 %) and the energy market situation (23 %). At the micro 
level, the most notable benefit is the reduction of energy costs (57 %), 
followed by compliance with regulations (29 %) and improvement of 
image (14 %). From a specific industry perspective, the home appliance 
sector (75 %) leads in implementing energy-efficient practices in 

parallel layouts, followed by the automotive industry (25 %).

4.1.3. Product type
Regarding product variety, most authors focused on single-model 

production (76 papers), while mixed-model and multi-model were 
addressed by 9 and 12 papers, respectively.

Single-model: In the context of single-model studies, the managerial 
aspects of energy optimization are shown in Fig. 7(a). At the macro level, 
the primary drivers are climate change (60 %), followed by Industry 4.0 
(23 %) and the energy market situation (17 %). At the micro level, the 
most notable benefit is the reduction of energy costs (69 %), followed by 
compliance with regulations (18 %) and improvement of image (13 %). 
From a specific industry perspective, the automotive sector (52 %) leads 
in implementing energy-efficient practices in single-model layouts, fol
lowed by the home appliance sector (45 %). Other sectors, such as 
shipbuilding (2 %), apparel (1 %), and furniture (0 %), show lower 
engagement.

Mixed-model: In mixed-model studies, the managerial aspects of en
ergy optimization are shown in Fig. 7(b). At the macro level, the primary 
drivers are climate change (45 %), followed by Industry 4.0 (35 %) and 
the energy market situation (20 %). At the micro level, the most notable 
benefit is the reduction of energy costs (67 %), followed by compliance 
with regulations (22 %) and improvement of image (11 %). From a 
specific industry perspective, the automotive sector (67 %) leads in 
implementing energy-efficient practices in mixed-model layouts, fol
lowed by the home appliance sector (25 %) and furniture (8 %). Other 
sectors, such as shipbuilding (0 %) and apparel (0 %), show no 
engagement.

Multi-model: In the context of multi-model studies, the managerial 
aspects of energy optimization are shown in Fig. 7(c). At the macro level, 
the primary drivers are climate change (50 %) and Industry 4.0 (50 %), 
with no influence from the energy market situation (0 %). At the micro 
level, the benefits are balanced, with a reduction in energy costs (34 %), 
compliance with regulations (33 %), and improvement of image (33 %), 
each of which plays a significant role. From a specific industry 
perspective, the home appliance sector (67 %) leads in implementing 
energy-efficient practices in multi-model layouts, followed by the 
automotive industry (33 %). Other sectors, such as furniture (0 %), 
shipbuilding (0 %), and apparel (0 %), show no engagement.

4.2. Managerial aspects

This section deals with the RQ2. Viewed from a managerial stand
point, managers depend on line balancing to decrease energy 

Fig. 6. (continued).
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consumption for several reasons. This section outlines the overarching 
factors (macro perspective) and the company’s advantages (micro 
perspective). Furthermore, it explores the industries where this inno
vative approach holds particular relevance and previous real-world 
cases.

4.2.1. Macro perspective
The macro perspective examines the drivers for improving energy 

efficiency through line balancing. This section analyses today’s rele
vance of the methodological approach. In the qualitative analysis, 
pivotal drivers, namely, climate change, Industry 4.0, and the dynamics 
within the energy market, were identified as influential factors in 

Fig. 7. Managerial aspects of energy efficiency in different production types.
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elevating awareness of energy efficiency in production. 

• Climate change:

This driver and its repercussions are highlighted in most papers (57 
%, s. Fig. 8). The term “green manufacturer” is frequently cited in this 
context, as exemplified by Zhang et al. (2019), Zhou and Wu (2020), and 
Wang et al. (2020a). The production of electrical energy from fossil fuels 
is identified as a significant source of high carbon dioxide emissions 
(Rashid et al., 2022), and the availability of emission-free energy ca
pacities is reported to be insufficient (Rashid et al., 2022). Moreover, the 
manufacturing industry contributes significantly to global energy con
sumption, with varying estimates such as approximately 50 % according 
to Zhang et al. (2019) and 35 % according to Ramli and Ab Rashid 
(2022), citing the United Nations Environment Program. Given the 
ongoing rise in energy consumption (Lamy et al., 2020; Soysal-Kurt & 
İşleyen, 2022), several authors emphasize the need for improvements 
not only as a driver but also as a responsibility of the industry. 

• Industry 4.0:

The driver of Industry 4.0 pertains to the growing production line 
automation involving using robots in manufacturing. It is mentioned in 
26 % of the considered papers. To illustrate, global sales of industrial 
robots nearly doubled, reaching 435,000 units between 2015 and 2021 
(ifr.org, 2021). Despite the advantages, such as high efficiency and no 
fatigue, the deployment of robots results in increased energy con
sumption in manufacturing, as demonstrated by studies like Li et al. 
(2016), Nilakantan et al. (2018), and Chi et al. (2022). Consequently, 
robotic technology is now recognized as one of the major energy con
sumers in the manufacturing process and, therefore, a significant cost 
factor, as highlighted in works by Zhang et al. (2019), Fang et al. 
(2020a), and Zhou and Wu (2020). Consequently, companies are 
compelled to devise strategies to optimize energy consumption, as 
proposed in studies like Gao et al. (2018), Nilakantan et al. (2018), and 
Sun et al. (2020). 

• Energy market:

This driver corresponds to the escalation of energy prices. The driver 
of the energy market has a relatively low role within the literature se
lection (17 %) While some authors, like Haotian and Hongjun (2021), 
Rashid et al. (2022), and Soysal-Kurt and İşleyen (2022), do not explain 
this increase, Zhou and Wu (2020) attribute it to an energy crisis. Spe
cifically, Zhang and Xu (2020) characterize this crisis as an energy 
shortage. Additionally, Zhou and Kang (2019) suggest that the 
augmented costs in the energy market are linked to the overall global 
surge in energy demand.

4.2.2. Micro perspective
The micro-perspective focuses on the concrete benefits that 

companies gain by improving energy efficiency through line balancing. 
This section enables researchers to understand practical demands and 
tailor their research accordingly. In terms of benefits, three categories 
have been identified: reduction of energy costs, improvement of the 
company’s image, and compliance with regulations. 

• Energy cost reduction:

The most frequently considered benefit is the reduction of energy 
costs, as indicated in (67 %, Fig. 9). The selected literature often refer
ences a 2012 study on energy consumption in automotive assembly 
(Zhou & Kang, 2019; Li et al., 2016; Chi et al., 2022). According to this 
review finings, energy costs in the manufacturing process of an auto
mobile represent approximately 9–12 % of total manufacturing costs. 
Additionally, a 20 % reduction in energy consumption can result in a 
2–2.4 % saving in final manufacturing costs (Fysikopoulos et al., 2012). 
Consequently, such a cost reduction can significantly enhance compet
itiveness (Nilakantan et al., 2016; Sariguzel et al., 2022; Chen & Jia, 
2022). Moreover, Zhang et al. (2019) emphasize the significance of this 
benefit for robotic production lines, where energy consumption consti
tutes a significant expense. 

• Image improvement:

Contemporary consumers increasingly consider whether products 
are produced sustainably (Jaca et al., 2018). As sustainability is highly 
valued today, companies can gain a competitive advantage by being 
known as sustainable companies. This benefit is rather marketing- 
related and only considered by 13 % of the identified papers. By 
reducing energy consumption, a company promotes sustainable devel
opment and meets customer demands. The enhanced sustainability can 
be leveraged for advertising purposes. This benefit is relatively marginal 
and indirect in the literature despite its importance. 

• Regulations compliance:

The third considered benefit is associated with the driver of climate 
change and the corresponding government regulations. A share of 19 % 
mentions this benefit. To mitigate climate change, many governments 
enforce regulations on CO2 emissions (Kazancoglu & Ozturkoglu, 2018; 
Sun et al., 2020). Non-compliance with these restrictions may result in 
fines (Urban & Chiang, 2016). Improved energy efficiency can lead to 
reduced emissions of greenhouse gases such as CO2, facilitating com
panies’ compliance with these regulations (Mukund Nilakantan et al., 
2015a). An illustrative example of the advantage of adhering to regu
lations is the EU Emissions Trading Scheme (EU ETS) (European Com
mission, 2015). Specifically, the EU sets an upper limit on greenhouse 
gases for companies within their industry sector. Companies receive 
emission rights accordingly. If emissions are below the upper limit, 

Fig. 8. Share of the considered drivers. Fig. 9. Share of the considered benefits.
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companies can sell the emission rights; if they exceed the limit, they 
must purchase additional rights. This trading mechanism benefits 
environmentally sustainable companies (European Commission, 2015).

4.2.3. Specific industry sectors
Considering this study mainly targets energy efficiency in produc

tion, all the reviewed studies focus on the manufacturing industry. This 
section examines the specific sectors that received attention in the 
reviewed studies.

The reviewed studies frequently reference the vehicle manufacturing 
industry (52 %, Fig. 10), and two main factors contribute to this focus. 
First, vehicle manufacturers often employ mass production techniques, 
using assembly lines to achieve high efficiency (Li et al., 2022). This 
approach results in a significant quantity of end-of-life goods, which 
justifies investments in disassembly lines (Ming et al., 2019; Zeng et al., 
2022). Secondly, the vehicle manufacturing industry increasingly uti
lizes robots to enhance productivity in the assembly process (Sun et al., 
2020). Consequently, the high energy consumption in this industry ne
cessitates energy optimization.

The second most frequently mentioned industry is household appli
ances (45 %), highlighted for reasons similar to those of the automotive 
industry. This sector includes home electronics and white goods (Zhang 
et al., 2020b). Publications on disassembly line balancing within this 
industry often focus on electronic goods. Specifically, radios (Wang 
et al., 2021b), washing machines (Dong et al., 2021), printers (Wang 
et al., 2019b), and TVs (Wang et al., 2022) are each discussed four times.

One publication addressed assembly in the apparel industry, dis
cussing specific devices like sewing and stitching machines (Zhang & 
Chen, 2019). Zhang et al. (2020b) also mention the shipbuilding in
dustry as an application area for the semi-automatic assembly line. 
Lastly, Belkharroubi and Yahyaoui (2022) illustrate the diversity of 
production lines by referencing the furniture industry.

4.2.4. Real-world cases
Overall, 22 papers presented a case study in which the developed 

method is applied to a real-life problem. The real-world studies are 
carried out primarily on the disassembly lines (15), followed by the 
assembly lines (7). The authors hardly consider the drivers and benefits 
of energy efficiency through line balancing (see section 4.2). In some 
cases, concrete information is provided on how high the maximum and 
minimum energy consumption could be (Pareto solution); however, this 
is not converted into monetary savings (Liang et al., 2021b; Zhang et al., 
2020b). Accordingly, it can be concluded that the case studies focus on 
demonstrating the applicability of the developed optimization meth
odology in practice from a research perspective. There is no information 
about the company’s benefits or further application. Thus, the consid
ered case studies do not offer insights for practitioners in the industry.

Regarding the industry sector, most of the papers obtain data from 
companies that assemble or disassemble cars. Some exceptions include 

the study by Wang et al. (2020b), which examined the disassembly line 
of a company that disassembles refrigerators, and another case study by 
Wang et al. (2021a), which involved a company that disassembles 
televisions.

4.3. Objective aspects

This section relates to the RQ3. In this section, the discussion re
volves around how existing studies approached the topic of energy ef
ficiency. It delves into various methods of calculating Total Energy 
Consumption (TEC). Additionally, the analysis explores the in
terrelationships between energy efficiency and other objectives, high
lighting instances where these objectives can complement or conflict.

4.3.1. Consideration of energy
Within the literature, the TEC calculation takes various forms, often 

following similar patterns and incorporating common components. 
These components typically encompass epowerpeak, eoverall, eoperation, 
estandby, efixed, and eauxiliary. The following analysis first provides a 
detailed description of these six components and then shows how these 
components can be related to each other. 

• Power peak energy:

The power peak consumption represents the highest power usage 
level in the overall system (Delorme et al., 2023) and is considered by 5 
% of the paper pool (Fig. 11). Systematically organizing tasks across 
workstations helps smooth out peak power consumption profile, 
reducing overall power consumption (Delorme et al., 2023). This 
reduction in power consumption contributes to a decrease in energy 
consumption, as the latter is determined by the power consumption p of 
each workstation multiplied by the time consumed t across all work
stations (Grafman, 2022). Equation (1) is commonly used to calculate 
the energy (etotal) consumed by workstation j during power peaks (epo

werpeak) (Ming, 2019). 

epowerpeak =
{

max
(

etotal
j

)
,∀j ∈ J

}
(1) 

• Overall energy:

The concept of eoverall is also explored in the literature (4 %). This 
approach involves examining the energy consumption of workstations at 
a highly aggregated level without distinguishing between operating and 
non-operating energy consumption. In this regard, Wang et al. (2021c)
considered the overall energy consumption per task without providing a 
detailed calculation. An interesting observation is that Sariguzel et al. 
(2022) derived eoverall based on the acceleration profiles of the machines. 

Fig. 10. Share of the considered industries. Fig. 11. Share of the energy aspects.
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• Operational energy:

With 42 %, many papers delved into a more detailed examination of 
energy consumption, with eoperation characterizing the energy con
sumption of a workstation during the execution of a task (Li et al., 2016). 
This consumption is determined by the time of task i at workstations j 
(toperation

i,j ) and the power consumption (poperation
i,j ) per time unit (Li et al., 

2016; Zhang et al., 2019; Wang et al., 2020a). Publications on the 
disassembly line, in particular, provide further specifications of this 
energy component. For instance, hazardous tasks in the disassembly 
process consume more energy, leading to the introduction of eoperation, 

hazardous (Wang et al., 2019b). Additionally, in multi-model production, 
Wang et al. (2021c) considered that different products require different 
amounts of eoperation. The energy consumption during operation can be 
calculated using Equation (2). 

eoperation =
∑

i

∑

j
toperation
i,j • poperation

i,j (2) 

• Standby energy:

Energy consumption during standby refers to the energy consumed 
when a machine or workstation is at a standstill. In this context, the 
reviewed studies (26 %) used the terms standby, idle, and waiting mode 
interchangeably. Some papers assume that pstandby is approximately 10 
% of eoperation (Li et al., 2016; Mukund Nilakantan et al., 2015a; Zhang 
et al., 2021a). With pstandby and CT, the amount of estandby can be 
calculated using Equation (3) (Li et al., 2016). 

estandby =
∑

i

∑

j

(
CT − toperation

i,j

)
• pstandby

j (3) 

• Fixed energy:

Instead of standby energy, some authors consider fixed energy con
sumption (8 %). This consumption is a continuous amount of energy a 
workstation consumes as soon as it is switched on (Qin et al., 2020). 
Interestingly, the literature calculates it as a time function (Wang et al., 
2019a) as well as a fixed amount per machine (Qin et al., 2020; Zhang 
et al., 2020c). Furthermore, Wang et al. (2019a) distinguished between 
the fixed energy consumption of single and mated stations in a two-sided 
assembly line. 

• Auxiliary energy:

Finally, the category eauxiliary covers all energy consumed apart from 
the operating and non-operating energy of the workstations. Those 
additional consumers were elaborated in 15 % of the publications. The 
energy processes can be divided into setup, transport, and others. The 
consumption eothers includes energy generated by lighting and ventila
tion (Liang et al., 2023a; Suwannarongsri et al., 2014b). The etransport 

considers the energy consumed by moving the workpiece along two 
adjacent workstations. This consumption depends on the energy the 
conveyor belts consume and the number of workstations (Zhou & Wu, 
2020). The setup energy is mentioned by several authors and comprises 
two subcategories: 

• Tools and fixtures: The consumption category includes the energy 
required to change tools or fixtures (Gao et al., 2018; Liang et al., 
2021a; Zhou & Wu, 2020). The calculation can be based on the time 
consumed and the number of changes. Furthermore, Liang et al. 
(2023a) introduced an energy consumption matrix for tool switch
ing, stating that switching tools leads to varying energy consump
tion. In some cases, upstream and downstream processes must be 

considered to determine the proper energy consumption (Lu et al., 
2021; Qin et al., 2020).

• Direction changing: The second consumption category includes energy 
consumed during a change of direction (Gao et al., 2018; Wang et al., 
2022). The calculation is based on time consumed, the number of 
direction changes, and the direction change (in degree).

Nine patterns are identified for calculating energy consumption 
based on the described components. First, power peak consumption can 
be optimized as a single objective function (pattern 1) or combined with 
minimizing total energy consumption (TEC) (pattern 2). While some 
authors explicitly consider the eoverall (pattern 3), others add the auxil
iary energy (pattern 4). Furthermore, few papers focus on eoperation 

exclusively (pattern 5). This approach is appropriate if, e.g., the pro
duction line produces continuously without standby times. In addition, 
eauxiliary can be added to eoperation (pattern 6). Other authors consider 
eoperation exclusively in the objective function but add estandby afterward. 
Moreover, if eoperation is the same for all configurations, the optimization 
can be limited to estandby (pattern 7). This situation occurs when the 
energy consumed is the same for all configurations (Rashid et al., 2022). 
However, several selected publications optimize the sum of eoperation and 
estandby or efixed as TEC (pattern 8). Finally, eleven authors attempt to 
include the entire production environment and calculate the sum of 
operation energy, fixed/standby energy, and auxiliary energy con
sumption (pattern 9).

Fig. 12 provides an overview of the nine patterns for the calculation 
of the energy consumption of a production line.

4.3.2. Interrelations of objectives
A reduction in energy efficiency can impact various production ob

jectives. For instance, while modern machines are designed to consume 
less energy, they often come with high investment costs. Similarly, using 
an eco-mode can lower energy consumption but typically results in 
longer cycle times, thereby reducing overall production efficiency. On 
the other hand, decreasing energy consumption can also lead to lower 
CO2 emissions, which benefits the manufacturing company by 
improving its environmental footprint. When optimizing energy effi
ciency, it is essential to consider these interrelations to maximize posi
tive outcomes while minimizing negative trade-offs.

This section provides an overview of the objectives optimized 
simultaneously with energy efficiency in the multi-objective approach. 
Furthermore, it examines the intercalations between those objectives. It 
is important to note that the considered interrelations pertain to 
simultaneous optimization. Some authors optimize a primary objective 
first and then perform energy optimization based on the result or vice 
versa (Chi et al., 2022; Nilakantan et al., 2018; Nilakantan et al., 2016). 
For instance, Nilakantan et al. (2018) sought to maximize line efficiency 
by minimizing energy utilization but enhancing energy efficiency 
initially and subsequently improving line efficiency based on the cor
responding outcomes. This approach is not considered, as there is no 
direct correlation.

With 90 % of the reviewed papers adopting a multi-objective opti
mization approach, energy efficiency was not the sole focus. Instead, 
most studies optimized energy efficiency alongside one or more addi
tional production-related objectives. Following the classification by 
Güler et al. (2024), these objectives can be categorized into three main 
groups—economic, social, and environmental. Fig. 13 illustrates these 
categories and their associated objectives, which are further explained 
below.

The category of Economic Objectives comprises objectives in relation 
to economic factors: 

• E1 (Cost and profit): The aim is to minimize the costs, e.g., 
comprising capital investment, labor, material, and energy costs. 
This objective aims to minimize the profit, which refers to the 
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revenue generated by the production activities after deducting the 
costs (Wang et al., 2021).

• E2 (Number of machines, robots, and stations): This objective 
aims to minimize the total number of machines, robots, and stations 
utilized for the production process, thereby reducing the investment 
costs of the production line (Zeng et al., 2023).

• E3 (Cycle time): The aim is to minimize the time between two 
consecutive products exiting from the production line (Sariguzel 
et al., 2022).

• E4 (High-demand parts): This measure aims to increase profit by 
acquiring the necessary components to achieve higher returns and 
reducing the amount of waste to lower environmentally-related costs 
(Liu & Wang, 2017).

• E5 (Number of tool switches): This objective aims to decrease the 
number of tool changes to minimize downtime and increase pro
duction speed (Liang et al., 2023a).

• E6 (Idle times): Aims towards minimizing idle times in the pro
duction process to increase line efficiency (Tian et al., 2023).

The category of Environmental Objectives focuses on: 

• En1 (Carbon emissions): Various sources, such as machine energy 
consumption or the utilization of cutting fluids, contribute to CO2 
emissions in a production plant. The objective is to reduce these 
emissions across the facility (Nilakantan et al., 2017).

• En2 (Power peaks): Power Peaks can lead to high energy con
sumption and stress on the power grid. This objective aims to mini
mize power peak demands to improve energy efficiency and reduce 
stress on the power grid (Gianessi et al., 2019).

• En3 (Environmental hazard index): This objective focuses on 
preventing processes with high environmental hazard indices (Yuan 
et al., 2020).

The category of Social Objectives considers: 

• S1 (Smoothness): The aim is to maximize the line smoothness, 
create a seamless production flow, minimize disruptions, and ensure 
consistent operations with equal workloads among the workstations 
(Zeng et al., 2023; Liang et al., 2021b).

• S2 (Disassembly hazard): This objective aims to decrease hazards 
especially associated with disassembly processes, ensuring a safer 
working environment (Wang et al., 2021a).

• S3 (Ergonomic aspects): The aim is to enhance workplace ergo
nomics to promote worker health and comfort, thereby improving 
overall job satisfaction and productivity (Nourmohammadi et al., 
2024).

When comparing line types (see Section 4.1.1) for the most 
commonly mentioned objectives—Cycle Time and Profit—a clear 
pattern emerges. As shown in Fig. 14, studies on disassembly lines tend 

Fig. 12. Combination of energy components.

Fig. 13. Categorization of the objectives considered in the literature selection.
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to focus more on Profit, while those on assembly line balancing pri
marily consider Cycle Time.

After examining the objectives in general, the following section 
discusses their interrelations with energy efficiency. In detail, comple
mentary objectives are improved by enhancing energy efficiency, while 
conflicting objectives are exacerbated. 

• Complementary objectives:

As shown in Fig. 15, the primary focus of the complementary ob
jectives is on environmental factors, particularly improving the carbon 
footprint and reducing peak power, both of which positively correlate 
with optimizing energy efficiency.

In detail, the authors incorporate the factor of CO2 emissions (En1) 
per unit of energy consumed into their objective functions (Nilakantan 
et al., 2017; Zhang et al., 2019). Similarly, the reduction of energy costs, 
including the power peak energy (En2), exhibits a positive linear asso
ciation with energy consumption (Cerqueus et al., 2020; Rashid et al., 
2022; Wang et al., 2021a). According to the formula for calculating 
energy consumption, which is power consumption (p) multiplied by 
time consumption (t), a decrease in power consumption also optimizes 
energy efficiency (Gianessi et al., 2019; Lamy et al., 2020). Furthermore, 
assigning tasks based on an environmental hazard index (En3) appears 

to align with the energy-optimal assignment.
While a few papers suggest that some objectives (i.e., E1, E2, S1) 

have a complementary relationship with energy efficiency, the majority 
identify them as conflicting. This aspect, along with conflicting objec
tives in general, is discussed in the following section. 

• Conflicting objectives:

The analysis of conflicting objectives presented in Fig. 16 shows that 
several objectives within the Economic and Social categories conflict 
with increasing energy efficiency. Among these, the most frequently 
mentioned objective is cost and profit (E1), which appears in 38 studies. 
Energy-efficient machines generally have higher upfront costs compared 
to conventional machines, leading to increased investment costs (E1). 
Although these machines contribute to improved energy efficiency, the 
higher costs often result in reduced overall profits (Chen & Jia, 2022). 
Additionally, Zhang et al. (2020b) highlighted that a high level of 
automation increases energy consumption, which subsequently raises 
production and energy costs. Similarly, Fan et al. (2022) also identify 
profit and energy efficiency as conflicting targets.

Beyond cost and profit, CT (E3) is another objective that frequently 
conflicts with energy efficiency. In 24 studies, it has been argued that 
achieving an optimal balance between energy efficiency and CT is often 

Fig. 14. Considered objectives in different line types.

Fig. 15. Complementary relations.
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unattainable (see Fig. 16), as machines with lower energy consumption 
typically operate at slower speeds. On the other hand, Li et al. (2022)
argue that a longer CT provides greater flexibility in task assignment, 
potentially leading to lower overall energy consumption. However, an 
extended CT negatively impacts production efficiency, which in turn 
affects profit (E1) due to its dependency on production output (Zhang & 
Xu, 2020). Optimizing the idle time index (E6)—which represents the 
sum of all idle times during production (Liang et al., 2023c)—also tends 
to conflict with the goal of reducing energy consumption.

Furthermore, as the smoothing index (S1) may also be influenced by 
cycle time (CT), there could be a conflict between optimizing this in
dicator and achieving higher energy efficiency. Since machines with 
lower energy consumption often operate at slower speeds, maintaining a 
balanced and efficient production process becomes more challenging. 
Additionally, other CT-related goals, such as reducing noise pollution of 
production lines (Zhang et al., 2019) and minimizing the entire make
span (Zhang et al., 2021a), conflict with the objective of reducing energy 
consumption (Liang et al., 2023c).

Overall, while energy efficiency is a critical goal, its relationship with 
economic and social objectives is complex, often requiring manufac
turers to navigate trade-offs between cost, production efficiency, and 
sustainability.

Moreover, enhancing energy efficiency may adversely impact pro
ductivity. This finding arises from a computational experiment by Zhou 
and Wu (2020), aiming to optimize energy consumption and reduce the 
number of workstations (E2) with a given CT as a productivity-related 
objective. The result indicates that decreasing the number of machines 
leads to higher energy consumption and vice versa (Zhou & Wu, 2020). 
Interestingly, Liang et al. (2023d) and Wang et al. (2022) observe a 
positive relationship between these two goals. One possible explanation 
could be the insight by Li et al. (2022) that more machines allow for 
more diverse machine assignments but, at the same time, lead to 
increased idle time and, consequently, more standby energy consump
tion. Accordingly, the correlation between objectives depends on the 
extent to which high allocation freedom impacts each respective case.

4.4. Solution method

This section deals with the RQ4, namely, what methods have been 
used in the LBP to optimize energy efficiency. The literature review 
suggests four primary methods are used: exact, heuristic, metaheuristic, 
and deep learning. Fig. 17 visually shows the frequency of these methods 
applied to the LBP literature while considering energy efficiency. Among 
these methods, metaheuristics, with a 75 % usage rate, are mainly used, 

Fig. 16. Conflicting relations.

Fig. 17. Frequency of solution methods in LBP literature with energy efficiency.
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followed by exact (20 %), heuristic (4 %), and deep learning (1 %). The 
details of each solution method are reviewed as follows. In addition, the 
advantages and disadvantages of each method are mentioned while 
considering their specific applications to the LBP literature with energy 
efficiency.

4.4.1. Exact methods
The exact methods are known for their ability to provide exact so

lutions. Their main advantage relies on guaranteeing the optimality of 
their solutions. On the contrary, they cannot ensure feasible or optimal 
solutions while solving large problems (Güler et al., 2024). The exact 
methods used in LBP studies with energy efficiency can be categorized as 
follows: mixed integer linear programming (MILP), mixed integer non- 
linear programming (MINLP), and integer linear programming (ILP). 
The ILP and MILP are exact solution methods to address optimization 
problems containing integer or mixed integer variables with linear 
equations. At the same time, MINLP is employed in the presence of non- 
linear equations (Edis et al., 2022).

The exact methods have been used in 22 studies to solve the LBP with 
energy efficiency. As Fig. 18 shows, the authors most frequently used 
mixed integer linear programming (MILP), followed by mixed integer 
non-linear programming (MINLP) and Integer Linear Programming 
(ILP). The MILP has been used in different LBP studies such as Nour
mohammadi et al. (2024), Sun et al. (2020), and Urban and Chiang 
(2016) in the assembly line and K. Wang et al. (2023) in disassembly 
line. The MINLP was used in a few studies (Liang et al., 2023b; Liang 
et al., 2023a; Sariguzel et al., 2022), while ILP e. g. was used in Delorme 
et al. (2023) and Gianessi et al. (2019). In most studies where a math
ematical model was presented, it was subsequently solved using com
mercial solvers such as CPLEX or GUROBI. As mentioned above, the 
exact methods might not be able to solve large and complex problems, 
justifying developing heuristic or metaheuristic methods.

Moreover, multi-objective optimization is crucial in solving LBP with 
an energy efficiency context. The methods of Weighted Sum and Epsilon 
Constraint are used in dealing with multi-objective optimization. The 
Epsilon Constraint generally converts all but one objective function into 
constraints to allow trade-offs between multiple objectives (Liu et al., 
2021; Zhou & Bian, 2022). On the other hand, the Weighted Sum 
approach assigns importance to objectives for optimization (Liu et al., 
2021; Zhang et al., 2019).

4.4.2. Heuristic methods
The heuristic methods have been developed in general to find near- 

optimal solutions. These methods are useful for handling large problems 
within a reasonable computational time. The heuristic methods rely on 
priority rules that allow the generation of a feasible solution while 
satisfying the problem constraints (e.g., precedence relationships). The 
heuristic methods are beneficial in finding a feasible solution or warm- 
starting another technique, such as a mathematical model or meta
heuristic. On the contrary, the heuristic algorithms depend on the 

applied priority rules and are limited to only a specific solution (Bautista 
& Pereira, 2009).

Considering the complexity of the LBP, some authors have relied on 
heuristic algorithms to solve LBP, specifically with energy efficiency. 
The literature review shows that only some heuristic approaches have 
been identified. A constructive heuristic was proposed for an energy- 
efficient, unpaced synchronous assembly line balancing problem 
(Urban & Chiang, 2016). A constructive heuristic was developed to solve 
the large-sized test problem in a multi-products assembly line balancing 
problem while considering the total cost and energy consumption as 
conflicting objectives (R. Liu et al., 2021). An ILP and a permutation- 
based heuristic were developed to minimize power peaks in assembly 
line balancing (Kazancoglu & Ozturkoglu, 2018).

4.4.3. Metaheuristic method
Metaheuristic methods refer to iterative solutions that integrate 

heuristic and/or nature-inspired methods to one or a set of temporary 
solutions at each iteration to find one or a set of new solutions. The 
initial solutions can be randomly generated or inspired by other heu
ristic methods (Nesmachnow, 2014). Due to their advantage of yielding 
near-optimal solutions within a reasonable time compared to exact 
methods, metaheuristics have been frequently applied to large-sized 
optimization problems. Metaheuristics tend to be more effective at 
discovering superior solutions compared to heuristics, although they 
typically take longer to find a solution (Wang et al., 2021a). The per
formance of metaheuristics relies on finding a good balance between 
exploration (exploring the entire feasible solution space) and exploita
tion (exploring the surrounding areas of promising solutions) mecha
nisms. The metaheuristics can be categorized into evolutionary, physics- 
based, swarm-based, anduman-based categories (Tomar et al., 2023). 
The Evolutionary algorithms, inspired by Darwin’s theory of evolution, 
employ mechanisms such as parent selection, recombination, mutation, 
and survivor selection across generations to explore and exploit the 
search space, with popular variants including genetic algorithms (GA) 
and differential evolution (DE). Physics-based metaheuristic algorithms 
replicate natural physical rules to find optimal solutions. These algo
rithms balance exploration and exploitation by leveraging physical 
principles to navigate complex search spaces and avoid local optima. 
Notable examples include Simulated Annealing (SA). Swarm intelli
gence algorithms, inspired by the collective behavior of social animals 
and insects, leverage information sharing within the swarm to balance 
exploration and exploitation of the search space, with notable examples 
including the Artificial Bee Colony (ABC) algorithm and the Particle 
Swarm Optimization (PSO) algorithm. Human-based metaheuristic al
gorithms draw inspiration from social interactions and behavioral pat
terns in people to solve optimization problems. These algorithms utilize 
collaborative search processes, knowledge exchange, and iterative 
refinement of potential solutions to explore the search space effectively 
and converge on optimal or near-optimal solutions. Notable examples 
include the Group Teaching Optimization (GTO) algorithm.

Fig. 18. Exact solution methods applied in the reviewed literature.
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Considering the complexity of the LBP, many authors have also 
relied on metaheuristic algorithms to solve LBP with energy efficiency. 
In general, the metaheuristics have been used 84 times. It is worth 
noting that the total number of identified algorithms exceeds the num
ber of reviewed papers because some papers have developed more than 
one algorithm (see Table A1 in the appendix for details). The studied 
literature includes a variety of different metaheuristics. Moreover, most 
authors propose to adjust the standard metaheuristic algorithm to 
enhance its performance or deal with multi-objectives. Given the 
abundant use of metaheuristics in this context, the literature selection 
has been analyzed further and classified into “Evolutionary,” “Swarm- 
based,” “Physics-based,” “Human-based,” and “Others” categories, 
following the characterization of Rajabi Moshtaghi et al. (2021). It 
should be emphasized that adaptations or combinations of algorithms 
were traced back to their origin to enable comparability (e.g., a Memory- 
Based Cuckoo Search Algorithm is referred to as Cuckoo Search Algo
rithm). Fig. 19 displays the result of this analysis and reveals that 
Simulated Annealing (SA) was applied most frequently (8 studies). 
Furthermore, the Artificial Bee Colony Algorithm (ABCA) and the 
Evolutionary Strategy Algorithm (ESA) (7 studies each) were also 
frequently applied. It is noticeable that the swarm-based category, in 
particular, offers various algorithms (14 studies) that can be used to 
optimize energy efficiency in production lines.

Furthermore, most authors have used specific adaptations of the 

metaheuristic algorithms to optimize multiple objectives. For example, 
Qin et al. (2020) use the Multi-Objective Discrete Migratory Bird Opti
mizer. Other examples are the Multi-Objective Multi-Verse Optimization 
Algorithm used by Zhang et al. (2022a) and the Multi-Objective Discrete 
Chemical Reaction Optimization Algorithm (Wang et al., 2021c). These 
and further multi-objective approaches are designed to determine Par
eto solutions.

4.4.4. Deep learning
Recent advancements in artificial intelligence have led to the 

application of machine learning techniques, such as reinforcement 
learning and neural networks, to address challenges in LBP (Gao et al., 
2020). This approach, which relies on the dynamic interaction between 
agents and their environment, has gained popularity across various 
fields of study (Guo et al., 2023). While these approaches are relatively 
new in this domain, they show significant promise for future develop
ment. However, their limited application thus far may be seen as a po
tential drawback due to uncertainties surrounding their effectiveness 
(Güler et al., 2024).

Mei and Fang (2021) presented a deep-reinforcement learning 
technique to balance the multi-robotic disassembly line balancing 
problem in the context of LBP with energy efficiency. By doing so, they 
aimed to provide efficient solutions for minimizing workstation non- 
productive time and energy consumption.

Fig. 19. Metaheuristics applied in reviewed literature (*HB = Human based).
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5. Discussion

The recognition of the paramount significance of integrating energy 
efficiency into manufacturing lines has been the driving force behind 
this literature review, specifically focusing on enhancing energy effi
ciency in line balancing problems. According to four key research 
questions, a systematic literature review was conducted using the 
PRISMA method to pursue a comprehensive understanding of the field. 
The investigation explored various aspects, including line type, mana
gerial considerations (macro and micro perspectives and industry sec
tors), objectives, solution methods, and real-world cases. This structured 
review aimed to unravel insights into the current state of knowledge and 
identify patterns, trends, and gaps in optimizing energy efficiency in line 
balancing scenarios.

Regarding RQ1, the existing literature focuses on assembly lines and 
disassembly lines. Transfer line balancing has only been studied to 
reduce energy consumption in one study focusing on power peak con
sumption. A chronological development within the research is notable, 
with earlier work focussing primarily on assembly lines and then moving 
on to consider disassembly lines. This observation is consistent with the 
results of the quantitative analysis (see Fig. 5). This thematic develop
ment seems to be a recurring pattern in the literature. While research on 
balancing assembly lines dates back to Salveson and Louisville (1955), it 
took about 50 more years for a similar focus on disassembly lines to 
emerge in early 2000 (Duta et al., 2005; Güngör & Gupta, 2001; Lambert 
& Gupta, 2005). Then, only a short time later, researchers turned their 
attention to transfer lines (Essafi et al., 2009; Guschinskaya et al., 2007; 
Guschinskaya & Dolgui, 2006). This chronological sequence indicates 
that, following the investigation of the energy efficiency of assembly and 
disassembly lines, the importance of transfer lines in this area of 
research will increase in the future.

Considering RQ2, from a macro perspective, climate change and the 
increasing use of robots are primary drivers of energy consumption 
reduction in manufacturing. The recent energy crisis in Europe has 
further elevated the importance of energy market conditions. From a 
micro perspective, companies mainly benefit from energy cost savings, 
while secondary benefits, such as an improved image (green branding) 
and regulatory compliance, receive less attention. Line balancing is 
particularly recommended for industries with high automation to 
reduce energy costs, with the automotive sector frequently cited in this 
context. However, a notable research gap remains in understanding how 
these benefits are achieved in the long term. Companies aiming to 
reduce energy consumption through line balancing must accept poten
tial productivity declines, which means the perceived benefits must be 
substantial enough to justify these trade-offs.

Despite the growing focus on energy efficiency, most case studies 
remain theoretical, with limited practical implementation. One of the 
key challenges in translating theoretical models into industrial practice 
is the lack of detailed and standardized energy consumption data. Many 
companies do not systematically track energy usage at the workstation 
or production line level, making it difficult to validate optimization 
models with real-world inputs. Additionally, implementing energy- 
efficient line balancing in a real-world setting requires significant cus
tomization, as existing optimization frameworks are often tailored to 
specific assumptions that do not fully account for industrial constraints. 
The inherent complexity of integrating energy optimization into dy
namic production environments further limits adoption, particularly in 
high-automation industries where disruptions in production flow could 
have costly consequences.

Another challenge is the conflict between energy efficiency and other 
production objectives, such as cycle time minimization and cost effi
ciency. While reducing energy consumption is desirable, companies may 
prioritize production speed and cost reduction over sustainability. The 

few real-world case studies available demonstrate this tension, as they 
often reveal that increasing energy efficiency negatively impacts other 
key performance indicators. Furthermore, the low number of practical 
implementations suggests that industries require more adaptable, scal
able, and easily integrable optimization models to bridge the gap be
tween theoretical advancements and real-world applications.

Regarding RQ3, there are different approaches and levels of aggre
gation on which the energy consumption can be calculated. In partic
ular, studies often consider energy consumption to be the sum of 
operation and standby energy of the workstations. Additional energy 
consumers, such as the conveyor belt or the lighting, are usually 
neglected, probably due to the high overall complexity. Nevertheless, a 
few authors consider energy consumption in more detail, where addi
tional energy consumers are identified, and the energy consumption is 
determined over time. It has also been shown that optimizing energy 
efficiency conflicts with other production targets. So far, little attention 
has been paid to recording and analyzing energy consumption data. This 
research gap should be closed to increase the validity of the LBP results.

Through RQ4, it was identified that authors often apply multi- 
objective optimization approaches to optimize energy efficiency with 
line balancing. Metaheuristics are mainly used and developed as 
promising solutions for addressing large real-world problems. However, 
small problems are solved in some cases using exact methods. This 
provides the authors with reference solutions to test the quality of their 
metaheuristics. Examples of developed, multi-objective metaheuristics 
are the NSGA-II, the Multi-Objective Multi-Verse Optimization Algo
rithm, and a new methodological approach that has emerged in deep 
learning.

6. Concluding remarks

This study systematically reviewed the literature on energy-efficient 
line balancing, synthesizing existing knowledge and identifying gaps to 
guide future research. It examined diverse line configurations, mana
gerial drivers, and optimization methodologies, shedding light on the 
relationship between energy consumption and production efficiency in 
this research context. The findings can extend the theoretical under
standing and suggest potential pathways for future research and prac
tical innovations in energy-efficient manufacturing systems.

6.1. Contribution to practice and research

The findings of this systematic literature review illuminate several 
actionable pathways for integrating energy efficiency into line balancing 
strategies, providing valuable insights for practitioners across various 
industrial contexts. A key conclusion is the necessity of tailoring energy- 
efficient practices to the specific characteristics of production configu
rations, such as assembly, disassembly, and machining transfer lines.

For assembly and disassembly lines, characterized by manual or 
semi-automated production, workload balancing, minimizing idle times, 
and improving human–machine collaboration emerge as effective stra
tegies for reducing unnecessary energy consumption. In industries such 
as automotive and home appliances, mixed-model or U-shaped layouts 
can significantly reduce peak energy loads and ensure a smoother en
ergy flow, highlighting the importance of flexibility in line configura
tion. On the other hand, fully automated machining and transfer lines 
offer substantial opportunities for energy optimization due to their 
reliance on advanced digital technologies.

To bridge the gap between theoretical advancements and practical 
implementation, future research should focus on establishing industry- 
academic collaborations to improve access to real-world energy con
sumption data. Stronger partnerships with manufacturing companies 
could enable researchers to develop more data-driven energy 

J. Petersen et al.                                                                                                                                                                                                                                 Computers & Industrial Engineering 205 (2025) 111144 

18 



optimization models that reflect actual industry constraints. Addition
ally, future studies should focus on developing adaptable and scalable 
optimization frameworks that can be easily integrated into existing 
production systems without extensive modifications.

Another critical area for improvement is the integration of real-time 
energy monitoring and dynamic scheduling algorithms. The use of IoT- 
enabled energy dashboards and AI-driven decision-support systems can 
enable continuous optimization of energy efficiency, allowing manu
facturers to adjust energy consumption based on production demands 
dynamically. Expanding energy models to include auxiliary components 
such as lighting, ventilation, and material handling systems can also 
enhance the accuracy of energy efficiency assessments, ensuring that all 
energy-consuming elements are accounted for.

The review also emphasizes the broader operational and strategic 
implications of energy efficiency. Regulatory compliance, cost- 
reduction imperatives, and sustainability goals drive the adoption of 
energy-efficient practices, placing energy consumption at the center of 
managerial decision-making. For instance, regulatory frameworks like 
the EU Emissions Trading Scheme (ETS) offer both a compliance 
requirement and a financial incentive for companies to optimize their 
energy use. Line balancing strategies can reduce operational costs while 
minimizing carbon emissions, enabling firms to trade surplus emission 
rights and gain financial advantages.

Furthermore, the review highlights the importance of industry- 
specific barriers that affect energy-efficient line balancing adoption. In 
high-automation industries (e.g., automotive, electronics), real-time 
scheduling solutions and predictive energy management systems are 
essential for integrating energy efficiency without disrupting produc
tivity. In contrast, lower-automation industries (e.g., apparel, furniture) 
may face higher adoption barriers due to limited digital infrastructure 
and the need for initial investments in energy monitoring technologies. 
Future research should explore sector-specific implementation chal
lenges and develop tailored optimization models that address these 
varying constraints.

Additionally, this review study identified a significant oversight in 
current energy-efficient line balancing practices: the exclusion of 
auxiliary components such as lighting, ventilation, and transport sys
tems in energy models. Addressing these gaps through comprehensive 
audits and system-wide energy monitoring can ensure that all energy- 
consuming components are accounted for, significantly enhancing the 
precision and impact of energy-efficient interventions. High-automation 
industries, such as those in electronics or automotive, can further inte
grate auxiliary system optimization with primary line balancing efforts 
to reduce standby energy consumption and smooth power peaks. 
Meanwhile, less automated sectors like apparel or furniture 
manufacturing can achieve incremental but meaningful improvements 
by optimizing workflows and refining task scheduling, achieving energy 
savings without requiring substantial capital investment. At the same 
time, the barrier to implementing the proposed optimization is higher 
for less automated companies, as they often first need to establish suf
ficient data quality.

Finally, the systematic literature review underscores the importance 
of balancing energy efficiency with other critical operational objectives, 
such as productivity, cycle time, and cost, using advanced optimization 
methods. Multi-objective optimization techniques, particularly Pareto- 
based approaches, provide practitioners with tools to navigate these 
trade-offs effectively. For instance, in high-speed production environ
ments, where faster cycle times often increase energy use, simulation- 
based models can help identify configurations that maintain 
throughput while optimizing energy consumption. Furthermore, the 
review highlights the extensive use of metaheuristic algorithms, such as 
Genetic Algorithms (GA) and Simulated Annealing (SA), for solving 

complex line balancing problems. These techniques are particularly 
effective in addressing the scale and complexity of real-world applica
tions, offering adaptable solutions for a variety of production scenarios. 
However, successful implementation of these methods depends heavily 
on the availability and quality of data. Establishing robust data pipelines 
using IoT-enabled sensors and energy dashboards can provide real-time 
insights into energy consumption, enabling practitioners to refine opti
mization models continuously. This data-driven approach not only en
hances decision-making but also fosters a culture of continuous 
improvement, positioning companies to adapt to evolving energy de
mands and sustainability expectations.

The study also contributed to research by systematically synthesizing 
the comprehensive yet fragmented literature on energy-efficient line 
balancing, providing a detailed overview of the state of the art while 
identifying critical gaps that warrant further exploration. One signifi
cant contribution lies in its comprehensive coverage of diverse line 
configurations, including assembly, disassembly, and the underexplored 
machining transfer lines, where research remains sparse despite their 
high potential for energy optimization. The review also advanced aca
demic understanding by analyzing how energy efficiency interacts with 
other production objectives, such as cycle time, productivity, and cost, 
highlighting the need for multi-objective optimization frameworks to 
address these trade-offs.

Another key contribution is the detailed evaluation of the method
ologies used in energy-efficient line balancing. The study categorized 
and assessed optimization techniques, such as exact methods, meta
heuristic approaches, and hybrid solutions, identifying trends in their 
application and gaps in their scalability and adaptability to real-world 
scenarios. Furthermore, the review expanded the scope of energy effi
ciency research by emphasizing overlooked areas, such as the role of 
auxiliary components like lighting, ventilation, and material handling 
systems, and advocating for their integration into energy consumption 
models. These contributions provide a structured foundation for further 
expanding the knowledge-base, encouraging scholars to address these 
gaps and develop innovative solutions to advance the field of energy- 
efficient manufacturing.

6.2. Limitations and future research

The findings of this review highlight critical gaps in the intersection 
of energy efficiency and line balancing, revealing opportunities for 
future research to contribute transformative insights and solutions. 
However, addressing these gaps requires not only identifying underex
plored areas but also questioning the root causes and proposing robust 
approaches to overcome them. This section reflects on these challenges, 
offering directions for advancing the field.

Despite the methodological approach, the review has certain limi
tations that need to be acknowledged. The limitations are due to limited 
information available in some sources and categories. Firstly, the liter
ature search is limited to three databases and English-language publi
cations. Thus, the literature search lacks papers not published in the 
selected databases or English. Secondly, exclusion criteria based on 
paper quality are not introduced. Therefore, all peer-reviewed papers 
are included in the literature review. While this approach enlarges the 
database of this nascent research field, it could limit the quality of the 
results. Moreover, some studies lack clear and thorough expressions of 
problem assumptions, challenging further analysis.

Regardless of the limitations of the present work, this study identi
fied several critical gaps in the literature on energy-efficient line 
balancing, providing a notable agenda for future research. A critical gap 
in the existing literature is the limited focus on machining transfer lines, 
despite their fully automated nature offering more significant 
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opportunities for energy optimization compared to the predominantly 
manual or semi-automated assembly lines. Machining lines are inher
ently distinct due to their reliance on precise synchronization of oper
ations and the integration of advanced technologies that enable high 
levels of manufacturing flexibility. While these characteristics present 
significant potential for optimizing energy efficiency, they also intro
duce complexities that have made the study of machining lines less 
prevalent. The long-standing focus on assembly line problems, coupled 
with the novelty of exploring energy efficiency within fully automated 
systems, has meant that scholars have yet to investigate machining lines 
extensively. Future research must prioritize these underexplored sys
tems, delving into their unique energy consumption dynamics and 
addressing the intricate interplay of automation, flexibility, and opera
tional precision. Leveraging advanced modeling techniques such as 
constraint programming or hybridized simulation approaches could be 
instrumental in reconciling energy efficiency with the operational de
mands of machining lines.

Furthermore, the organizational and managerial dimensions of en
ergy efficiency in line balancing remain underexplored. Existing studies 
prioritize technical or algorithmic solutions without adequately 
considering the human and institutional factors that determine their 
adoption. Managers face significant trade-offs between short-term pro
ductivity and long-term energy savings, often in the absence of clear 
incentives or frameworks to guide decision-making. Understanding 
these dynamics through empirical studies could provide actionable in
sights, particularly regarding the role of economic instruments such as 
carbon pricing, subsidies for energy-efficient technologies, or 
performance-based tax incentives. Such research could also explore how 
cultural and regulatory differences across industries and regions influ
ence the prioritization of energy efficiency. Addressing these gaps re
quires interdisciplinary approaches that integrate engineering, 
economics, and policy studies to develop decision-support tools tailored 
to industry needs.

Another fundamental gap lies in treating energy consumption as a 
static and oversimplified variable. Most models emphasize operational 
and standby energy while neglecting auxiliary components like lighting, 
conveyor systems, and ventilation, often due to the difficulty of 
acquiring granular data. Additionally, energy consumption is predomi
nantly treated as deterministic, overlooking real-world variability 
caused by factors such as fluctuating production volumes or machine 
wear. Future studies should adopt a more holistic and probabilistic 
perspective, incorporating auxiliary components and stochastic 
modeling to reflect the variability inherent in real-world settings. This 
approach is essential and urgent to improve model fidelity and address 
the complexity of real-world energy consumption. Developing digital 
twin-based frameworks and real-time energy monitoring systems could 
enable a more precise and dynamic representation of energy usage in 
manufacturing environments.

The dominance of metaheuristic optimization methods in the liter
ature reflects their practicality in tackling complex, multi-objective 
problems. However, the lack of hybrid approaches that integrate met
aheuristics with exact methods represents a missed opportunity. Such 
hybrid approaches could capitalize on the strengths of different tech
niques, combining the global search capabilities of metaheuristics with 
the precision of exact algorithms. Developing these integrated methods 
will require addressing computational challenges, particularly in large- 
scale applications. Advances in computational infrastructure and par
allel processing algorithms could make such approaches feasible, 
providing optimal and practically implementable solutions.

Despite the theoretical richness of the literature, the practical 
applicability of proposed methodologies remains underexamined. Many 
studies fall short in transitioning from theoretical modeling to real- 
world validation, which limits their impact on industry practices. Lon
gitudinal case studies that assess the implementation of energy-efficient 
line-balancing strategies over time are urgently needed. Such studies 
should not only evaluate the technical feasibility of these methods but 
also explore their organizational, financial, and environmental impacts. 
Engaging with industry stakeholders to co-develop and validate these 
solutions would bridge the gap between research and practice, ensuring 
that academic advancements translate into tangible benefits. Collabo
rations between academia and industry should be strengthened through 
research consortia, pilot studies, and testbed environments where 
energy-efficient line balancing solutions can be implemented, moni
tored, and refined based on real-world constraints.

Lastly, the paradigm shifts in the industrial environment, such as the 
transition from Industry 4.0 to Industry 5.0, introduce a compelling 
context for future research. In particular, while Industry 4.0 emphasizes 
automation and connectivity, its reliance on energy-intensive technol
ogies poses challenges for sustainability. Industry 5.0, focusing on 
human-centric and environmentally adaptive manufacturing, offers a 
framework within which line balancing can play a transformative role. 
Research should investigate how line balancing can counteract the 
rebound effects of advanced technologies by optimizing their energy use 
without compromising productivity. This line of inquiry aligns with 
global sustainability goals and positions line balancing as a cornerstone 
of the smart, resilient, and adaptive manufacturing systems envisioned 
for the future. Exploring the potential of AI-driven adaptive control 
systems and energy-aware scheduling algorithms could provide the 
necessary intelligence to optimize energy consumption dynamically.

Overall, addressing these research gaps requires a concerted effort to 
integrate technical, managerial, and societal dimensions into the study 
of energy-efficient line balancing. Future research can drive meaningful 
progress in both academic understanding and industrial application by 
critically engaging with the underlying reasons for these gaps and pur
suing interdisciplinary and collaborative approaches.
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Appendix  

Table A1 
Extracted information from the reviewed papers. (See the below-mentioned references for further information.)
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