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The increase in the amount and variety of evaluations provided by the users of different websites 

regarding the products displayed is becoming an increasingly familiar scenario. That is, decision 

makers (DMs) constantly receive linguistic evaluations (LEs) from unknown evaluators when 

considering different choice alternatives. The imprecision of the LEs and the fact that the evaluators 

may have biased interests when describing a product must be considered by the DMs when 

computing their expected utilities.  We define a Bayesian-updated probability (BUP) function that 

accounts for the fuzziness inherent in the LEs and the reputation of the evaluator to represent the 

beliefs of DMs. The proposed BUP process allows the DMs to subjectively adjust the probability 

mass that is shifted across evaluation intervals when updating their beliefs and computing their 

corresponding expected utilities. We illustrate the behavior of the BUP function numerically and 

describe potential decision support applications.  
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1. Motivation 

In the latter years, we have experienced a substantial increment in the amount of 

linguistic evaluations (LEs) received from our friends, other users or sellers describing 

online products and services. One just have to think of the users’ evaluations and 

opinions provided by websites such as TripAdvisor, Amazon, eBay, etc. Moreover, 

besides the LEs reported by other users, we are also given information regarding the 

reputation of the reporters.
1
  

Thus, given our initial subjective beliefs, we can form our own opinion regarding a 

product based on the information provided by the reporter and his reputation.
2
 As a result, 

besides the recommendations of our friends, we have seen the emergence of 

recommender systems, formed by other users who employ linguistic adjectives defined 

within a given explicit or implicit rating scale to describe a potential choice object.
3,4 

The operations research and decision support literatures have focused on analyzing 

the consideration probabilities of decision makers (DMs), which determine the short-list 

of products selected for a detailed evaluation and potential choice after a given initial 

number of products is  inspected.
5,6

 This analysis is used to determine the choice 

probability of a product, defined as the chance of choosing a product from a consumer's 

consideration set.
7
 However, these models do not account for the fact that most of these 

recommendations consist of LEs that must be assessed by the DMs when computing the 

expected utility derived from a potential choice object. For example, the fuzzy version of 

the consideration set developed by Ref. 8 is defined in terms of the degree of membership 

in the consideration set exhibited by different brands while leaving aside the imprecision 

inherent in LEs of the reporters. 

Fuzzy numbers, characterized by their membership functions, are generally used to 

represent linguistic variables within a given evaluation interval. However, this 

characterization does not provide a valid probabilistic measure on which to base the 

behavior of DMs.
9
 At the same time, the linguistic adjectives employed to describe a 

given object constitute signals about its characteristics that should be used to update the 

subjective beliefs of the DMs. In this regard, the reputation of the reporter providing the 

LE should be taken into account when updating the beliefs of the DM.  

We define a novel Bayesian-updated probability (BUP) function that represents the 

beliefs of DMs when accounting for the fuzziness that characterizes the LEs received and 

the reputation of the reporter providing the evaluations. The proposed BUP process 

allows the DMs to subjectively adjust the probability mass that is shifted across 

evaluation subintervals when updating their beliefs and computing their corresponding 

expected utilities. We illustrate the behavior of the BUP function numerically and 

describe potential decision support applications.  

In other words, we transform a fuzzy evaluation environment into a Bayesian 

updating process determined by the reports (signals) received, which introduce a strategic 

component in the analysis when accounting for the reputation of the reporter,
10

 and the 

subjective beliefs of the DMs.
11

 As a result, the updating process defined in this paper 
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provides a novel decision support framework that can be used by DMs to compute their 

subjective expected utilities from any set of LEs.  

 

2. Basic Bayesian Setting  

We will consider a simplified version of the statistical decision model introduced by   

Ref. 12 and implemented by Ref. 13 within a fuzzy setting. In our model, the DM does 

not need to choose an experiment in order to obtain information about the actual state of 

nature, since the information is revealed to him by a reporter via LEs. Hence, we do not 

define a family of experiments. Moreover, the utility defined by the DM does not depend 

on the information received, that is, it is a function only of the act and the state of nature.  

Therefore, the elements that allow us to formalize the decision problem of the DM are 

the following: 

• Space of terminal decisions (acts): { }A a= . 

• Sample space: { }Z z= . 

• State space: { }θΘ = . 

• Utility function:  ( , )u a θ  defined on A× Θ . 

In the above description, we have adopted the notations of Ref. 13. Note that the sets A , 

Z  and Θ  can have any cardinality. The notation { }A a=  means that a  is the generic 

element of the set A, and similarly for { }Z z=  and { }θΘ = . 

Before making a final decision, the DM needs to evaluate the expected utility that 

follows from making a decision a A∈  after observing a realization z Z∈  and 

assuming that the true state of nature is θ ∈ Θ . To this end, the DM is required to define 

a joint probability distribution on the Cartesian product ZΘ × . However, this 

requirement is equivalent to defining the following marginal and conditional density 

functions:  

• ( )π θ :  the marginal density function on the state space Θ . This function describes 

the priors (or beliefs) of the DM on the elements of Θ . That is, it accounts for the 

prior information of the DM relative to the potential states of nature.  

• ( | )f z θ :  the conditional density function on the sample space Z  for a given state of 

nature θ .  

• ( | )g zθ : the conditional density function on the state space Θ for a given observation 

(signal) z . This function accounts for the posterior information of the DM on the 

potential states of nature. 

Once the DM has defined the above density functions, he can calculate the expected 

utility of a decision a  subject to the observation of a signal z  as follows: 

[ ( , ) | ] ( | ) ( , )E u a z g z u a dθ θ θ θ
Θ

= ∫ , 
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where 

( | ) ( )
( | )

( | ) ( )

f z
g z

f z d

θ π θ
θ

θ π θ θ
Θ

=

∫
. 

3. Proposed Decision Support Framework 

We assume that a given object, which can range from a product or service to a business 

project proposal, is evaluated using a fixed number of LEs and that these LEs are 

represented by triangular fuzzy numbers (TFNs).  

A TFN ( , , )a b c  is a subset of the real numbers characterized by a membership 

function from a real interval [ , ]m M  into [0,1] . The membership function of a TFN 

( , , )a b c associated with a certain LE represents the degree of certainty that a given 

value in the set ( , , )a b c  belongs to the LE.
14

 The membership functions of the TRNs 

relative to the LEs composing a linguistic variable must have the same domain [ , ]m M . 

This common domain is partitioned in a finite number of intervals whose extremes are 

the crossing points of the graphs of the membership functions. This partition will be 

denoted by ([ , ])P m M . 

Table 1 shows a standard representation of a linguistic variable consisting of five LEs 

and their corresponding TFNs defined on the interval [0, 1]. 

Table 1. Linguistic evaluations and triangular fuzzy numbers. 

Linguistic Variable Linguistic Evaluations 

Attribute Rating Poor (P) Fair (F) Good (G) Very Good (VG) Excellent (E) 

Triangular Fuzzy Number (0, 0, 0.3) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.5, 0.7, 1.0) (0.7, 1.0, 1.0) 

The five membership functions associated to the LEs of Table 1 and defined within 

the domain [0, 1] are presented in Figure 1(a). At the same time, Figures 1(b) and 1(c) 

illustrate the partition ([0,1])P  of the common domain [0,1]   and the adjustment 

process for the report-based (conditional) densities induced by the “Good” and “Very 

Good” LEs, respectively. The conditional density functions together with the other 

elements necessary to define our BUP function are formally introduced below. 

Following the basic Bayesian approach described in Section 2, we need to identify 

the main elements characterizing the decision problem of the DM. 

• Space of terminal decisions (acts): { }A purchase= . 

The space A  consists of only one act, purchase . The DM must decide whether or 

not to purchase the object described by the reporter. Clearly, the act must be adapted to 

the type of object being considered, i.e. { }A select=  when dealing with business 

proposals.   
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• Sample space: 1 1 1[ , ]m MX x x=  with 1 10 m Mx x< < . 

1X  represents numerically the quality of the characteristics of the object on which a 

report is received by the DMs. That is, 1X  is the domain of the membership functions 

of the TFNs representing the LEs used by the reporter to describe the object. 

• State space: 2 2 2[ , ]m MX x x=  with 2 20 m Mx x< < . 

2X  represents numerically the quality of the characteristics of the object expected by 

the DMs. The BUP function associated with 2X  is determined by the 1LE X∈  

received, the reputation of the reporter, and the subjective beliefs of the DM.  

• Utility function: a utility function 2( , )u purchase x  defined on 2A X× . 

    Since there is only one act, in the following, we will use 2( )u x  in place of   

2( , )u purchase x . 

• Marginal density function: uniform density function 
2( )xµ  defined on 2X . 

• Conditional density functions on the sample space: for every given 
2x , the 

conditional density function 
1 2( | )f x x  is defined by cases as follows: 

   
1 2 1 2( | ) ( | )jf x x x x= µ  if 

1x  belongs to the j-th interval of the partition 1( )P X .  

    The functions 
1 2( | ), 1,...,j x x j nµ =  are determined by the shift in probability mass 

across the intervals composing the partition 1( )P X  that the DM subjectively applies 

if the state of nature is 
2x .  

• Conditional density functions on the state space: for every given 
1x , the conditional 

density function 
2 1( | )g x x  is defined by cases as follows: 

   
2 1 2 1( | ) ( | )jg x x x x= µ  if 

2x  belongs to the j-th interval of the partition 2( )P X ,   

where the partition 2( )P X is induced by the partition 1( )P X . The functions 

2 1( | ), 1,...,j x x j nµ =  are the conditional updated densities defining the BUP 

function.  

Note that in order to simplify notations, we will use 
1 2( | )j x xµ  and 

2 1( | )j x xµ  in 

place of 
1 2( | )f x x  and 

2 1( | )g x x . 

Moreover, we introduce a variable accounting for the credibility of the reporter and a 

family of functions allowing us to formalize the subjectively induced shifts in probability 

mass across the intervals of the partition 1( )P X .  

• [0,1]ψ ∈ : This variable represents the credibility of the reporter. The higher its 

value, the higher the probability mass assigned to the interval within which the 

corresponding LE is located. The value taken by this variable could be either assigned 
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subjectively by the DMs or determined by the information available in online 

environments. 

• ( , 1), 1,..., 1
i

f n i nα − = − : The DM is allowed to subjectively modify the shift of 

probability mass across the partition 1( )P X  based on the LE received by the reporter. 

This shift in probability depends on the number of intervals from which the probability 

mass has to be gathered and the subjective characteristics of the DMs. These shifts are 

described by n – 1 functions,  ( , 1), 1,..., 1
i

f n i nα − = − , determined by both these 

variables, with α  accounting for the subjective retrieval of mass across intervals 

based on the relative distance from a given interval to the one within which the LE is 

located.  

In order to simplify the presentation, we have assumed that both 1X  and 2X  

coincide with the domain [0, 1]. The n  intervals composing the partition of 2X  have 

been assumed to have the same width, allowing for a proportional shift of probability 

mass across them, that is: 

2 2
2 2

2 2 2 2
2 2 2

2 2 2 2
2 2 2

;

2 ;

( 1) .

M m
m

M m M m
m m

M m M m
m m

x x
x x

n

x x x x
x x x

n n

x x x x
x n x x n

n n

−
< +

− −
+ ≤ < +

− −
+ − ≤ < +

�

 (1)

 

The resulting BUP density is composed by the conditional updated density functions 

1 2 1( | )x xµ , 2 2 1( | )x xµ , …, 2 1( | )
n

x xµ  defined through the different intervals in 

which 2X  is divided. We describe below the density functions 1 2 1( | )x xµ  and 

2 2 1( | )x xµ  corresponding to the first and second interval composing the domain of the 

BUP density, respectively. Note that the interval within which the corresponding LE is 

located is 
2 2 2 2

2 2,
2 2

M m M m
m mx x x xn n

x x
n n

 − −   
+ +        

. 

The density function 1 2 1( | )x xµ  when 2 2
2 2

M m
m x x

x x
n

−
< +  (i.e., in the first 

interval) is given by: 

2 2 2 2

1

1 1 1 1 2 21 1 2 2
1 2 1

1 2 2 2 1 2 2 2

( , 1)1 1 1

1( | ) ( )
( | )

( | ) ( ) ( | ) ( )

M m M m M m

j j

x X x X

f n

x x n x x x xx x x
x x

x x x dx x x x dx
∈ ∈

   α − 
− ψ    

− − − −µ µ     µ = =
µ µ µ µ∫ ∫

,    (2) 
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while the density function 2 2 1( | )x xµ  when 2 2 2 2
2 2 2 2

M m M m
m mx x x x

x x x
n n

− −
+ ≤ < +  

(i.e., in the second interval) is given by: 

2 2 2 2

2

1 1 1 1 2 22 1 2 2
2 2 1

1 2 2 2 1 2 2 2

( , 1)1 1 1

1( | ) ( )
( | )

( | ) ( ) ( | ) ( )

M m M m M m

j j

x X x X

f n

x x n x x x xx x x
x x

x x x dx x x x dx
∈ ∈

   α − 
− ψ    

− − − −µ µ     µ = =
µ µ µ µ∫ ∫

,  (3) 

where: 

2 2

2 2 2 2
2 2 2 2 2 2

1 2 2 2

1 1 2 2 2 1 2 2 2

, ( 1) ,

( | ) ( )

( | ) ( ) ... ( | ) ( ) ,
M m M m

m m m M

j

x X

n

x x x x
x x x x x n x

n n

x x x dx

x x x dx x x x dx

∈

   − −
∈ + ∈ + −   
      

µ µ =

µ µ + + µ µ

∫

∫ ∫
    (4) 

that is: 
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∫

∫

∫

2
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2

5
2

1 1 2 2
( 1)

( , 1) 1 1
.

1

M

M m
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x

M m M m

x x
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n

f n
dx

n x x x x
−

+ −

   α − 
ψ    

− − −    
∫

    (5) 

Several remarks must be emphasized regarding the definition of the density functions     

2 1( | )j x xµ , 1,...,j n= .  

• Note that all the intervals of the partitions we used for 1X  and 2X  have all the same 

length. However, asymmetries can be introduced across the membership functions and 

the resulting conditional updated density functions adjusted accordingly.
15

 

• In this regard, the intervals defined within the domain of our BUP function or the 

subjective weights assigned to each interval composing 1( )P X  could be defined in 
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terms of the relative dominance arising among the different membership functions 

(consider, for example, the preference degree approach for comparing and ranking 

fuzzy numbers introduced by Ref. 16). Consequently, even though we have considered 

TFNs, our BUP function can be modified to account for trapezoidal ones. 

• We have used uniform densities, which endow each interval with the highest 

information entropy,
17

 to illustrate the uncertainty faced by the DM. However, 

triangular distributions could be assumed when defining 1 2( | )
i

x xµ , 1,...,i n= , and 

2( )xµ  within the different intervals composing �� and ��, respectively. 

 

4. Numerical Simulations 

Figures 2 and 3 present the BUP density functions defined on the different intervals 

composing 2( )P X  and the corresponding expected utilities computed after receiving a 

“Good” and a “Very Good” LE, respectively. The expected utility obtained by the DM, 

[ ]2 1
( ) |E u x x , is defined as follows: 

[ ]

2 22 2
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 −   
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= µ =

µ + + µ +

+ µ

∫

∫ ∫

∫

 
(6)

For illustrative purposes, we have assumed that 
2

2 2( )u x x= . Figures 2 and 3 describe 

the shape of the density function within each interval as ψ  and α  vary within their 

respective domains. When the report received is “Good”, we consider the following mass 

shifting functions for each interval: 1 5( , 1) (2 ) ( , 1)f n f nα − = − α = α −  and 

2 4( , 1) ( , 1)f n f nα − = α = α − , with [0,1]α ∈ . Note that, when 0α = , we are 

shifting probability from the extreme intervals into the central one, within which the LE 

is located. As the value of α  increases, probability mass is also shifted from the intervals 

neighboring the central one, with 1α =  implying that the same mass is shifted from 

each of the four intervals to the central one. Similarly, when the report received is “Very 

Good”, we consider the following mass shifting functions: 1( , 1) (2.5 )f nα − = − α , 

2 ( , 1) (1.5 )f nα − = − α  and 3 4( , 1) ( , 1)f n f nα − = α = α − . However, in this case, 

[0,0.75]α ∈ .  
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Fig. 2. Bayesian updated probability and expected utility when the evaluation of the reporter is “Good”. 

 

Fig. 3. Bayesian updated probability and expected utility when the evaluation of the reporter is “Very Good”. 

As intuition suggests, the expected utility obtained when the report received is “Very 

Good” is higher than the one derived from a “Good” report. However, we should 

emphasize that, depending on the type of report received, there is a significant difference 

in the behavior exhibited by the expected utility as the variables ψ  and α  vary. The 

intuition behind these results reads as follows. As ψ  increases, so does the probability 
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weight assigned to the interval determined by the LE issued by the reporter. Thus, given 

the convex shape of the utility function, as ψ  increases in the “Good” report case, we 

shift probability from the sides and extremes of the distribution towards the central 

interval [0.4,0.6] , leading to a lower expected utility. The same type of reasoning 

applies as we shift probability mass into the interval [0.6,0.8]  when the report received 

is “Very Good” − though in this case the corresponding relation is increasing.  

Consider now the α  variable, whose effect on the expected utility is also reversed in 

both report cases. When the report received is “Good”, the expected utility obtained by 

the DM increases in α . In this case, when 0α = , all the probability mass shifted to the 

interval within which the LE is located is taken from the extreme intervals of the 

function. As α  increases, we start shifting probability away from the intervals 

neighboring the central one, while increasing the probability mass of the extremes. Thus, 

given the shift of mass towards the extreme intervals of the probability function                

([0,0.2]  and [0.8,1] ) and the convexity of the utility function, we have an increase in 

the expected utility obtained by the DM. This tendency is reversed when the report 

received is “Very Good”, since, in this case, the extreme intervals of the probability 

function are given by [0,0.2]  and [0.2,0.4] , while those neighboring the interval 

within which the LE is located are [0.4,0.6]  and [0.8,1] .  

 

5. Potential Applications and Extensions 

Given the subjective variability allowed for when constructing our BUP function, the 

elicitation of the preferences and beliefs of DMs could become a difficult task. As the 

numerical simulations illustrate, different degrees of credibility and subjective probability 

mass shifts across intervals may lead to the same or very similar expected utility values. 

It could therefore be difficult to differentiate between the effect due to the subjective 

probability shifts of DMs and the one following from the credibility assigned to the 

reporter. This task could be further complicated when dealing with asymmetric fuzzy 

numbers and the corresponding assignment of interval weights, given the variety of 

ranking methods available in the literature.
16,18,19

 Thus, the results obtained in such a 

setting would be sensitive to the method chosen to rank fuzzy numbers.  

However, we should emphasize that these drawbacks are compensated by the 

capacity of the BUP function to accommodate any type of LE within a standard statistical 

decision making structure. This is done while accounting for potential subjective 

evaluations of the DMs together with the reputation of the reporter, a property that 

becomes particularly useful in online recommender environments. That is, the BUP 

function introduced in this paper can be used to generate rankings of products based on 

the recommendations obtained by the DM from other online agents. In other words, the 

BUP function serves as a complement to the literature on recommender systems, 

providing an alternative approach to define the choices made by the DM.  

The formalization of recommender systems leads to rankings of products determined 

by their predicted ratings. The predictions made by the DMs are generally subject to 
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uncertainty, which can be accounted for using the confidence level of the predictions 

determining the ranking.
20

 In this regard, the BUP function formalizes the existence of 

uncertainty inherent to the evaluations and predictions of the DM, which affect his 

expected utility and resulting behavior.
21

  

Among the potential decision support applications that go beyond the recommender 

systems research area,
6
 we should highlight the elaboration of rankings determined by the 

entropy of the evaluations received when the reports consist of subjective linguistic 

evaluations instead of crisp numerical values.
22

 An immediate extension to group 

decision-making would allow us to account for the entropy inherent to the subjective 

evaluations of the reporters as well as their credibility. 

Indeed, several additional applications of the BUP function arise when considering 

multi-criteria group decision-making problems, where the preferences and beliefs of DMs 

play a fundamental role in the outcome obtained.  

Among the recent developments presented in the literature, we should highlight the 

use of the qualitative flexible multiple criteria method as a basis on which to incorporate 

either semantic evaluation differences together with the risk preferences of DMs
23

 or 

hesitant fuzzy linguistic information.
24

 Hesitant fuzzy linguistic numbers have been 

recently introduced in the literature. They consist of a linguistic term, a set of 

membership degrees and a set of non-membership degrees, with the DMs determining 

subjectively the respective membership and non-membership degrees depending on their 

preferences. These numbers have been used to describe the preferences of DMs and 

reflect the uncertainty faced when evaluating choice objects
25

 or dealing with multi-

criteria decision-making (MCDM)
26

 and group decision-making problems.
27

 In this 

regard, multi-criteria group decision-making problems have been defined in which the 

criteria values considered are given by interval linguistic variables and the weights of the 

DMs are unknown.
28 

We conclude by noting that the subjective reallocations of probability allowed for on 

the side of the DMs are similar to those taking place in prospect and cumulative prospect 

theory, where the subjective evaluations of DMs determine the shift in their 

probabilities.
29,30

 The literature has already considered the inclusion of prospect theory 

and cumulative prospect theory in formal models of decision making under uncertainty
31

 

and MCDM methods such as TODIM,
32

 respectively. Consequently, the BUP function 

introduced in this paper could also be used to formalize the effects that the subjective 

evaluations of DMs and the credibility of the reporters have on MCDM techniques such 

as TODIM and TOPSIS.  

6. Conclusions 

Given the imprecision inherent in the LEs, a fuzzy set is generally used to quantify the 

corresponding terms. However, this characterization does not provide a valid 

probabilistic measure on which to base the behavior of DMs. We have formalized the 

problem of defining a probability function based on LEs when these constitute a signal 
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regarding the quality or the characteristic of a given object. The resulting probability has 

been designed to account for the reputation of the reporter providing the evaluations and 

the subjective beliefs of the DM. 
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