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Abstract
Economic-environmental performance or eco-efficiency is a topic of great interest due to
the “green movement.” Data Envelopment Analysis (DEA) is a non-parametric method for
measuring the eco-efficiencies in comparable Decision-Making Units (DMUs) under various
technology assumptions, e.g., constant or variable returns to scale. In the case of variable
returns to scale, the returns to scale (RTS) values showwhether theDMUsunder consideration
have the correct scale size or canbe improvedbyupsizing or downsizing.However, sometimes
the RTS values for some DMUs are unusually high or low and hence useless in practice.
The RTS-mavericks test is devised to propose RTS bounds to fix this flaw. However, these
bounds can be ineffective in practice. Even if this flaw is rectified, it needs to be clarified
how the concept of RTS-mavericks influences eco-efficiency analysis. For the case of a
single technology and a combination of two technologies (a so-called pollution-generating
technology), we derive RTS equations and develop newmedian-based optimization problems
to correct this flaw and show that the new concept can lead to non-convex technologies. We
also demonstrate the applicability and exhibit the efficacy of the proposed model in the
context of eco-efficiency analysis in the European Union.
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1 Introduction

The green movement and eco-efficiency analysis have become important issues for corpora-
tions and politicians. According to Emrouznejad and Yang (2018), eco-efficiency is one of
the top five most popular research keywords in the Data Envelopment Analysis (DEA) arti-
cles. Eco-efficiency applications in DEA range from power plants and freight transportation
to agriculture and dairy farms. Eco-efficiency in most DEA applications is simply an indi-
cator of the environmental performance of profit and/or non-profit entities, cf., e.g., Koskela
and Vehmas (2012), Moutinho et al. (2018), Wu et al. (2018), Bianchi et al. (2020), and
Ezici et al. (2020). In many eco-efficiency studies, the authors apply different concepts such
as Malmquist indices, metafrontier approaches, and other technologies or efficiency mea-
sures to determine eco-efficiencies (Chen & Lin, 2020; Dakpo & Lansink, 2019; Fukuyama
et al., 2020; Sueyoshi et al., 2019; Zhu et al., 2019). However, outlier detection does not
play any role in such studies, although DEA, as a non-parametric method, can be strongly
influenced by outliers. In this paper, we show that a specific outlier can significantly impact
eco-efficiencies and, hence, on the policymaking process; and we develop a novel method to
correct the DEA-based estimates.

DEA is a well-established method for measuring the efficiencies among a comparable
set of profit and non-profit entities, called Decision Making Units (DMUs), cf. Charnes
et al. (1978) and Banker et al. (1984). In classical DEA, the efficiencies are determined by
comparing the empirically observed activities—inputs and outputs—with each other. But
before doing this, inter alia, one has to specify a production possibility set or technology,
e.g., a technology under constant (CRS) or variable returns to scale (VRS). When applying
a technology under VRS—as a by-product—the decision-maker will be informed about the
DMUs’ qualitative and quantitative returns to scale (RTS); for more details, readers should
refer to Banker et al. (1984), Banker and Thrall (1992), Førsund (1996), Golany and Yu
(1997), Podinovski et al. (2009), and Kleine et al. (2016). This information can then be used
to develop more effective RTS-driven strategies for realizing scale effects, cf., e.g., Davoodi
et al. (2015) and Rödder et al. (2017). Estimating RTS in DEA has attracted attention in both
theoretical—see above—and empirical studies—see, e.g., Zhang et al. (2014) and Chang
et al. (2015). Interestingly, in Emrouznejad and Yang’s (2018) database, one can find only
one paper focusing on quantitative RTS in the context of eco-efficiency—although many
studies are based on technology under VRS. Lozano et al. (2011) calculate RTS numbers or
scale elasticities for only eco-efficient electronic products to show respective sizing potentials.
In the present contribution, however, we show that RTS values can be determined for eco-
efficient and eco-inefficient activities.

In DEA literature, many papers focus on outliers or mavericks (e.g., Bahari & Emrouzne-
jad, 2014; Banker & Chang, 2006; Clermont & Schaefer, 2019; Doyle & Green, 1994;
Khezrimotlagh et al., 2020; etc.). However, most of them emphasize testing efficiencies or
differences between efficiencies. There is only one paper that treats RTS values, cf. Dellnitz
(2016).

Generally, RTS-driven recommendations for activity alterations are not always economi-
cally meaningful due to unreasonably high or low RTS values. The recommendations have
to be revised in such cases, making them more compatible with real-life technological con-
ditions. Therefore, Dellnitz (2016) first provides a median-based test to detect RTS outliers –
so-called RTS-mavericks. He then proposes a modification procedure to get a more realistic
technology, applying lower- and upper-RTS bounds. These bounds then should allow for
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better economic assessments of the RTS-mavericks. However, we show that if the respec-
tive constraints remain inactive, they do not improve the DMUs’ eco-efficiency assessments.
To remedy this shortcoming, we develop new median-driven non-linear optimization prob-
lems—for a single technology case and a pollution-generating case, see Murty et al. (2012).
Furthermore, after linearizing thesemodels, we prove that solving the respective optimization
problems forRTS-mavericks always leads to smaller eco-efficiency scores.As a consequence,
the eco-efficiency estimate decreases, and the RTS value becomes more realistic. We further
show that this new concept can lead to non-convex technologies. Ultimately, RTS-mavericks
are not an artificial concept—they can be observed empirically; this will be illustrated via the
agricultural data of 23member states of theEuropeanUnion (E.U.). In this context,we discuss
issues concerning the underlying distributional assumptions of RTS and present sensitivity
results regarding variations of cut-off values for flagging DMUs as RTS-mavericks.

The remainder of this paper is organized as follows: Sect. 2.1 is dedicated to the basics
of DEA-based efficiency analysis in the presence of undesirable outputs; in Sect. 2.2, we
develop equations to determine RTS in the context of a single technology; in Sect. 2.3, we
show how to derive RTS in the presence of a pollution-generating technology. Section 3
presents the concept of RTS-mavericks and the median-driven approach for flagging such
DMUs. Section 4 introduces the new optimization models for treating RTS-mavericks in
the presence of undesirable outputs. Numerical examples accompany all considerations to
demonstrate the gist of the new method. Section 5 is dedicated to the assessment of the
agricultural eco-efficiency of the E.U. member states. Finally, Sect. 6 concludes this work.

2 DEA-based RTS in the presence of undesirable outputs

2.1 Preliminaries regarding the single technology case

DEA plays an important role in eco-efficiency analysis due to the fact that it is possible to
consider multiple inputs and multiple outputs—with desirable or undesirable (e.g., waste,
emissions, etc.) components. There are several ways to embed such factors in DEA models,
depending on the efficiency measure, i.e., radial, super-efficiency, slack-based or directional
distance-based instruments, and the respective factors to be addressed; see, for instance, Zhou
et al. (2006), Kuosmanen and Kortelainen (2007), Zhang et al. (2008), Wang et al. (2019),
Quintano et al. (2020), or for a broader overview Zhou et al. (2018).

The term eco-efficiency refers to a concept in which economic and environmental factors
are analyzed simultaneously—in a single technology—to determine a firm’s or a nation’s
environmental performance (Koskela & Vehmas, 2012). In this contribution, the authors dis-
cuss several definitions regarding eco-efficiency. Here, we focus on the productiveness of
a Decision-Making Unit (DMU); that is, for a DMU k ∈ J, with J = {1, ..., J }, we solve
the BCC problem (1)—additionally equipped with undesirable outputs—to determine its
eco-efficiency; an axiomatic introduction regarding the classical BCCmodel can be found in
Banker et al. (1984). Obviously, we focus on input orientation only, but all subsequent state-
ments can easily be modified to accommodate other technologies as well as eco-efficiency
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measures. For a discussion of eco-efficiency measures, see Korhonen and Luptacik (2004).

maxeff k = UgT
k ygk−UbT

k ybk+uk
VT
k xk

s.t.
UgT
k ygj−UbT

k ybj+uk

VT
k x j

≤ 1 ∀ j ∈ J
Ug
k ,U

b
k ,Vk ≥ 0 and uk free

(1)

Here, for all DMUs j ∈ J = {1, ..., J }, the vectors of goods ygj ∈ R
Sg+ are indicated by

the superscript g and the vectors of bads ybj ∈ R
Sb+ via superscript b.

Let (x j , y
g
j , y

b
j ) ∈ R

M+Sg+Sb+ ∀ j ∈ J be the observed activities—the input, desirable and

undesirable output vectors—of all DMUs; with Ug
k ,U

b
k ,Vk being the non-negative vectors

of corresponding output and input multipliers. The scalar uk is well known in the classical
BCC problem. This free variable indicates the returns to scale situation of DMU k when the
classical BCC problem—i.e., without the bads—is solved, cf. again Banker et al. (1984) or
Førsund (1996). Now, we obtain the multiplier-form (2) applying the well-known Charnes-
Cooper transformation:

maxeff k = UgT
k ygk − UbT

k ybk + uk
s.t.
VT
k xk = 1

UgT
k ygj − UbT

k ybj + uk − VT
k x j ≤ 0 ∀ j ∈ J

Ug
k ,U

b
k ,Vk ≥ 0 and uk free

(2)

Let Ug∗
k ,Ub∗

k ,V∗
k , u

∗
k be an arbitrary optimal solution regarding Model (2), then e f f ∗

k ≤
1 determines the eco-efficiency of a DMU k. As mentioned above, u∗

k indicates the RTS
situation of DMU k in classical BCC problems; more precisely, DMU k operates under
increasing (decreasing) RTS if the sign of u∗

k is positive (negative), and when the optimal
value of u∗

k equals zero, we have constant RTS. However, are these statements also true if
Eq. (2)—including the bads—is solved? The next section answers this question.

2.2 RTS and undesirable outputs in the single technology case

Classically, the quantitative RTSmeasure determines the output change rate ε(δ) as a function
of the input change rate δ under constant efficiency. For proof of respective relations, see,
e.g., Banker and Thrall (1992), Golany and Yu (1997), Podinovski et al. (2009), or Kleine
et al. (2016). The following proposition transfers this concept to relations involving desirable
and undesirable outputs:

Proposition 1 Let e f f ∗
k ≤ 1, Ug∗

k ,Ub∗
k ,V∗

k , u
∗
k be an arbitrary optimal solution regarding

(2). Then, radial output changes ygk → (1+ εk)y
g
k and ybk → (1+ εk)ybk under infinitesimal

radial input changes xk → (1 + δ)xk must yield.

εk

δ
= Ug∗T

k ygk − Ub∗T
k ybk + u∗

k

Ug∗T
k ygk − Ub∗T

k ybk
= e f f ∗

k

e f f ∗
k − u∗

k
(3)

to maintain the eco-efficiency e f f ∗
k ≤ 1.
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Proof To prove Proposition 1; first, we take the (in-)efficiency equation

Ug∗T
k ygk − Ub∗T

k ybk + u∗
k − e f f ∗

kV
∗T
k xk = 0

and embed our scaling factors (1 + δ), (1 + εk). Hence, we get
Ug∗T
k (1 + εk)y

g
k − Ub∗T

k (1 + εk)ybk + u∗
k − e f f ∗

k V
∗T
k (1 + δ)xk = 0

⇒ Ug∗T
k (εk)y

g
k − Ub∗T

k (εk)ybk − e f f ∗
k V

∗T
k (δ)xk = 0

⇒ εk(U
g∗T
k ygk − Ub∗T

k ybk ) − e f f ∗
k V

∗T
k (δ)xk = 0

⇒ εk(U
g∗T
k ygk − Ub∗T

k ybk ) = e f f ∗
k V

∗T
k (δ)xk

⇒ εk

δ
(Ug∗T

k ygk − Ub∗T
k ybk ) = e f f ∗

k V∗T
k xk

︸ ︷︷ ︸

=1

εk

δ
= e f f ∗

k

Ug∗T
k ygk − Ub∗T

k ybk
= Ug∗T

k ygk − Ub∗T
k ybk + u∗

k

Ug∗T
k ygk − Ub∗T

k ybk �
In the presence of goods and bads, Eq. (3) determines the returns to scale of a DMU k;

that is, the radial output change—desirable and undesirable—when altering (infinitesimally)
the inputs. Furthermore, Eq. (3) justifies the following reasoning:

• u∗
k > 0 → increasing RTS (IRS) because goods and bads grow faster than inputs.

• u∗
k < 0 → decreasing RTS (DRS) because goods and bads grow slower than inputs.

• u∗
k = 0 → constant RTS (CRS) because goods, bads, and inputs grow at the same rate.

Interestingly, Eq. (3) comprises two important components: the valuation of the goods
Ug∗T
k ygk and the valuation of the bads Ub∗T

k ybk , which may partly offset the first part.
Problem (2) is a linear program and might be subject to multiple optimal solutions, of

course. There aremany differentways to dealwith such ambiguities in classicalDEA.Most of
all approaches are based on a two-stage procedure: First, solve the BCC problem; second, fix
the BCC efficiency for DMU k and apply a second philosophy, e.g., minimizing/maximizing
the sum of all (weighted) deviations from zero in the second group of restrictions, see Doyle
and Green (1994), or minimizing/maximizing the value of the free variable uk like in Banker
and Thrall (1992) and Golany and Yu (1997). In the presence of undesirable outputs, we can
make use of such philosophy solving Model (4).

u−
k = infuk and u

+
k = supuk

s.t
VT
k xk = 1

UgT
k ygk − UbT

k ybk + uk = e f f ∗
k

UgT
k ygj − UbT

k ybj + uk − VT
k x j ≤ 0 ∀ j ∈ J

Ug
k ,U

b
k ,Vk ≥ 0 and uk free

(4)

Banker and Thrall (1992) have proven that for an efficient DMU k, the optimization of
(4) is sufficient to fully fathom the RTS interval; cf. Banker and Thrall (1992), p. 82. This is
also true for (4)—even if e f f ∗

k ≤ 1.

Proposition 2 Solving (4) is sufficient to fully fathom the RTS interval, even for e f f ∗
k ≤ 1.

Proof Due to UgT
k ygk − UbT

k ybk + uk = e f f ∗
k in (4), we have

UgT
k ygk − UbT

k ybk + uk

UgT
k ygk − UbT

k ybk
= e f f ∗

k

e f f ∗
k − uk

.

Hence, for all feasible uk , the following inequalities hold
e f f ∗

k

e f f ∗
k−u−

k
≤ e f f ∗

k
e f f ∗

k−uk
≤ e f f ∗

k

e f f ∗
k−u+

k
. �
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Consequently, with the optimal solutions Ug+
k ,Ub+

k ,V+
k , u+

k and Ug−
k ,Ub−

k ,V−
k , u−

k of
(4), we have

ε−
k = δ

e f f ∗
k

e f f ∗
k − u−

k

, (5)

ε+
k = δ

e f f ∗
k

e f f ∗
k − u+

k

. (6)

In the presence of undesirable outputs, the reasoning with respect to RTS can now be
generalized:

• u+
k ≥ u

−
k > 0 → IRS.

• u−
k ≤ u

+
k < 0 → DRS.

• u+
k ≥ 0 ≥ u

−
k → CRS.

However, RTS values ρ−
k = e f f ∗

k

e f f ∗
k−u−

k
, ρ+

k = e f f ∗
k

e f f ∗
k−u+

k
do not always permit veritable

recommendations for activity changes, for example, due to infinite numbers, which means
that the production of goods and the ejection of bads explodes/implodes when changing
inputs infinitesimally. Before addressing these issues, we go one step further and show how
RTS can be derived from a pollution-generating technology, which is a combination of two
technologies.

2.3 RTS in pollution-generating technologies

Murty et al. (2012) state that treating ‘pollution as a freely disposable input or as a weakly
disposable and null-joint output may generate unacceptable implications for the trade-offs
among inputs, outputs, and pollution.’ Therefore, the authors develop the concept of a
pollution-generating technology. This technology will be modeled as the intersection of an
intended-production technology and nature’s residual-generation set, cf. again Murty et al.
(2012). Here, the data-driven version of their pollution-generating technology equates to the
intersection of two technologies involving constant returns to scale each.

Now, we develop the concept of RTS in a pollution-generating technology involving one
technology under constant returns to scale and the another one comprising variable returns
to scale.

Therefore, let yg ∈ R
Sg+ be a vector of goods, yb ∈ R

Sb+ a vector of bads. Next, we divide

the inputs into one vector xg ∈ R
Mg

+ and another one xb ∈ R
Mb

+ ; the latter corresponds to

the bads yb ∈ R
Sb+ , while yb ∈ R

Sb+ does not instantaneously depend on xg ∈ R
Mg

+ and
yg ∈ R

Sg+ .

TBP =
⎧

⎨

⎩

(

xg, xb, yg, yb
)

|
xg ≥ ∑J

j=1 λ jx
g
j ; xb ≥ ∑J

j=1 λ jx
b
j ; y

g ≤ ∑J
j=1 λ jy

g
j

xb ≤ ∑J
j=1 μ jx

b
j ; y

b ≥ ∑J
j=1 μ jy

b
j with

∑J
j=1 λ j = 1 and λ j , μ j ≥ 0∀ j

⎫

⎬

⎭

(7)

Applying this technology, we assume that the intended-production technology implies
variable returns to scale, and nature’s residual-generation set follows constant returns to scale.
The authors mentioned above discuss some output-oriented efficiency measures when using
the pollution-generating technology (7); they show that some might lead to inappropriate
results. However, in some cases like in agriculture, an output-orientation—as proposed by
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them—might be inadequate due to non-controllability. Consequently, we prefer an input-
oriented (radial) eco-efficiency measure for a DMU k, as given in the linear program (8).
However, our results can easily be transferred to output-oriented or slack-based measures.

min hk
s.t.
hkx

g
k ≥ ∑J

j=1 λ jx
g
j

hkxbk ≥ ∑J
j=1 λ jxbj

ygk ≤ ∑J
j=1 λ jy

g
j

hkxbk ≤ ∑J
j=1 μ jxbj

ybk ≥ ∑J
j=1 μ jybj

∑J
j=1 λ j = 1

λ j , μ j ≥ 0∀ j

(8)

Now, dualization of (8) leads to the following linear optimization problem:

maxeff k = UgT
k ygk − ˜UbT

k ybk + uk
s.t.

VgT
k xgk+VbT

k xbk−˜V
bT
k xbk = 1

UgT
k ygj − VgT

k xgj−VbT
k xbj + uk ≤ 0 ∀ j ∈ J

˜UbT
k ybj − ˜VbT

k xbj ≥ 0 ∀ j ∈ J
Ug
k ,V

g
k ,V

b
k ,

˜Ub
k ,

˜Vb
k ≥ 0and ukfree

(9)

LetUg∗∗
k ,Vg∗∗

k ,Vb∗∗
k ,˜Ub∗∗

k ,˜Vb∗∗
k , u∗∗

k be an arbitrary optimal solution regarding (9), then
e f f ∗∗

k ≤ 1 determines the eco-efficiency of a DMU k. How can we determine the RTS situa-
tion of a DMU k in the presence of a pollution-generating technology? The next proposition
answers this question.

Proposition 3 Let e f f ∗∗
k ≤ 1, Ug∗∗

k ,Vg∗∗
k ,Vb∗∗

k ,˜Ub∗∗
k ,˜Vb∗∗

k , u∗∗
k be an arbitrary optimal

solution regarding (9). When changing inputs radially, i.e. xgk → (1 + δ)xgk and xbk →
(1 + δ)xbk , then radial changes of goods ygk → (1 + ε

g
k )y

g
k and bads ybk → (1 + εbk )y

b
k must

yield

ε
g
k

δ
= Ug∗∗T

k ygk + u∗∗
k

Ug∗∗T
k ygk

= 1 + u∗∗
k

Ug∗∗T
k ygk

and εbk = δ (10)

to maintain the eco-efficiency e f f ∗∗
k ≤ 1 in the pollution-generating technology (7).

Proof Theproof follows the same logic as in Proposition 1.Consequently, i.e., apply the equa-

tionUg∗∗T
k

(

1 + ε
g
k

)

ygk −˜Ub∗∗T
k

(

1 + εbk

)

ybk+u∗∗
k −e f f ∗∗

k

(

Vg∗∗T
k xgk+Vb∗∗T

k xbk−˜V
b∗∗T
k xbk

)

(1+
δ) = 0

and reorder terms. Please note that εbk = δ is simply a result of the technology
assumptions with respect to Eq. (7) or can be proven by rearranging ˜Ub∗∗T

k

(

1 + εbk

)

ybk −
e f f ∗∗

k
˜V
b∗∗T
k (1 + δ)xbk = 0. �

From Proposition 3, we learn that calculating RTS after solving (9) is not a big issue.
However, determining the boundaries of ε

g
k—like in Proposition 2—is a severe problem due

to the interrelations between both different weight systems. To fix the efficiency e f f ∗∗
k , only,
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and maximizing/minimizing uk as in Eq. (4) is not sufficient; instead, we have to optimize
ε
g
k
δ
directly. Therefore, we apply the efficiency equation of DMU k

UgT
k ygk − ˜UbT

k ybk + uk − VgT
k x̂gk−VbT

k x̂bk+˜V
bT
k x̂bk = 0, (11)

where x̂gk := e f f ∗∗
k xgk and x̂bk := e f f ∗∗

k xbk ; next, we solve (12) applying δ = 1 w.l.o.g .

ε
g−−
k = inf uk

UgT
k ygk

andεg++
k = sup uk

UgT
k ygk

s.t.

UgT
k ygk − ˜UbT

k ybk + uk − VgT
k x̂gk−VbT

k x̂bk+˜V
bT
k x̂bk = 0

UgT
k ygj − VgT

k xgj−VbT
k xbj + uk ≤ 0 ∀ j ∈ J

˜UbT
k ybj − ˜VbT

k xbj ≥ 0 ∀ j ∈ J
Ug
k ,V

g
k ,V

b
k ,

˜Ub
k ,

˜Vb
k ≥ 0anduk free

(12)

This can be linearized, using the well-known Charnes-Cooper transformation; we obtain:

infuk andsup uk
s.t.
UgT
k ygk = 1

UgT
k ygk − ˜UbT

k ybk + uk − VgT
k x̂gk−VbT

k x̂bk+˜V
bT
k x̂bk = 0

UgT
k ygj − VgT

k xgj−VbT
k xbj + uk ≤ 0 ∀ j ∈ J

˜UbT
k ybj − ˜VbT

k xbj ≥ 0 ∀ j ∈ J
Ug
k ,V

g
k ,V

b
k ,

˜Ub
k ,

˜Vb
k ≥ 0 and ukfree

(13)

As mentioned above, optimal uk indicates the RTS situation of DMU k in classical BCC
problems and in eco-efficiency problems as well—regardless of whether the model consists
of one or a combined technology, as demonstrated here. More precisely, we will be informed
whether DMU k operates under increasing (decreasing) RTS if the sign of uk is positive (neg-
ative), and when the optimal value of uk equals zero, we have constant RTS. Still, however,

RTS values ρ−
k = 1 + u−

k

Ug−−T
k ygk

and ρ++
k = 1 + u++

k

Ug++T
k ygk

, with u−
k ,Ug−−

k and u
++
k ,Ug++

k

being the optimal weights of (13) can also be unreasonable from an economic point of view.
We focus mainly on the less restrictive single technology case in the next two sections to
provide the reader with the fundamental concept of unreasonable RTS values and comment
on the pollution-generating case where necessary.

3 RTS-mavericks and scale restrictions: an unresolved issue

As already stated, some RTS values and respective recommendations might be useless from
an operational point of view. Therefore, we recall the following definition, cf. Dellnitz (2016):

Definition 1 A DMU k with abnormally high or low returns to scale is an RTS-maverick.

In this section, we outline the median-based maverick test of Dellnitz (2016) —adapted
to our eco-efficiency context—and show its deficit; next, we remedy this deficiency. First,
from all feasible RTS values in either case—a single technology or pollution-generating
technology, we should select the most cautious numbers for all k ∈ J = {1, ..., J }. In the
single technology case, we have:
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• If DMU k has IRS, then ρk := ρ−
k .• If DMU k has DRS, then ρk := ρ+
k .• Otherwise ρk := 1.

The reason for setting RTS values this way is obvious: This procedure pushes all RTS
values as far as possible in the direction of 1—the CRS direction—but maintains the pre-
determined eco-efficiencies. Thus, it is the most cautious choice from the set of feasible
productivity improvement potentials, which can be realized via up- or downsizing respective
activities.

Second, let ρ = (ρ1, . . . , ρJ ) be the vector of all (cautiously chosen) RTS values. The
median absolute deviation (MAD) then is given by

MAD = mediank(|ρk − median(ρ)|). (14)

We determine the test statistic for all DMUs via

τk = |ρk − median(ρ)|
σ̂

, (15)

where σ̂ = c · MAD is a consistent estimator for the standard deviation of a normally
distributed random variable. c is the reciprocal of the respective quantile value—so-called
consistency constant. With these mathematical considerations in mind, we get.

Definition 2 If (15) is greater than the predefined cut-off value (CV), then DMU k is an
RTS-maverick, i.e., DMU k is an RTS-maverick if

τk = |ρk − median(ρ)|
σ̂

> CV.

This definition can also be used if the random variable ρk does not follow any symmetric
distribution. In such a case, one needs to replace Eq. (8) by another robust estimator, but the
guise of the procedure remains valid; for details on such a robust median-based estimator, see
Rousseeuw and Croux (1993). In Sect. 5, we discuss how to calibrate (15) if ρk follows a half-
normal distribution, which will be a more accurate assumption, as Proposition 4 summarizes.

Proposition 4 The interval of possible RTS values is left-closed and bounded by zero and
right-unbounded, i.e. ρk ∈ [0,∞).

Proof To prove Proposition 4, one has simply to study the boundaries of (3) and (10).

To estimate the efficiency of an RTS-maverick, Dellnitz (2016) proposes a special type
of weight restriction—namely scale restrictions. This correction is based on a modification
of the BCC model if DMU k is an RTS-maverick; for more details on the general concept
of weight restrictions, see Thompson et al. (1986), Dyson et al. (1988), and Podinovski
and Bouzdine-Chameeva (2015). In the context of undesirable outputs, we can also make
use of scale restrictions. Then, scale restrictions—for the single technology case—have the
following form:

UgT
k ygk − UbT

k ybk + uk

UgT
k ygk − UbT

k ybk
≥ ρlb

k and
UgT
k ygk − UbT

k ybk + uk

UgT
k ygk − UbT

k ybk
≤ ρub

k (16)

The procedure for determining and embedding such constraints in Model (2) or Model
(9) comprises five steps and is mainly based on choosing the hyperplane that is closest to
the optimal hyperplane of the DMU k under consideration, cf. Dellnitz (2016). This then
leads either to an efficiency change or leaves it unchanged. However, it is not ensured that the
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new reference hyperplane will be effective; even worse, this new reference could not have
any bearing on the previous optimal solution of the DMU. In such cases, the status of the
RTS-maverick does not change substantially. The following numerical example illustrates
this drawback.

3.1 Numerical example

Consider 9 DMUs with one input and one good each, as indicated in Fig. 1. Solving models
(2), (4), and calculating ρk and τk , we produce the data in Table 1; here, we assumed that ρk

Fig. 1 BCC technology for the numerical example

Table 1 Results for the numerical example

DMU k e f f ∗
k u−

k u+
k ρk τk

DMU 1 1 0.500 1 2.000 2.194

DMU 2 1 0.400 0.400 1.667 1.462

DMU 3 0.500 0.500 0.500 ∞ ∞
DMU 4 1 0 0.250 1 0

DMU 5 1 − 0.800 0 1 0

DMU 6 0.960 − 0.480 − 0.480 0.667 0.731

DMU 7 1 − 0.436 − 0.436 0.693 0.674

DMU 8 1 − ∞ − 0.400 0.714 0.627

DMU 9 0.750 − ∞ − 0.300 0.714 0.627
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Fig. 2 Modified technology (using (16) in Model (2)) for the numerical example

follows a normal distribution, and with the 0.75-quantile value, we have c ≈ 1.4826. If we
suppose a cut-off value of 2, then DMU 1 and DMU 3 are RTS-mavericks due to τ1,τ3 > 2,
see Definition 2.

Now, implementing scale restrictions—as proposed by Dellnitz (2016)—leads to a situ-
ation in which only DMU 3 revises its assessment, see Fig. 2. Meaning, a recalculation of
(15) for k = 1,3, respecting (16) in problem (2), produces the (adjusted) RTS values ρ̃1 = 2
and ρ̃3 = 3 and the related test statistics τ̃1 = 2.194 and τ̃3 = 4.387—what is indicated by
the tilde symbols. Of course, the situation for DMU 3 has slightly improved, but DMU 1 and
DMU 3 are still flagged as RTS-mavericks according to τ̃1,̃τ3 > 2.

Obviously, the procedure only partially mitigates the problem of determining (eco-) effi-
ciencies for RTS-mavericks. That is, when choosing the weights of another hyperplane to
revise the assessment of an RTS-maverick, we do not check again whether the adjusted values
meet the requisite condition of Definition 2.

The example illustrates that the issue of treating RTS-mavericks has not yet completely
disappeared. What happens if undesirable outputs are taken into account? The answer to
this question is rather simple: due to the fact that the consideration of undesirable outputs
widens the feasible region, we can also obtain unreasonable RTS valuations. Consequently,
the situation can get even worse under such circumstances. Furthermore, in the case of a
single technology, the example can easily be reinterpreted because the bads here are formally
treated as inputs. In the next section, we further discuss RTS-mavericks and their treatment.

4 Eco-efficiency estimation of RTS-mavericks

As already shown, the main problem is that when using the modification procedure sketched
in Sect. 3, the adjusted RTS values will not be verified again. A possible path to cure this
deficit could be an iterative process, where a do-while loop will run through the weight space
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until it finds a suitable hyperplane; however, this is very expensive from a computational
point of view.

Therefore, this section proposes a new optimization model for the single technology case,
which includes the statistical verification step—one linear program for each RTS-maverick
instead of an iterative algorithm for seeking reasonableweights. Before doing so, we suppose.

Proposition 5 The median RTS value cannot be flagged as an outlier.

Proof We have to calculate the test statistic (15) with ρk := median(ρ) and σ̂ > 0, to verify
whether the median RTS value is an outlier, i.e.

τk = |ρk − median(ρ)|
σ̂

= |median(ρ) − median(ρ)|
σ̂

= 0

Consequently, the numerator in the above fraction vanishes. The proof then follows imme-
diately from Definition 2 because for all CV ≥ 0 we also have CV ≥ τ k . �

In our numerical example, there are two DMUs that confirm this statement; refer to DMU
4 and DMU 5 in Table 1. Keeping this in mind, we now present the new optimization Model
(17), using a single technology concept:

maxeff k = UgT
k ygk − UbT

k ybk + uk
s.t.
VT
k xk = 1

UgT
k ygj − UbT

k ybj + uk − VT
k x j ≤ 0 ∀ j ∈ J

|ρk−median(ρ)|
σ̂

≤ CV
Ug
k ,U

b
k ,Vk ≥ 0 and ukfree

(17)

Applying (17), we search—from a statistical point of view—for a modified eco-efficiency
score that directlymeets our test statistic and, hence, provides amore realistic RTS evaluation.

However, problem (17) is non-linear due to ρk = UgT
k ygk−UbT

k ybk+uk

UgT
k ygk−UbT

k ybk
and the absolute value

function in the numerator of the fraction on the left-hand side. Therefore, multiplying the
third group of restrictions by σ̂ and reformulating the absolute value function, we get

maxeff k = UgT
k ygk − UbT

k ybk + uk
s.t.
VT
k xk = 1

UgT
k ygj − UbT

k ybj + uk − VT
k x j ≤ 0 ∀ j ∈ J

ρk = UgT
k ygk−UbT

k ybk+uk

UgT
k ygk−UbT

k ybk
≤ CV · σ̂ + median(ρ)

−ρk = −UgT
k ygk−UbT

k ybk+uk

UgT
k ygk−UbT

k ybk
≤ CV · σ̂ − median(ρ)

Ug
k ,U

b
k ,Vk ≥ 0 and ukfree

(18)
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Now, multiplying both new inequalities by UgT
k ygk − UbT

k ybk , we obtain the linear opti-
mization problem (19).

maxeff k = UgT
k ygk − UbT

k ybk + uk
s.t.
VT
k xk = 1

UgT
k ygj − UbT

k ybj + uk − VT
k x j ≤ 0 ∀ j ∈ J

uk +
(

−UgT
k ygk + UbT

k ybk
)

· [−1 + CV · σ̂ + median(ρ)] ≤ 0

−uk +
(

−UgT
k ygk + UbT

k ybk
)

· [1 + CV · σ̂ − median(ρ)] ≤ 0

Ug
k ,U

b
k ,Vk ≥ 0 and ukfree

(19)

Proposition 6 Problem (19) is always feasible.

Proof Trivial. Obviously, Model (19) is more constrained than Model (2), but even more:

Proposition 7 Let L be the index set of RTS-mavericks. Then, problem (19) leads to modified
eco-efficiency scores e f f mod∗

k < e f f ∗
k∀k ∈ L, with e f f mod∗

k ande f f ∗
k being the optimal

eco-efficiencies of models (19) and (2).

Proof Consider a DMU k ∈ L—namely an RTS-maverick. Solving Model (2) for DMU k
results in the eco-efficiency e f f ∗

k . Then, applying (4) yields the interval. More precisely:
maintaining eco-efficiency e f f ∗

k means to select optimal weightsUg∗
k ,Ub∗

k ,V∗
k , u

∗
k such that

the fraction ρk complies with the aforementioned interval

[

e f f ∗
k

e f f ∗
k−u−

k
,

e f f ∗
k

e f f ∗
k−u+

k

]

. Assuming

now ∃ρk ∈
[

e f f ∗
k

e f f ∗
k−u−

k
,

e f f ∗
k

e f f ∗
k−u+

k

]

that fulfills |ρk−median(ρ)|
σ̂

≤ CV leads to a contradiction

because then DMU k would not be regarded as an RTS-maverick. Hence, at least one of the
new inequalities must be effective and, as a consequence, e f f mod∗

k < e f f ∗
k∀k ∈ L. �

The linear optimization problem (19) pushes the eco-efficiency evaluation as much as
possible without jeopardizing the statistical quality of DMU k’s RTS evaluation. It is also
noteworthy that

Proposition 8 The modified eco-efficiency e f f mod∗
k is driven by the median RTS value, and

the respective eco-efficiency is never smaller than zero.

Proof Eq. (19) shows that in a worst-case scenario, the DMU’s efficiency equals zero. To
prove this, just choose Ug

k = 0,Ub
k = 0, uk = 0 and Vk such that VT

k xk = 1 . �

The complete procedure to determine the eco-efficiencies of RTS-mavericks is as follows:
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We study the numerical example once again to show the gist of the new method.

4.1 Numerical example (continued)

Running the entire procedure, with CV = 2 and σ̂ ≈ 0.45586, one finally obtains the
modified efficiencies for DMU 1 and DMU 3 as desired: they adjusted their assessments
from e f f ∗

1 = 1 and e f f ∗
3 = 0.5 to e f f mod∗

1 ≈ 0.9774 and e f f mod∗
3 ≈ 0.2766. The RTS

values have also been revised: from ρ1 = 2 to ρ̃1 ≈ 1.912 and ρ3 = ∞ also to ρ̃3 ≈ 1.912.
Now, both DMUs are no longer regarded as RTS-mavericks. In Fig. 3, the dashed lines reflect
the classical BCC technology. However, the new projection point for DMU 3 is indicated
by the circle and the horizontal dashed line; the solid line is the corresponding supporting
hyperplane that constitutes this revised evaluation.

Figure 3 shows the solution for only one DMU using the new Model (19). One question
is how technology, as a whole, changes with the new constraints. However, to obtain the
exact shape of the technology, one would need to determine an infinite number of points
on the boundary; however, to get at least an idea of its shape, we create some inefficient
points and approximate the technology surface by determining the boundary points of the
inefficient points, resulting in Fig. 4.More precisely, to get a better impression of the structural
impact on the lower part of the technology when applying the new approach, we calculate

the projection points of 299 virtual activities
(

x
′
l , y

g′
l

)

, with l = 1, . . . , 299. The virtual

activities—to approximate the new technology—are generated by downsizing the output of

DMU 4 via yg
′

l := yg
′

l−1 − 0.01∀l > 0 and yg
′

0 := yg
′

4 ; the inputs x
′
l∀l remain constant at

2. Then, we solve Model (19) for all virtual activities
(

x
′
l , y

g′
l

)

. After projecting them onto
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Fig. 3 New supporting hyperplane and projection point for DMU 3 using Model (19) and CV = 2

Fig. 4 Approximation of the new (non-convex) technology using Model (19) and CV = 2
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the median-driven boundary, we get an approximation of the new technology. The following
figure shows this approximation. Most interestingly, solving problem (19) for all virtual
activities here leads to a non-convex technology in this very special case. The reason for
this is clear: the new statistically motivated constraints are considered individually for each
RTS-maverick. These constraints are not applied when evaluating the remaining DMUs.

Proposition 9 A rigid interpretation of being an outlier, e.g., using CV = 0 in Model (19),
allows for a more strict alignment of the RTS values. The new eco-efficiency can then be
determined viaModel (20), and this eco-efficiency is also never smaller than zero.

maxeff k = UgT
k ygk − UbT

k ybk + uk
s.t.
VT
k xk = 1

UgT
k ygj − UbT

k ybj + uk − VT
k x j ≤ 0 ∀ j ∈ J

uk +
(

−UgT
k ygk + UbT

k ybk
)

• [−1 + median(ρ)] ≤ 0

−uk +
(

−UgT
k ygk + UbT

k ybk
)

• [1 − median(ρ)] ≤ 0

Ug
k ,U

b
k ,Vk ≥ 0 and ukfree

(20)

Proof Trivial. Numerical example (continued)
Again, we consider the already known 9 DMUs. Now, applying (20) to determine the

worst-case efficiency—in this particular case—yields CCR solutions for DMU 1 and 3. This
means Model (20) leads to a combination of a BCC and a CCR technology, as shown in
Fig. 5. In this figure, the (dotted) horizontal line marks the cut-off point where activities are
no longer regarded as RTS-mavericks if CV = 0.

Fig. 5 Combination of BCC and CCR using Model (20)
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Again, the reasoning does not change when embedding a bad because it is treated as an
input in the single technology case. However, what happens if we consider the pollution-
generating case? We can modify the pollution-generating optimization problem given in
Sect. 2.3 to cope with RTS-mavericks, starting with the same general constraints on RTS as
presented in (17). The respective linear model, statements, and the modified algorithm are
provided in Appendix 1. At first glance, both models—single vs. pollution-generating tech-
nology—appear similar. However, they can lead to fundamentally different eco-efficiencies
because of the interplay of goods, bads, and the corresponding weights. Still, the non-
convexity problem can also be present in the pollution-generating technology case, of course;
this is due to the median-based constraints.

In conclusion, other outlier tests can, of course, be applied, such as the super-efficiency
method of Banker and Chang (2006), to the case of eco-efficiency in general or in conjunction
with our method.

In the next section, we check whether RTS-mavericks are only a theoretical concept or can
be observed empirically.Accordingly,we comment on the results of both different technology
concepts developed so far.

5 RTS-Mavericks in the E.U.: black swans, only?

In recent decades, efficiency and productivity improvements—due to automation—have
driven considerable growth in agricultural production. However, there are large differences
in efficiency and productivity growth between countries or regions. Developed countries
increasingly substitute labor with capital in the agricultural production processes; develop-
ing countries are also making also progress in automation and mechanization, but there is
still a significant productivity gap between developed and developing countries, and there
is evidence that the substitution of labor by capital has a positive impact on environmental
sustainability, see, e.g., Grzelak et al. (2019). For this reason, we focus on the member states
of the E.U. to ensure the comparability of all DMUs regarding technical and environmental
conditions.

The current green movement forces firms to practice sustainability; this is also true in
agriculture. The food and agriculture industry is expected to provide healthy and nutritious
food for an evolving society, while at the same time, this sector must also use resources more
sustainably to preserve, e.g., soil and groundwater. Consequently, determining agriculture
(eco-)efficiency is one of the most important application fields in DEA, see Emrouznejad and
Yang (2018). When applying any quantitative method to calculate economic and ecological
performance, one has to select the measures carefully. In the agriculture industry, Gancone
et al. (2017) provide a table on page 310 in which the most prominent indicators are summa-
rized. Based on this table, we apply the following measures to calculate the eco-efficiencies
of the member states of the E.U. The inputs are.

• the total agricultural land area [hectares, thousands] (input 1)
• the total sales of agricultural pesticides [tonnes] (input 2)
• total energy consumption [tonnes of oil equivalent, thousands] (input 3, which will be
related to the undesirable output)

• employees [persons, thousands] (input 4)
• the gross fixed capital formation in agriculture [EUR, millions] (input 5)
• the desirable output is
• the gross value added in agriculture [USD, millions] (desirable output)
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• and the undesirable output is
• the total greenhouse gas emissions in agriculture [tonnes of CO2 equivalent, thousands]
(undesirable output).

We use the OECD data (see https://stats.oecd.org/) and Eurostat (https://ec.europa.eu/
eurostat) ranging from 2011 to 2017. For 23 member states, respective data are available.
However, Italy did not report the land area in 2017, and Poland did not report its public
investments in agricultural research and development (R&D) in 2011. We use the mean from
2011 to 2016 and 2012 to 2017 in both cases because the land area varies slightly over
the years. This is also true with R&D investment. The following table summarizes some
statistical numbers. For all calculations, we have used MATLAB; here, linear optimization
problems can be handled flexibly with the linprog function. This was necessary because
pollution-generating technologies are not included in standard DEA packages—such as the
R-based packages “deaR” or “Benchmarking” (Table 2).

The next Table 3 shows the corresponding linear correlations of inputs and outputs.
Typically, when studying (eco-)efficiencies in the panel data context, there are different

ways to model respective time-related production possibility sets or technologies. Here,
we assume that the overall technology T results from the union of the technologies of the
(seven) individual periods – i.e., T = ⋃7

t=1Tt . To underpin this assumption, we perform
the CUSUM tests for each input and output, respectively, to detect possible shifts in the data

Table 2 Input and output statistics

Min. Max. Mean Median Std. dev.

Input 1 131.00 29,115.00 6883.02 3032.00 7867.68

Input 2 2837.45 226,981.38 47,495.07 25,113.88 56,486.78

Input 3 68.69 78,818.31 15,869.18 4706.65 22,479.28

Input 4 2.40 513.10 113.04 49.90 127.36

Input 5 82.15 12,250.03 2369.45 1042.81 3017.48

Desirable output 90.09 33,026.46 7008.94 2596.16 9334.80

Undesirable output 648.98 77,407.42 17,503.47 7846.02 20,295.15

Table 3 Linear correlation coefficients

Input 1 Input 2 Input 3 Input 4 Input 5 Desirable
output

Undesirable
output

Input 1 1.000 0.856 0.814 0.957 0.873 0.832 0.914

Input 2 0.856 1.000 0.807 0.902 0.786 0.916 0.836

Input 3 0.814 0.807 1.000 0.784 0.925 0.935 0.736

Input 4 0.957 0.902 0.784 1.000 0.808 0.830 0.942

Input 5 0.873 0.786 0.925 0.808 1.000 0.918 0.698

Desirable
output

0.832 0.916 0.935 0.830 0.918 1.000 0.728

Undesirable
output

0.914 0.836 0.736 0.942 0.698 0.728 1.000
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Fig. 6 CUSUM plot for Input 2 (2013 vs. 2014)

means, comparing iteratively two consecutive periods (see Barnard, 1959). Consequently, we
obtain a six-by-six binary decision matrix, where zero represents stability, and one indicates
instability between the means of two periods of an input/output. The test results indicate that
the data means are pretty stable over time; only the test for 2013 and 2014 of the second
input (the pesticide sales) indicates instability. However, by checking the CUSUM plot (cf.
Figure 6), one can see that the sequence of CUSUMs leaves the critical lines at one point
and goes only slightly beyond the upper critical line. Summing up, there is no evidence to
suggest any significant technological shift.

After conducting a pre-analysis and brief evaluation of data, Table 4 shows the period-
specific maverick flags for the 23 DMUs, applying the single technology-based DEA as
proposed in Algorithm 1. For determining the flags and, thus, calculating the eco-efficiencies
prudently, have chosen CV = 3; for the moment, we suppose that RTS values are normally
distributed.

To demonstrate the impact of the neweco-efficiency optimization problem (19),we present
a stem plot of the means of the eco-efficiencies before and after adjusting for RTS-mavericks
(Fig. 7):

Obviously, all member states are flagged as RTS-mavericks in some periods (see Table 4)
and, hence, eco-efficiencies decrease when applying the new method, cf. again Proposition
7. This means that all DMUs apply somewhat inappropriate RTS values when focusing on
eco-efficiency maximization only.

Interestingly, the above figure indicates that the eco-efficiency adjustments regardingAus-
tria, Denmark, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, etc. are very
small. Table 5 summarizes the respective mean numbers for the 23 E.U. member states. All
columns display average numbers over the seven periods, i.e., the mean eco-efficiencies and
RTS values determined by each Model (mentioned in the header) per year.

Despite the fact that all states have altered their eco-efficiency means—as a consequence
of bounding the RTS numbers; surprisingly, the RTS situations of many countries have

123



680 Annals of Operations Research (2023) 322:661–690

Table 4 Maverick flags applying CV = 3

DMU 2011 2012 2013 2014 2015 2016 2017 Sum

Austria (AT) 0 1 1 0 0 0 0 2

Belgium (BE) 0 0 0 0 0 0 1 1

Czech Republic (CZ) 0 0 0 1 1 0 0 2

Denmark (DK) 0 1 1 0 0 0 0 2

Estonia (EE) 0 0 0 1 0 1 0 2

Finland (FI) 0 1 1 0 1 1 0 4

France (FR) 0 1 0 1 1 1 0 4

Germany (DE) 0 1 0 0 1 1 0 3

Greece (GR) 0 1 0 0 1 1 0 3

Hungary (HU) 0 1 0 0 1 1 0 3

Ireland (IE) 0 1 0 0 1 1 0 3

Italy (IT) 0 1 0 0 1 1 0 3

Latvia (LV) 0 1 1 0 0 0 0 2

Lithuania (LT) 0 1 0 0 0 1 0 2

Luxembourg (LU) 0 1 0 0 0 1 0 2

Netherlands (NL) 0 1 0 0 0 1 0 2

Poland (PL) 0 0 0 0 0 0 0 0

Portugal (PT) 0 0 0 0 0 0 0 0

Slovak Republic (SK) 0 0 0 0 0 0 1 1

Slovenia (SI) 0 0 0 1 0 0 0 1

Spain (ES) 0 1 0 0 0 0 1 2

Sweden (SE) 1 0 0 0 0 1 0 2

United Kingdom (GB) 0 0 0 0 0 0 1 1

Fig. 7 Eco-efficiencies for the E.U
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Table 5 Single technology results for the E.U. member states (Algorithm 1)

DMU Mean for
Dellnitz
(2016) using
problem (2)

Eco-efficiencies RTS values

Mean old
Model (2)

Mean new
Model (19)

Mean old Mean new

Austria (AT) 0.812 0.856 0.855 1.014 1.031

Belgium (BE) 0.761 0.823 0.773 1.276 1.032

Czech Republic
(CZ)

0.739 0.801 0.761 1.210 1.055

Denmark (DK) 0.756 0.779 0.774 0.995 1.003

Estonia (EE) 0.699 0.734 0.720 1.128 1.073

Finland (FI) 0.650 0.797 0.701 1.385 1.075

France (FR) 0.631 0.831 0.673 2.545 1.128

Germany (DE) 0.643 0.817 0.678 2.566 1.096

Greece (GR) 0.716 0.853 0.749 2.142 1.074

Hungary (HU) 0.674 0.799 0.705 1.528 1.091

Ireland (IE) 0.657 0.838 0.688 940,568.369 1.104

Italy (IT) 0.695 0.852 0.728 1.750 1.088

Latvia (LV) 0.778 0.784 0.784 1.067 1.059

Lithuania (LT) 0.719 0.768 0.738 1.139 1.072

Luxembourg (LU) 0.675 0.731 0.697 1.129 1.067

Netherlands (NL) 0.608 0.656 0.625 1.175 1.064

Poland (PL) 0.693 0.693 0.693 1.041 1.041

Portugal (PT) 0.642 0.642 0.642 1.045 1.045

Slovak Republic
(SK)

0.651 0.664 0.661 1.016 1.025

Slovenia (SI) 0.691 0.763 0.700 1.312 1.042

Spain (ES) 0.716 0.760 0.759 0.967 0.982

Sweden (SE) 0.734 0.809 0.760 1.272 1.046

United Kingdom
(GB)

0.852 0.880 0.872 0.990 0.997

substantially changed. Thismeans that before using the newmethod, the agriculture industries
of the countries are expected to operate under IRS, and afterward, they are supposed to have
nearly CRS. The most significant change in the RTS assessment has happened to Ireland,
Ireland’s initial estimate amounting to more than 940,568%. This, of course, might be an
inappropriate estimate for its relative gain when only increasing the inputs by 1%. The
modifications induced by the new model are in line with the empirical findings of recent
studies; cf. Kloss (2017). Here, regression analyses indicate that agricultural activities in the
E.U. oscillate closely around CRS.

The countries might overestimate their potential for growth, e.g., Ireland is an example
with a big RTS value, to maximize the eco-efficiencies. These results indicate that some
eco-efficiencies should be punished for ineffective agriculture management. Comparing the
new method with the old procedure of Dellnitz (2016), one can see that the old procedure
almost always leads to lower efficiency scores than the new method. In our application, the
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oldmethod is not in line with the statistical concept and hence is too restrictive; consequently,
the old method distorts the valuation of all European countries. It is also noteworthy that both
methods push RTS in the CRS direction; consequently, they can counteract misspecifications
concerning the underlying production possibility set or technology. Such misspecifications
can be further substantiated via other techniques, e.g., Banker (1996) or Alirezaee (2018). As
a consequence, applying a technology à la Charnes et al. (1978) forcing uk to zero (uk := 0)
in problem (2) also seems a good choice when studying eco-efficiencies on country-level
data via a single technology.

In contrast to that, we obtain recommendations that differ significantly from the single
technology case when using a pollution-generating technology; cf. Appendix 2 and the corre-
sponding optimization problem (1A). Here, one can observe that all countries face decreasing
returns to scale, which might also be a realistic picture because of the size of respective agri-
culture activities; the number of farms in the E.U. declines annually while the average farm
size expands (Neuenfeldt et al., 2019). Table 6 shows Spearman’s correlation coefficients
concerning the efficiency mean-based ranks. The highest correlation between Model (19)
and Dellnitz’s method is found. This is unsurprising since Dellnitz’s method can be seen
as an approximation to the statistically-based Model (19). More surprising, however, is the
slightly weaker correlation between the rankings of Model (19) and Model (1A) as a result
of the mixing of two technologies.

However, the RTS numbers regarding the pollution-generating technology are not in line
with the above empirical findings on regression-based scale elasticities; hence, we prefer the
single technology case.

In the next step, we check to what extent the assumption of normally distributed RTS
values distorts the results. Now, we calibrate σ̂ = c • MAD from Eq. (15) by fitting a
half-normal distribution based on the new RTS values displayed in Table 6 and Appendix 2.
Accordingly, we use 46 RTS estimates to fit the distribution. Applying such values, we obtain
σ̂ ≈ 0.8072 and ĉ ≈ 2.6771; this, in turn, leads to a parameter update in the optimization
problems (19) and (1A). Obviously, the consistency constant is bigger than that of a classical
normal distribution; i.e., the parameter update leads to less restrictive models and hence to
higher eco-efficiencies in general, see Table 7 (below) and Table 8 (Appendix 2).

Interestingly, Table 7 shows slightly different numbers between the normal and the half-
normal case; still, most DMUs operate under (marginal) IRS. Sweden and Lithuania, for
example, should increase their activities to benefit from such scalings. The arable land in
Sweden covers approximately 7.4% of the total land area, and in Lithuania, it covers about
47.1% of the total land area. Since 1999, both countries have decreased their arable land, but
politicians might rethink their design of incentive schemes.

Table 6 Spearman’s rank correlation coefficients

Dellnitz (2016) using
problem (2)

Old model (2) New model
(19)

New model
(1A)

Dellnitz (2016) using
problem (2)

1 0.421 0.961 0.813

Old Model (2) 0.421 1 0.523 0.610

New Model (19) 0.961 0.523 1 0.812

New Model (1A) 0.813 0.610 0.812 1
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Table 7 Normal vs. half-normal distribution-based estimates

DMU Eco-efficiencies RTS values

Mean (normal,
Model (19))

Mean
(half-normal, Model
(19))

Mean
(normal)

Mean
(half-normal)

Austria (AT) 0.855 0.856 1.031 1.014

Belgium (BE) 0.773 0.783 1.032 1.056

Czech Republic (CZ) 0.761 0.774 1.055 1.103

Denmark (DK) 0.774 0.779 1.003 0.995

Estonia (EE) 0.720 0.728 1.073 1.102

Finland (FI) 0.701 0.725 1.075 1.124

France (FR) 0.673 0.696 1.128 1.204

Germany (DE) 0.678 0.696 1.096 1.149

Greece (GR) 0.749 0.762 1.074 1.129

Hungary (HU) 0.705 0.718 1.091 1.149

Ireland (IE) 0.688 0.704 1.104 1.159

Italy (IT) 0.728 0.753 1.088 1.159

Latvia (LV) 0.784 0.784 1.059 1.067

Lithuania (LT) 0.738 0.751 1.072 1.101

Luxembourg (LU) 0.697 0.711 1.067 1.093

Netherlands (NL) 0.625 0.635 1.064 1.095

Poland (PL) 0.693 0.693 1.041 1.041

Portugal (PT) 0.642 0.642 1.045 1.045

Slovak Republic (SK) 0.661 0.664 1.025 1.016

Slovenia (SI) 0.700 0.706 1.042 1.066

Spain (ES) 0.759 0.760 0.982 0.967

Sweden (SE) 0.760 0.771 1.046 1.072

United Kingdom (GB) 0.872 0.880 0.997 0.990

It should be noted that the classification and the eco-efficiency estimate of a DMU depend
on the cut-off value CV. In order to study the impact, we additionally calculate the half-
normal distribution-based eco-efficiency means for CV = 0, 1, 2; Fig. 8 shows the results.
Interestingly, the eco-efficiencies are relatively stable when choosing CV = 1,2,3. However,
applying a CV = 0 leads to a big drop in all eco-efficiencies; using this rigid bound, we
obtain the results of a classical CCR model, as illustrated in Fig. 5.

In statistics, one often applies CV = 2 or CV = 3 to cover most (more than 95%) of the
probabilitymass under the respective probability distribution. In our case, both numbers seem
to be a good and prudent choice to determine eco-efficiencies due to the small differences.

Generally speaking, the application immediately demonstrates that detecting RTS-
mavericks is, unfortunately, not a rare event. This is due to the nature of efficiency
maximization in DEA; here, the optimization proceeds uncontrolled regarding RTS and can
lead to unrealistic scaling numbers. In DEA, efficiencies and RTS values are unobservable,
but values far from mean or median might be suspicious. Therefore, we developed a new
approach to evaluate the DMUs more carefully.
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Fig. 8 Eco-efficiencies under varying CV

Eventually, the proposed approach might be a suitable instrument for revealing and han-
dling such deficient situations and hence may allow for more reasonable recommendations
to politicians, businesses, and society.

6 Conclusions

We prove that returns to scale can be determined if undesirable factors are considered in a
single technology case and a pollution-generating technology—which is a combination of
two technologies. However, sometimes respective numbers can be unreasonable and, hence,
must be revised. In DEA, such cases are called RTS-mavericks; and there is a way to treat
them, refer to Dellnitz (2016). In the original median-based procedure, however, the RTS
values of the DMUs are only checked once, i.e., the adjusted RTS values are not de novo
reviewed and again revised, if necessary.

Therefore, we develop a novel approach embedding the calculation of median-driven test
statistics in the respective optimization problems. This allows for determining more realistic
returns to scale and eco-efficiencies simultaneously. Furthermore, we show that this new
approach can lead to non-convex technologieswhich are compatiblewith the property ofweak
disposability, see, e.g., Podinovski and Kuosmanen (2011). One direction for further research
here might be: how can we embed virtual activities consistent with weak disposability and
independent from the dataset to facilitate technology generation? Dellnitz and Rödder (2021)
have shown that the classical RTS concept is subject to non-monotonic behavior on the
boundary of technology: can embedding virtual activities fix this problem. This could also
be a worthwhile focus for future research.

Finally, the practicability of the procedure is demonstrated by an empirical analysis of 23
European countries. Here, we consider five inputs: total agricultural land area, the total sales
of agricultural pesticides, total energy consumption (which will be related to the undesirable
output in the pollution-generating case), employees, and gross fixed capital formation in
agriculture; the gross value added in agriculture as desirable output and the total greenhouse
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gas emissions in agriculture as the undesirable output. The results indicate that most agri-
cultural activities of the 23 European countries are eco-inefficient and should rethink their
agricultural activities.
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Appendix 1

For the case of a pollution-generating technology, we immediately show the linearizedModel
(1A) because the linearization follows the same logic as in the single technology case.

maxeff k = UgT
k ygk − ˜UbT

k ybk + uk
s.t.

VgT
k xgk+VbT

k xbk−˜V
bT
k xbk = 1

UgT
k ygj − VgT

k xgj−VbT
k xbj + uk ≤ 0 ∀ j ∈ J

˜UbT
k ybj − ˜VbT

k xbj ≥ 0 ∀ j ∈ J
uk +

(

−UgT
k ygk

)

· [−1 + CV · σ̂ + median(ρ)] ≤ 0

−uk +
(

−UgT
k ygk

)

· [1 + CV · σ̂ − median(ρ)] ≤ 0

Ug
k ,V

g
k ,V

b
k ,

˜Ub
k ,

˜Vb
k ≥ 0 and ukfree

(21)

Proposition 10 Again, let L be the index set of RTS-mavericks. Then, problem (1A) leads
to modified eco-efficiency scores e f f mod∗∗

k < e f f ∗∗
k ∀k ∈ L, with e f f mod∗∗

k ande f f ∗∗
k being

the optimal eco-efficiencies of models (1A) and (9).

Proof To prove this proposition, one can use the same reasoning as in Proposition 7. �
For the sake of completeness, we give Algorithm 2, which can be used in the case of a

pollution-generating technology.
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Appendix 2

See Tables 8 and 9

Table 8 Pollution-generating technology results for the E.U. member states (Algorithm 2)

DMU Eco-efficiencies RTS values

Mean old Model (9) Mean new Model (1A) Mean old Mean new

Austria (AT) 0.849 0.822 0.299 0.339

Belgium (BE) 0.823 0.780 1.019 0.326

Czech Republic (CZ) 0.801 0.747 0.911 0.459

Denmark (DK) 0.779 0.713 1.177 0.460

Estonia (EE) 0.732 0.704 0.545 0.335

Finland (FI) 0.794 0.656 1.093 0.468

France (FR) 0.828 0.686 27.206 0.472

Germany (DE) 0.817 0.695 21.591 0.469

Greece (GR) 0.849 0.738 106.755 0.602

Hungary (HU) 0.797 0.582 0.875 0.597

Ireland (IE) 0.836 0.612 245.814 0.496

Italy (IT) 0.845 0.756 0.348 0.348
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Table 8 (continued)

DMU Eco-efficiencies RTS values

Mean old Model (9) Mean new Model (1A) Mean old Mean new

Latvia (LV) 0.777 0.712 1.723 0.344

Lithuania (LT) 0.755 0.725 0.311 0.344

Luxembourg (LU) 0.719 0.694 1.650 0.357

Netherlands (NL) 0.646 0.526 20.614 0.441

Poland (PL) 0.691 0.652 0.327 0.349

Portugal (PT) 0.624 0.504 22.966 0.450

Slovak Republic (SK) 0.657 0.635 0.307 0.305

Slovenia (SI) 0.757 0.742 0.482 0.407

Spain (ES) 0.752 0.716 0.440 0.454

Sweden (SE) 0.803 0.756 1.158 0.461

United Kingdom (GB) 0.876 0.832 0.469 0.475

Table 9 Normal vs. half-normal distribution-based estimates

DMU Mean eco-efficiencies Mean RTS values

Normal—Model (1A) Half-Normal—Model (1A) Normal Half-Normal

Austria (AT) 0.822 0.849 0.339 0.299

Belgium (BE) 0.780 0.822 0.326 0.275

Czech Republic
(CZ)

0.747 0.797 0.459 0.426

Denmark (DK) 0.713 0.776 0.460 0.680

Estonia (EE) 0.704 0.730 0.335 0.545

Finland (FI) 0.656 0.706 0.468 0.468

France (FR) 0.686 0.725 0.472 0.472

Germany (DE) 0.695 0.727 0.469 0.469

Greece (GR) 0.738 0.794 0.602 0.602

Hungary (HU) 0.582 0.657 0.597 0.875

Ireland (IE) 0.612 0.650 0.496 0.496

Italy (IT) 0.756 0.802 0.348 0.348

Latvia (LV) 0.712 0.764 0.344 0.344

Lithuania (LT) 0.725 0.753 0.344 0.311

Luxembourg
(LU)

0.694 0.712 0.357 0.357

Netherlands (NL) 0.526 0.558 0.441 0.441

Poland (PL) 0.652 0.686 0.349 0.320

Portugal (PT) 0.504 0.537 0.450 0.450

Slovak Republic
(SK)

0.635 0.654 0.305 0.285
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Table 9 (continued)

DMU Mean eco-efficiencies Mean RTS values

Normal—Model (1A) Half-Normal—Model (1A) Normal Half-Normal

Slovenia (SI) 0.742 0.756 0.407 0.450

Spain (ES) 0.716 0.752 0.454 0.414

Sweden (SE) 0.756 0.802 0.461 0.374

United Kingdom
(GB)

0.832 0.876 0.475 0.469
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