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a b s t r a c t 

Measuring environmental efficiency, or eco-efficiency, has become increasingly critical as regulatory frameworks 

tighten in developed countries, requiring companies to mitigate climate change actively. Data Envelopment Anal- 

ysis (DEA) is a widely used, non-parametric method for assessing eco-efficiency in comparable decision-making 

units (DMUs). Traditionally, DEA has relied on single-technology models, which are effective for macro-level anal- 

yses but present challenges in micro-level studies involving pollutants due to incompatibility with the material 

balance principle. This study applies an established DEA approach based on pollution-generating technologies to 

evaluate the eco-efficiency of 25 food retailers, incorporating both operational and environmental performance. 

For the first time in a DEA-based application, we link eco-efficiency scores with temperature alignment scores. 

This emerging sustainability metric assesses a company’s compatibility with the Paris Agreement’s 1.5 °C target. 

Our findings reveal that focusing solely on emission reduction based on DEA recommendations does not nec- 

essarily ensure alignment with global climate goals, underscoring the importance of an integrated assessment 

approach. Moreover, pure benchmarking based on empirical observations is insufficient; assessing sustainability 

improvements requires concrete measures, such as upgrading refrigeration systems or implementing energy- 

efficient technologies. This study provides practical insights for corporate decision-makers and policymakers, 

supporting more comprehensive, sustainability-driven management actions in the retail sector. 
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. Introduction 

.1. Motivation and structure of the work 

The global food supply chain comprises multiple stages, ranging from

aw material production (e.g., cereals, sugar beets, potatoes, oilseeds,

ilk, meat, eggs, vegetables, and fruits) to food processing, distribu-

ion, and final consumption. These processes contribute significantly to

reenhouse gas (GHG) emissions, making the food sector a critical focus

or climate mitigation efforts. Food systems are estimated to account

or 23 % to 42 % of total global emissions, with this range reflecting

he 95 % confidence interval of emission estimates [ 46 ]. Variability in

lobal emission contributions also arises from uncertainties in emission

ata, including those related to land use change, agricultural inputs, pro-

essing, transportation, and retail operations. Despite these uncertain-
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ies, it is widely recognized that farm production and land use change

ontribute the largest share of food system emissions, while process-

ng, transportation, and retail further add to the overall environmental

erformance [ 46 ]. As pressure to decarbonize food systems increases,

mproving the eco-efficiency of all actors in the food supply chain, par-

icularly within the retail sector, is crucial for achieving sustainability

nd climate targets. 

Although the food retail sector plays a crucial role in shaping both

pstream production and downstream consumption patterns, its envi-

onmental efficiency remains largely underexplored. Prior research has

redominantly focused on supply-side mitigation strategies, such as re-

ucing agricultural emissions, optimizing fertilizer use, and minimizing

ood waste [ 3 ]. However, limited attention has been given to assess-

ng the eco-efficiency of food retailers themselves, particularly through

uantitative, non-parametric methods. Given that retailers serve as key
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ntermediaries, influencing both agricultural supply chains and con-

umer behavior, understanding their eco-efficiency is essential for de-

eloping holistic sustainability strategies. 

Furthermore, conventional efficiency benchmarking approaches pre-

ominantly emphasize emission reductions, yet mitigating emissions

lone does not necessarily ensure alignment with global climate objec-

ives. To address these gaps, this study links eco-efficiency scores with

emperature alignment scores. This emerging sustainability metric eval-

ates whether a company’s climate performance aligns with the Paris

greement’s 1.5 °C target. Adopted in 2015, the Paris Agreement is a

egally binding international treaty under the United Nations Frame-

ork Convention on Climate Change (UNFCCC), aimed at mitigating

limate change by significantly reducing greenhouse gas emissions and

chieving global net-zero emissions by 2050. The 1.5 °C threshold is

articularly critical, as scientific research [ 12 , 13 , 50 ] highlights that ex-

eeding this limit could result in severe climate-related consequences,

ncluding extreme weather events, rising sea levels, and biodiversity

oss. 

This study bridges the existing research gap by applying a DEA-based

pproach to pollution-generating technology in food retail, ensuring

hat efficiency improvements contribute to broader climate action goals.

o further explore these issues, this study seeks to answer the following

esearch questions: 

1. How can the environmental efficiency of food retailers be quanti-

tatively assessed, incorporating both direct (Scope 1) and indirect

(Scope 2) emissions? 

2. What are the primary determinants of eco-efficiency in food retail,

and how do they vary across different retail formats? 

3. How does eco-efficiency in food retail relate to sustainability perfor-

mance metrics, such as temperature alignment scores, which assess

alignment with the Paris Agreement’s 1.5 °C target? 

To answer these questions, we determine the eco-efficiency of super-

arkets or grocery stores, focusing on direct and indirect CO2 emissions

so-called Scope 1 and Scope 2 emissions) arising from the operation of

he buildings; for a recent study on embodied greenhouse gas emissions

n buildings, see Rankin et al. [ 49 ] and the references therein. Our find-

ngs offer practical implications for corporate decision-makers and poli-

ymakers, supporting more targeted sustainability management actions

n the retail sector. 

The remainder of this paper is organized as follows: To frame this

ssue better, we provide an overview of related work in Section 1.2 .

ection 2.1 presents preliminaries on classical DEA; Section 2.2 dis-

usses the established approach of pollution-generating technologies

nd its adaptation to the specific context of food retail efficiency

ssessment. Section 3 addresses eco-efficiency in food retailing and

resents our findings on eco-efficiency. Section 4.1 relates the re-

ults from Section 3 —pinpointing corresponding managerial implica-

ions —to the ever more important subject of temperature alignment.

ection 4.2 discusses the managerial implications in light of the avail-

ble measures, while Section 4.3 outlines the limitations of this study.

inally, Section 5 concludes this work. 

.2. Related work 

There is a large body of research connecting eco-efficiency analysis

ith Data Envelopment Analysis (DEA). A search conducted in the Web

f Science Core Collection database using the keywords ‘eco-efficiency

nalysis’ and ‘Data Envelopment Analysis’ in the topic field yielded 860

esults. The search covered publications from 2004 to 2025, highlight-

ng applications across various sectors, including agriculture [ 47 , 53 ],

nergy supply [ 31 , 33 ], and supply chain management [ 41 , 55 ]. How-

ver, a notable research gap exists —none of the 860 identified scien-

ific papers establishes a direct connection between eco-efficiency anal-

sis and temperature alignment. As a result, no studies attempt to con-

ect eco-efficiency findings with global warming indicators, an issue of
247
articular importance in sustainability assessments of the retail sector.

urthermore, as outlined in the introduction, research focusing on eco-

fficiency in food retailing remains limited. A literature search using the

erms ‘environmental efficiency’ OR ‘eco-efficiency’ AND ‘food retailing’

n Web of Science yields only 79 results from 2010 to the beginning of

025, with a secondary Science Direct search revealing no additional

ources. 

The majority of studies on food retail focus on food waste reduc-

ion using various methods, including experiments, simulations, life cy-

le assessments, and surveys [ 16 , 35 , 45 ]. Another key research stream

xamines the environmental footprint of different supply chain strate-

ies and business models, such as comparing pooling systems, opti-

izing energy supply strategies, and transportation route optimization

 28 , 32 , 43 , 48 , 58 ]. 

A handful of studies attempt to assess the environmental perfor-

ance of food retailing, but they rely on alternative methodologies such

s life cycle assessments and utility analysis-based benchmarking, rather

han DEA [ 15 , 25 , 26 , 29 ]. Notably, Ferreira et al. [ 26 ] employed descrip-

ive statistics to establish carbon emission benchmarks for the largest

50 retailers, revealing that best-in-class retail buildings emit less than

15 kg CO2 per square meter annually for food retail and below 70 kg for

on-food retail. These benchmarks serve as a useful reference for evalu-

ting the eco-efficiency of food retail, as further discussed in Section 4.1 .

Recent studies emphasize the importance of incorporating the Ma-

erial Balance Principle (MBP) into DEA models for more comprehen-

ive assessments of environmental efficiency. Research by Lozano [ 42 ],

rabi et al. [ 7 ], and Trang et al. [ 56 ] has explored DEA applications

hat incorporate undesirable outputs and MBP constraints, offering valu-

ble insights into efficiency evaluations in pollution-intensive indus-

ries. This perspective is crucial, as early eco-efficiency analyses that

verlooked the MBP often failed to account for contradictions with fun-

amental physical laws. The pollution-generating technology approach,

hich models efficiency by intersecting two production possibility sets

o preserve the MBP, has emerged as a robust methodology for in-

orporating undesirable outputs into DEA models [ 1 , 2 , 18 , 22 , 44 ]. Ad-

itionally, new studies have incorporated artificial intelligence tech-

iques to enhance the accuracy of predictions in eco-efficiency assess-

ents [4,59] . The integration of stochastic models into DEA frameworks

as also improved the handling of uncertainty in environmental perfor-

ance evaluation [ 5 ], which is particularly relevant given the measure-

ent uncertainty (23 %-42 %) associated with food system emissions

 36 ]. Further, non-radial DEA models have been proposed to better ac-

ount for input-output trade-offs, which is crucial in sectors where car-

on neutrality goals are integral to strategic planning [ 54 ]. 

A significant research gap exists in integrating eco-efficiency assess-

ents with global climate policy objectives that extend beyond merely

educing carbon emissions. While DEA is commonly used to evaluate ef-

ciency within operational, financial, or carbon emission reducing con-

exts, it has not been systematically linked to temperature alignment

cores, which measure how well companies align with the Paris Agree-

ent’s 1.5 °C target. This study aims to bridge this gap by applying an

stablished DEA-based approach to pollution-generating technology in

ood retail, while linking eco-efficiency scores with temperature align-

ent scores. This novel integration enables a more comprehensive sus-

ainability assessment, ensuring that efficiency improvements align with

limate action targets. 

. Preliminaries 

DEA enables the efficient measurement of multidimensional activ-

ties in comparable profit or non-profit entities, known as decision-

aking units (DMUs). However, classical DEA, as introduced by Charnes

t al. [ 17 ], is not well-suited for activities involving pollutants, as

hese represent a form of joint production [ 1 , 18 , 22 , 27 , 44 ]. To address

his limitation, we adopt an established approach from the DEA liter-

ture —the “pollution-generating technology ” framework, primarily de-
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eloped by Murty et al. [ 44 ]. Accordingly, Section 2.1 outlines the classi-

al single-technology DEA approach. Section 2.2 presents our adaptation

f the pollution-generating technology framework to the supermarket

ontext, leveraging the intersection of two technological perspectives:

ne representing business efficiency and the other accounting for envi-

onmental constraints. 

.1. The classical case of single technologies 

In activity analysis, Koopmans [ 38 ], Shephard [ 52 ], and Deprins

t al. [ 23 ] focus on production possibility sets or technologies as de-

cribed by: 

 = { ( 𝐱, 𝐲 ) | 𝐲 can be realized by 𝐱 } , (1)

n which 𝐱T = (𝑥1 , … , 𝑥𝒎 , … , 𝑥𝑴 

) ∈ ℝ𝑀 

+ is the vector of inputs allowing

he realization of the outputs 𝐲T = (𝑦1 , … , 𝑦𝒔 , … , 𝑦𝑺 ) ∈ ℝ𝑆 
+ . Accordingly,

q. (1) establishes the set of possible activities (𝐱, 𝐲 ) ∈ ℝ𝑀+ 𝑆 
+ in a general

orm without specifying the exact design of  . 

Since Charnes et al. [ 17 ] and Banker et al. [ 9 ], DEA has been a

eaningful non-parametric instrument for measuring efficiency among

 group (𝑗 = 1 , … , 𝐽 ) of profit or non-profit entities, so-called DMUs,

enerating  by: 

( 𝜏) =

{ 

( 𝐱 , 𝐲) ∈ (ℝ ) 𝑀+ 𝑆 
+ 

|||𝐱 ≥
𝐽 ∑
𝑗=1 

𝜆𝑗 𝐱𝑗 ; 𝐲 ≤
𝐽 ∑
𝑗=1 

𝜆𝑗 𝐲𝑗 ;
(
𝜆1 , … , 𝜆𝐽 

)
∈ Λ( 𝜏) 

} 

, (2) 

here Λ(τ) constrains the intensity variables (𝜆1 , … , 𝜆𝐽 ) with which

ctivities may contribute to constructing comparable activities on the

ight-hand side of the inequalities. The specification of Λ(τ) can be con-

ex or non-convex; the two most prominent convex are given in the

ollowing matrix: 

𝚲(𝝉) 
CCR {( 𝜆1 , … , 𝜆𝐽 ) |𝜆𝑗 ≥ 0 ∀𝑗} 
BCC {( 𝜆1 , … , 𝜆𝐽 ) |𝜆𝑗 ≥ 0 ∀𝑗;∑𝐽 

𝑗=1 𝜆𝑗 = 1} 

The acronyms CCR and BCC trace back to their inventors, Charnes,

ooper, and Rhodes (CCR) and Banker, Charnes, and Cooper (BCC). For

ore details on the corresponding axioms and implications, see, e.g.,

anker et al. [ 9 ], Tulkens [ 57 ], Kuosmanen [ 39 ], Abad and Briec [ 1 ],

nd Dellnitz and Rödder [ 21 ]. Efficiency analysis in the presence of the

bove technologies may take different forms depending on the control-

able parts of the activities and the corresponding efficiency measures;

.e., such analysis can be based on input and output orientation using ra-

ial, slack-based, or hyperbolic measures; see Charnes et al. [ 17 ], Banker

t al. [ 9 ], Scheel and Scholtes [ 51 ], and Hasannasab et al. [ 34 ] again. 

Due to the nature of the food retail sector, where outputs depend on

xternal factors such as the number of consumers that can be reached

nd the income levels of customers, they cannot be directly controlled.

s a result, we adopt an input-oriented approach with a classical radial

fficiency measure. Specifically, we focus on input orientation rather

han slack-based or hyperbolic measures, which attempt to optimize

oth inputs and outputs simultaneously, for two key reasons: 

1. At the operational level of a grocery store, controllable factors pri-

marily include personnel levels and energy intensity related to heat-

ing, cooling, and lighting. These inputs can be adjusted to improve

efficiency. 

2. In contrast, outputs such as sales volume and customer numbers

are subject to external market conditions and cannot be directly in-

fluenced in the short term. Therefore, they should not be incorpo-

rated into the objective function. Instead, these variables serve to

define the appropriate set of observations for benchmarking, which

we achieve by applying relevant constraints. 

We employ a radial efficiency measure because we prefer a conser-

ative estimate that aligns with the logic of a radial approach due to its
248
eliance on the Tchebychev norm. This ensures that efficiency evalua-

ions remain prudent by proportionally scaling inputs while maintaining

easibility within the production possibility set. Formally, for each ac-

ivity (𝐱𝑘 , 𝐲𝑘 ) ∈ ℝ𝑀+ 𝑆 
+ , with 𝑘 ∈  = {1 , … , 𝐽 } , to be evaluated, we need

o solve the following optimization problems or envelopment forms: 

min ℎ𝑘 
s . t. 

ℎ𝑘 𝐱𝑘 −
𝐽 ∑
𝑗=1 

𝜆kj 𝐱𝑗 ≥ 0 

𝐽 ∑
𝑗=1 

𝜆kj 𝐲𝑗 ≥ 𝐲𝑘 (
𝜆𝑘 1 , … , 𝜆kJ 

)
∈ Λ( 𝜏) and ℎ𝑘 free 

(3) 

Dealing with undesirable or bad outputs (e.g., pollutants or emis-

ions) in efficiency analysis now requires a reformulation of  (τ) .
or more details on axioms regarding different modeling techniques,

echnology misspecifications, and corresponding properties, see, e.g.,

ørsund [ 27 ], Kuosmanen and Matin [ 40 ], Kleine et al. [ 37 ], Dellnitz

 19 ], Dellnitz et al. [ 20 ], and Abad and Briec [ 1 ]. Following the idea of

aumol and Oates [ 11 ], one could treat the bad output like the input: 

𝑏 ( 𝜏) =

{ 

( 𝐱 , 𝐲) ∈ (ℝ ) 𝑀+ 𝑆 
+ 

||| 𝒙 ≥
∑𝐽 

𝑗=1 𝜆𝑗 𝐱𝑗 ; 𝐲
𝑔 ≤

∑𝐽 

𝑗=1 𝜆𝑗 𝐲
𝑔 

𝑗 

𝐲𝑏 ≥ ∑𝐽 

𝑗=1 𝜆𝑗 𝐲
𝑏 
𝑗 
;
(
𝜆1 , … , 𝜆𝐽 

)
∈ Λ( 𝜏) 

} 

, (4) 

here 𝐱 ∈ ℝ𝑀 

+ is the vector of inputs as above, but the vector of outputs

 ∈ ℝ𝑆 
+ is now a composition of two vectors 𝐲 = (𝐲𝑔 , 𝐲𝑏 ) , namely the good

utputs 𝐲𝑔 ∈ ℝ𝑆𝑔 

+ and the bad outputs 𝐲𝑏 ∈ ℝ𝑆𝑏 

+ (e.g., pollutants or emis-

ions). This, in turn, leads to the following input-oriented optimization

roblems: 

min ℎ𝑘 
s . t. 

ℎ𝑘 𝐱𝑘 −
𝐽 ∑
𝑗=1 

𝜆kj 𝐱𝑗 ≥ 𝟎 

𝐽 ∑
𝑗=1 

𝜆kj 𝐲
𝑔 

𝑗 
≥ 𝐲𝑔 

𝑘 

𝐽 ∑
𝑗=1 

𝜆kj 𝐲𝑏 𝑗 ≤ 𝐲𝑏 
𝑘 (

𝜆𝑘 1 , … , 𝜆kJ 

)
∈ Λ( 𝜏) and ℎ𝑘 free 

(5) 

This approach is a simple way to deal with bad outputs in macro

nalyses [ 22 , 27 ] and, according to Førsund [ 27 ], can be considered a

…reduced form of a larger system. ” When modeling micro-level activ-

ties, however, this approach is flawed because it contradicts the first

aw of thermodynamics: Obviously, one cannot substitute material in-

uts and residuals discharged to the environment —but Eq. (5) and its

ual, if it exists, allow such trade-offs; see Murty et al. [ 44 ] again. The

ollowing section shows a modern approach that addresses this short-

oming. 

.2. The emerging case of pollution-generating technologies 

Recently, pollution-generating technologies have been developed to

easure eco-efficiency and avoid unnatural trade-offs between material

nputs and/or outputs and pollutants. These technologies are modeled

s the intersection of an intended production technology  1 and nature’s

esidual generation set  2 ; cf. Murty et al. [ 44 ], Dakpo et al. [ 18 ], and

bad and Briec [ 1 ]. Consequently, we have: 

1 ( τ) ∩  2 ( τ) (6) 

ith 𝐱1 ∈ ℝ𝑀1 
+ and 𝐱2 ∈ ℝ𝑀2 

+ , 𝐱 = (𝐱1 , 𝐱2 ) ∈ ℝ𝑀 

+ , and 

1 ( 𝜏) =

{ 

( 𝐱 , 𝐲𝑔 ) ∈ (ℝ ) 𝑀+ 𝑆𝑔 
+ 

|||𝐱 ≥
𝐽 ∑
𝑗=1 

𝜆𝑗 𝐱𝑗 ; 𝐲𝑔 ≤
𝐽 ∑
𝑗=1 

𝜆𝑗 𝐲
𝑔 

𝑗 
;
(
𝜆1 , … , 𝜆𝐽 

)
∈ Λ( 𝜏) 

} 

(7) 
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2 ( 𝜏) =

{ (
𝐱2 , 𝐲𝑏 

)
∈ (ℝ ) 𝑀2 + 𝑆𝑏 

+ 
|||𝐱2 ≤

𝐽 ∑
𝑗=1 

𝜆′
𝑗 
𝐱2 
𝑗 
; 𝐲𝑏 ≥

𝐽 ∑
𝑗=1 

𝜆′
𝑗 
𝐲𝑏 
𝑗 
;
(
𝜆′1 , … , 𝜆′

𝐽 

)
∈ Λ( 𝜏) 

} 

(8) 

Obviously,  1 (τ) establishes the relationship between all inputs 𝐱 =
𝐱1 , 𝐱2 ) and the intended outputs 𝐲𝑔 .  2 (τ) on the other hand, repre-

ents the relationship between the inputs 𝐱2 and the undesirable out-

uts or pollutants 𝐲𝑏 ; hence, 𝐱2 are the inputs responsible for the emis-

ions. In the residual-generation technology  2 (τ) , the intensity vari-

bles 𝜆′
𝑗 
∀𝑗 differ from those of  1 (τ) . With this formulation, we can

mbed various individual extrapolation properties (e.g., CCR or BCC,

tc.) in  1 (τ) and  2 (τ) . This nomenclature leads to the input-oriented

ptimization problem (9) . Here, we adhere to the same reasoning as

utlined in Section 2.1 ; neither the good nor the bad outputs can be

irectly controlled at the operational level. Instead, carbon emission re-

uction is a consequence of input reduction, reinforcing the rationale

or an input-oriented approach. 

min ℎ𝑘 
s . t. 

𝐽 ∑
𝑗=1 

𝜆kj 𝐱1 𝑗 ≤ 𝐱1 
𝑘 

ℎ𝑘 𝐱2 𝑘 −
𝐽 ∑
𝑗=1 

𝜆kj 𝐱2 𝑗 ≥ 𝟎 

𝐽 ∑
𝑗=1 

𝜆kj 𝐲
𝑔 

𝑗 
≥ 𝐲𝑔 

𝑘 

ℎ𝑘 𝐱2 𝑘 −
𝐽 ∑
𝑗=1 

𝜆′
kj 
𝐱2 
𝑗 
≤ 𝟎 

𝐽 ∑
𝑗=1 

𝜆′
kj 
𝐲𝑏 
𝑗 
≤ 𝐲𝑏 

𝑘 (
𝜆𝑘 1 , … , 𝜆kJ 

)
,

(
𝜆′
𝑘 1 , … , 𝜆′

kJ 

)
∈ Λ( 𝜏) , ℎ𝑘 free 

(9) 

When solving the above variant, one obtains the (optimal) radial

eduction potential ℎ∗ 
𝑘 

for the emission-causing inputs of DMU 𝑘 ; it is

 type of technical input efficiency. The (optimal) intensity variables

𝜆∗ 
𝑘 1 , … , 𝜆∗ 

𝑘𝐽 
) , (𝜆′∗ 

𝑘 1 , … , 𝜆
′∗ 
𝑘𝐽 
) , if nonzero, provide information about the

est practices used to determine this reduction potential. Given the

bove rationale —that carbon emission reduction is a consequence of

nput reduction —ℎ∗ 
𝑘 

does not directly measure the environmental per-

ormance of 𝑘 ’s activity. With this in mind, we define environmental

erformance based on the achieved emissions of the optimal benchmark

eferences (𝜆∗ 
𝑘 1 , … , 𝜆∗ 

𝑘𝐽 
) , (𝜆′∗ 

𝑘 1 , … , 𝜆
′∗ 
𝑘𝐽 
) , which are selected according to

he input reduction potential: 

efinition 1. Let ℎ∗ 
𝑘 
, (𝜆∗ 

𝑘 1 , … , 𝜆∗ 
𝑘𝐽 
) , (𝜆′∗ 

𝑘 1 , … , 𝜆
′∗ 
𝑘𝐽 
) be an optimal solu-

ion regarding Eq. (9) . The environmental efficiency or eco-efficiency

f DMU 𝑘 is then defined by 

𝑐𝑜𝑘 =
𝕝T 
(∑𝐽 

𝑗=1 𝜆
′
𝑘𝑗 
𝐲𝑏 
𝑗 

)
𝕝T 𝐲𝑏 

𝑘 

∈ [ 0 , 1 ] (10) 

ith 𝕝 being an all-one column vector. 

Eq. (10) can vary in [0,1], where 0 implies a potential for a zero-

mission activity (depending on the alternatives), and 1 means no re-

uction potential in emissions at all. Eq. (10) cannot be greater than 1

ue to the restrictions in Eq. (9) . However, Eq. (10) is only well defined

f DMU 𝑘 ’s activity is nonzero, i.e., 𝐲𝑏 
𝑘 
≥ 𝟎 with 𝐲𝑏 

𝑘 
≠ 𝟎 . If DMU k has a

ero-emission activity, then ec 𝑜𝑘 ∶= 0 because DMU k already performs

cologically efficient. The latter statement does not automatically imply
∗ 
𝑘 
= 1 , DMU k can be eco-efficient but still waste inputs. 

In linear optimization problems, there may be multiple optima. That

s, in the DEA domain, the optimal objective function value ℎ∗ 
𝑘 

is unique

fter solving Eq. (9) , but the intensities (𝜆∗ 
𝑘 1 , … , 𝜆∗ 

𝑘𝐽 
) and (𝜆′∗ 

𝑘 1 , … , 𝜆
′∗ 
𝑘𝐽 
)

an be ambiguous —and hence 𝑒𝑐𝑜 too. There are several ways to deal
𝑘 

249
ith such ambiguities in DEA. Here, most approaches are based on a

wo-stage procedure: first, optimize the efficiency objective; next, opti-

ize a secondary objective, fixing the optimal value of the first stage. For

ome popular approaches, see Banker and Thrall [ 10 ], Doyle and Green

 24 ], and Golany and Yu [ 30 ]. We can adapt such a philosophy, calcu-

ating the optimistic and pessimistic values for Eq. (10) via Eq. (11) . 

min 𝕝T 𝐬𝑘 and max 𝕝T 𝐬𝑘 
s . t. 

−
𝐽 ∑
𝑗=1 

𝜆
′

kj 
𝐱2 
𝑗 
≤ − ℎ∗ 

𝑘 
𝐱2 
𝑘 

𝐽 ∑
𝑗=1 

𝜆
′

kj 
𝐲𝑏 
𝑗 
+ 𝐬𝑘 = 𝐲𝑏 

𝑘 (
𝜆
′
𝑘 1 , … , 𝜆

′

kJ 

)
∈ Λ( 𝜏) , 𝐬𝑘 ≥ 𝟎 

(11) 

Using the objective functions of Eq. (11) , we push the sum of the

mission slacks —thus controlling the numerator of Eq. (10) ; the denom-

nator is constant and can, therefore, be neglected. In this new optimiza-

ion problem, the imperative max (min) corresponds to an optimistic (a

essimistic) estimate that gives the maximum (minimum) gap between

oth components of the fraction. 

roposition 1. Eq. (11) is a perfect surrogate model to fathom the limits

f Eq. (10) . 

Proof . To prove this statement, multiply the group of constraints
𝐽 ∑
=1 

𝜆′
𝑘𝑗 
𝐲𝑏 
𝑗 
+ 𝐬𝑘 = 𝐲𝑏 

𝑘 
by 𝕝T and rearrange. Furthermore, we can neglect the

onstraints corresponding to  1 (τ) in Eq. (9) because (𝜆𝑘 1 , … , 𝜆𝑘𝐽 ) is
naffected by the optimization of Eq. (11) due to the fixed ℎ∗ 

𝑘 
. 

emark 1. The minimization in Eq. (11) can be trivially solved; thus,

he estimated pessimistic emission reduction potential is always zero. 

Proof . To prove this, one chooses the activity of 𝑘 which leads to

n optimal 𝐬𝑘 = 𝟎 regardless of the technology assumption. 

In the following sections, we address eco-efficiency in food retail and

dentify corresponding reduction potentials for 25 grocery stores. 

. Eco-efficiency of grocery stores 

Generally, the primary sources of carbon emissions in retail food

uildings stem from heat and electricity consumption, as well as re-

rigeration, particularly when older refrigeration systems require fre-

uent replenishment of harmful coolants [ 8 ]. This study analyzes data

rom 25 grocery stores, selected based on their participation in a third-

arty funded project focused on energy efficiency and emissions re-

uction in the retail sector. The data was collected through a struc-

ured questionnaire distributed to store operators as part of this ini-

iative ( https://www.dbu.de/projektdatenbank/3741701 ). The dataset,

eflecting store conditions as of 2022, includes the following variables: 

▪ Inputs: 

1. Total store area 

2. Electricity consumption 

3. Heat consumption 

4. Coolant refill quantity 

▪ Bad outputs: 

5. CO2 emissions from electricity consumption 

6. CO2 emissions from heat consumption 

7. CO2 emissions of the coolants 

The selected stores vary in size, ranging from approximately 1400
2 to over 10,000 m2 of total store area, as well as in location and op-

rational characteristics. For instance, heating systems include natural

as, district heating, and heat pumps, with some stores also utilizing

hotovoltaic systems. Additionally, staffing levels range from 10 to 170

https://www.dbu.de/projektdatenbank/3741701
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Fig. 1. Technical efficiencies for pure BCC and pure CCR regarding Eq. (9) . 

f  

a  

e  

F  

s  

i

 

d  

p

 

t  

w  

a  

t  

r

 

g  

r  

a

 

t  

s  

t  

r  

(  

i  

n  

(  

B  

s  

1  

s

 

s  

a  

r

 

t  

t  

s  

fi  

s  

f  

s  

e

 

s  

f  

r  

v

 

t  

t  

c  

s  

i  

f  

r  

p  

21 remain eco-efficient in all scenarios. 

Table 1 

Mean eco-efficiencies for 25 grocery stores and different models. 

Store 

Number 

BCC-BCC 

Eq. (10) 

CCR-CCR 

Eq. (10) 

BCC 

Eq. (11) 

CCR 

Eq. (11) 

1 0.251 0.216 0.205 0.071 

2 0.736 0.235 0.728 0.130 

3 0.598 0.491 0.262 0.112 

4 0.622 0.209 0.585 0.078 

5 0.968 0.914 0.972 0.914 

6 1.000 0.229 0.425 0.080 

7 0.620 0.205 0.576 0.079 

8 0.869 0.356 0.651 0.189 

9 0.419 0.289 0.388 0.289 

10 0.799 0.474 0.402 0.193 

11 0.939 0.491 0.948 0.491 

12 0.682 0.450 0.971 0.899 

13 0.206 0.177 0.088 0.043 

14 1.000 0.807 1.000 0.968 

15 0.873 0.847 0.942 0.900 

16 0.959 0.897 0.952 0.644 

17 0.995 0.973 0.994 0.337 

18 1.000 1.000 1.000 1.000 

19 1.000 0.854 1.000 0.735 

20 0.698 0.224 0.224 0.038 

21 1.000 1.000 1.000 1.000 

22 0.999 0.420 0.998 0.256 

23 0.293 0.263 0.317 0.171 

24 0.874 0.688 0.752 0.514 

25 0.997 0.993 1.000 0.993 
ull-time equivalents (FTEs). These variations enable a comprehensive

nalysis of grocery store building operations, their associated carbon

mission patterns, and potential mitigation strategies within the sector.

or confidentiality reasons, neither the raw data nor detailed descriptive

tatistics of the seven variables can be published. However, the follow-

ng matrix presents the correlations among them: 

Total 

Area 

Elec 

Consum 

Heat 

Consum 

Coolant 

Refill 

CO2 

Electricity 

CO2 

Heat 

CO2 

Coolant 

Total Area 1.00 0.79 0.77 0.18 0.68 0.73 0.39 

Elec Consumption 0.79 1.00 0.80 0.14 0.97 0.76 0.47 

Heat Consumption 0.77 0.80 1.00 0.14 0.75 0.97 0.60 

Coolant Refill 0.18 0.14 0.14 1.00 0.07 0.23 0.14 

CO2 Electricity 0.68 0.97 0.75 0.07 1.00 0.72 0.42 

CO2 Heat 0.73 0.76 0.97 0.23 0.72 1.00 0.52 

CO2 Coolant 0.39 0.47 0.60 0.14 0.42 0.52 1.00 

These correlations may facilitate the generation of correlated ran-

om numbers to validate the accuracy of our results, a common ap-

roach in empirical applications. 

Furthermore, it is important to note that we do not have access to

he total sales and staff numbers of the 25 grocery stores. Fortunately,

e have a second data set; it contains more than 1000 entries with sales

rea (which is also available for the 25 grocery stores mentioned above),

otal sales, and number of employees in full-time equivalents; the cor-

esponding correlations can be derived from the following matrix: 

Sales area Total sales Full-time equivalents 

Sales area 1.0000 0.7494 0.6707 

Total sales 0.7494 1.0000 0.6973 

Full-time equivalents 0.6707 0.6973 1.0000 

Based on the above correlations, we simulate 1000 data tuples per

rocery store —with sales area as the independent variable —to obtain

ealistic sales figures and full-time equivalents. We thus complete the

bove list: 

▪ Simulated input: 

8. Full-time equivalents of staff

▪ Simulated good output: 

9. Total sales 

Averaging the stores’ technical efficiencies, see again Eq. (10) , over

he 1000 simulations might show a more appropriate overview of the

tores’ improvement potentials. That is, Fig. 1 shows the histogram of

he average technical efficiencies of the 25 DMUs and 1000 scenarios

esulting from Eq. (9) for a BCC-only (the blue bars) and a CCR-only case

the red bars); i.e., we apply the same technology constraint for both the

ntended-production and the nature’s residual-generation technology,

amely, (𝜆𝑘 1 , … , 𝜆𝑘𝐽 ) and (𝜆′1 , … , 𝜆′
𝐽 
) ∈ Λ(τ = BCC ) or (𝜆𝑘 1 , … , 𝜆𝑘𝐽 ) and

𝜆′1 , … , 𝜆′
𝐽 
) ∈ Λ(τ = CCR ) . Unsurprisingly, more cases are efficient in the

CC-only case —this naturally implies the more restrictive technology
250
tructure in Eq. (9) . In the BCC-only case, five grocery stores (Nos. 6,

4, 18, 19, 21) are technically efficient in all scenarios. Three grocery

tores (Nos. 17, 22, 25) are weakly efficient only. 

We also calculated efficiency scores under the mixed technology as-

umptions. However, these results did not provide additional insights,

s they were numerically identical to the pure technology cases. This is

eflected in the following correlation matrix: 

BCC-BCC CCR-CCR BCC-CCR CCR-BCC 

BCC-BCC 1.0000 0.7035 1.0000 0.7035 

CCR-CCR 0.7035 1.0000 0.7035 1.0000 

BCC-CCR 1.0000 0.7035 1.0000 0.7035 

CCR-BCC 0.7035 1.0000 0.7035 1.0000 

Although all constraint groups in Model (9) must be satisfied simul-

aneously, the first three —which govern the use of desirable inputs and

he production of desirable outputs —define the primary production pos-

ibility set and impose the core structural restrictions. In contrast, the

nal two constraints, involving an auxiliary weight vector (𝜆′1 , … , 𝜆′
𝐽 
) ,

erve as additional environmental or regulatory filters. While they may

urther restrict the feasible region, they do not enlarge it. Thus, from a

tructural standpoint, the first three constraint groups are dominant and

ffectively determine the applicable production technology. 

To keep the results transparent and because of their promising re-

ults to be discussed in Section 4.1 , Table 1 presents respective numbers

or the BCC-only and the CCR-only case; furthermore, we add the cor-

esponding average optimistic values of the eco-efficiencies calculated

ia Eq. (11) . 

Table 1 shows that the last two columns provide lower bounds for

he first two columns. Store No. 3, for example, can reduce its emissions

o 0.262 of its current level on average —optimistically in the BCC-only

ase. In total, the second column of Table 1 reveals that five grocery

tores (Nos. 6, 14, 18, 19, 21) have no potential to reduce energy-related

nputs; this statement remains true even in the optimistic calculations

or five grocery stores (see Nos. 14, 18, 19, 21, 25 in the fourth column)

egarding energy-related carbon emissions. In the CCR-only case, as ex-

ected, nearly all stores’ (eco-)efficiencies decrease. Still, Nos. 18 and
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Table 2 

Correlations between eco-efficiencies and temperature alignment. 

BCC-BCC 

Eq. (10) 

CCR-CCR 

Eq. (10) 

BCC 

Eq. (11) 

CCR 

Eq. (11) 

Temperature 

alignment 

BCC-BCC Eq. (10) 1.000 0.8049 0.9673 0.7726 − 0.7604 

CCR-CCR Eq. (10) 0.8049 1.000 0.8032 0.9631 − 0.7660 

BCC Eq. (11) 0.9673 0.8032 1.000 0.8021 − 0.7327 

CCR Eq. (11) 0.7726 0.9631 0.8021 1.000 − 0.7209 

Temperature 

alignment 

− 0.7604 − 0.7660 − 0.7327 − 0.7209 1.000 
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Now, zooming in on grocery store No. 13, which has a high reduction

otential (optimistic eco-efficiency 0.088), we find that it uses outdated

efrigeration equipment with high levels of environmentally harmful re-

rigerants. DEA recommends replacing this technology with an ecologi-

ally better alternative —a CO2 cooling system. 

In addition to such technical conversions, however, there is also an

voidable waste of resources. Store No. 15 has about 14 percent more

etail space than Store No. 18; when checking the remaining slack in

he optimal solution of Eq. (9) , however, Store No. 18 consumes more

han 40 percent more electricity and more than 80 percent more heat

nergy with comparable technical equipment, which could indicate mis-

anagement. 

The above results illustrate that eco-efficiency is, of course, a ques-

ion of equipment and management. The results of the next section are

inked to a new, emerging metric in the field of sustainability manage-

ent, also known as the temperature alignment score. 

. Temperature alignment and eco-efficiency: a managerial link 

.1. Eco-efficiency and temperature alignment in food retail 

The Paris Agreement, adopted in 2015, is a legally binding inter-

ational treaty under the United Nations Framework Convention on

limate Change (UNFCCC). Its primary objective is to mitigate climate

hange by significantly reducing greenhouse gas emissions and achiev-

ng net-zero emissions globally by 2050. The 1.5 °C target is particularly

rucial, as scientific research (e.g., IPCC reports) indicates that surpass-

ng this threshold would lead to more severe climate-related impacts, in-

luding extreme weather events, rising sea levels, and biodiversity loss.

In our project, we also collected temperature alignment scores

rom the right based on science GmbH (see https://www.right-

asedonscience.de/ ) for the 25 grocery stores. These scores, measured in

egrees Celsius, indicate whether a building or business activity aligns

ith the Paris Agreement’s goal of limiting global warming to well be-

ow 2 °C, preferably 1.5 °C, above pre-industrial levels. That is, tempera-

ure alignment scores serve as an operationalization of science-based tar-

ets, translating carbon emissions trajectories into corresponding global

arming projections. By linking emissions performance to climate out-

omes, these scores provide a meaningful assessment of an entity’s align-

ent with long-term climate goals [ 12 , 13 , 50 ]. 

It is essential to note that the models presented in this section are

ntended as projection tools, rather than causal frameworks. Their pur-

ose is to estimate the association between variations in observed eco-

fficiency metrics and emission intensities, as well as temperature align-

ent scores, based on the available dataset. These models do not claim a

ausal relationship between operational changes and climate outcomes.

nstead, they provide a data-driven, scenario-based approximation to

upport science-based target setting and informed decision-making. The

emperature alignment scores used in this study indicate the degree to

hich the carbon footprints of the selected grocery stores align with the

aris Agreement’s climate targets. A score above 1.5 °C suggests that

he store’s operations contribute to global warming beyond the target

hreshold, whereas a score below or at 1.5 °C indicates better climate

lignment. These scores provide a science-based metric to assess the

ustainability performance of retail food buildings and help identify po-

ential areas for improvement in reducing emissions. This indicator is

ery appealing due to its straightforward design and is currently gain-

ng more and more attention and popularity. Before we turn to the de-

ails, we show the correlations between these temperature values and

he eco-efficiencies from the previous section in Table 2 . 

Unsurprisingly, our eco-efficiencies are negatively correlated with

he temperature ratings; i.e., if the eco-efficiency score worsens (the

umber decreases), so does the temperature rating (the number in-

reases). They are not perfectly correlated because the focus of the

emperature rating is on CO2 emissions; additionally, eco-efficiencies

onsider both inputs and good outputs of the transformation processes.
251
lthough the highest correlation with temperature ratings is observed

n the CCR-only case, the corresponding number is unreliable due to

he presence of multiple optima. When examining the correlations as-

ociated with the optimistic eco-efficiencies derived from Eq. (11) , the

ighest correlation is observed in the BCC-only case (e.g., fourth row

nd last column). 

Information that is easily interpreted and relates directly to an ac-

ion outcome is needed to achieve acceptance of change. A significant

trand of literature addresses the measurement of (perceived) efficacy

elative to the information available; see Angill-Williams and Davis [ 6 ]

nd the references therein. DEA, as a mathematical tool, is incapable of

roviding this insight since it requires an understanding of linear pro-

ramming. Even if this understanding is present, the relationships be-

ween coefficients, constraints, and objective functions are not always

ully comprehensible in large problem structures. Additionally, the eco-

fficiency indicator calculated in this manner may remain abstract, as it

eflects the potential for resource reduction rather than a direct measure

f environmental outcomes. Therefore, combining DEA as a planning

ool with temperature assessment can help illustrate and communicate

he effects of changes in degrees Celsius. Fig. 2 illustrates the associ-

tion between eco-efficiency scores and temperature alignment, using

rojected temperature scores derived from the optimization results of

ur DEA models. Specifically, the CCR temperature and BCC tempera-

ure (temp) values represent the estimated temperature alignment scores

btained after applying efficiency improvements suggested by the CCR

nd BCC pollution-generating DEA models, respectively. 

To better understand the logic behind Fig. 2 , we outline the estima-

ion and calculation steps as follows: 

• The original temperature alignment scores for the 25 grocery stores

were obtained from the right based on science GmbH and serve as

the baseline values (red dots) in Fig. 2(a) . These scores indicate the

expected contribution of each store’s operations to global warming

in degrees Celsius based on current carbon emissions. 
• We applied a linear regression model to estimate the relationship

between carbon intensity (CO2 emissions per store area) and tem-

perature alignment scores (represented by blue dots in Fig. 2(a) ).

This regression function is used to estimate the association between

emission reductions and temperature alignment within the observed

dataset. 
• Next, we calculated eco-efficiency scores using our pollution-

generating DEA models ( Eqs. 9–11 ). These were based on two tech-

nology constellations: 

○ BCC —where each of the two intersecting technologies applies

the convexity restriction. 

○ CCR —neither of the two intersecting technologies applies the

convexity restriction. 

These models estimate potential CO2 reductions by optimizing emis-

ions related to inputs from electricity, heating, and refrigeration sys-

ems. 

• Using the regression-derived formula, we projected new temperature

alignment scores based on the efficiency improvements suggested by

the DEA models. The CCR temp and BCC temp values in Fig. 2(b) rep-

resent the estimated temperature alignment scores after applying the

https://www.right-basedonscience.de/


A. Dellnitz, M. Tavana, S. Dellnitz et al. Sustainable Operations and Computers 6 (2025) 246–255

Fig. 2. Temperature score estimation. 
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optimized CO2 reductions from the CCR and BCC models, respec-

tively. 

Fig. 2(a) demonstrates that the temperature function can be effec-

ively approximated using a linear regression model, due to the nearly

roportional relationship between global temperature change and cu-

ulative CO2 emissions (for further justification, see [ 60 ]). In this

odel, temperature alignment (dependent variable) is predicted using

arbon intensity (CO2 emissions per store area, independent variable),

chieving an R2 of approximately 0.886, indicating a strong correlation.

Using this relationship, we estimated new temperature scores based

n the average optimistic eco-efficiencies derived from the DEA mod-

ls. Fig. 2(b) presents these results, with the horizontal line at 1.5 °C

ndicating the upper limit set by the Paris Agreement. Several stores

emonstrate the potential to align their operations with this thresh-

ld by adopting practices observed in more energy-efficient peers, such

s upgrading equipment and implementing improved management ap-

roaches. It is worth noting that the temperature scores based on effi-

iency improvements from the BCC model are equal to or slightly higher

han those from the CCR model. This reflects the BCC model’s generally

igher efficiency scores, which indicate equal or lower potential for fur-

her improvement. In some cases, such as stores 16, 18, 21, and 25, these

ifferences are minor and may appear as overlapping values in Fig. 2(b) .

Although achieving the 1.5 °C target appears more challenging in

he BCC-only case, it is essential to note that the regression model tends

o overestimate high-temperature scores (as seen in Fig. 2(b) ). This

uggests that even more stores could potentially align with the 1.5 °C

arget under BCC assumptions after efficiency improvements. Further-

ore, Ferreira et al. [ 26 ] classify a best-in-class food retail building as

ne with a carbon intensity of less than 115 kg CO2 per square meter

er year. However, when applying our regression model to this bench-

ark, it yields a temperature alignment score of approximately 3.8 °C,

hich is far above the Paris Agreement threshold. This finding chal-

enges existing classifications of “best-in-class ” retail buildings and fur-

her highlights the value of integrating DEA-based eco-efficiency assess-

ents with temperature alignment modeling. 

The following section examines the defining characteristics of Paris

greement-compatible grocery stores and explores how targeted opera-

ional improvements can enhance climate alignment. 

.2. Projected results of management measures on temperature alignment 

Fig. 2(a) shows that seven grocery stores are already operating be-

ow 1.5 °C. Fig. 2(b) illustrates that most grocery stores can achieve

his goal if they optimize eco-efficiency using a CCR-based, pollution-

enerating technology. However, the complete transformation of a gro-
252
ery store can imply high investments in new technologies, such as CO2 

ooling or photovoltaic systems. To understand the break-even point

oncerning the 1.5 °C limit, we examine how investments in replac-

ng old technologies with new ones are associated with projected out-

omes by comparing our simulated scenarios. Due to data confidentiality

onstraints, the original values for total sales and full-time equivalents

ould not be disclosed. To overcome this, we implemented a simulation

rocedure based on a larger proprietary dataset, using k-means clus-

ering to identify similar entities. For each store, we repeatedly sam-

led 30 observations from its cluster and re-estimated simple linear re-

ressions to project sales and staffing figures. This procedure was re-

eated 1000 times, generating a distribution of plausible values that

reserves the observed correlation structure and variability of the orig-

nal dataset. To test the robustness of the efficiency scores to the sim-

lated data, we performed a sensitivity analysis through random sub-

ampling and repeated regression re-estimation. Specifically, for each

imulation run, the sales and personnel variables were recalculated us-

ng a new sub-sample, and the entire DEA procedure was repeated.

e then examined the variability in DEA scores and rankings across

imulations. 

The following figures illustrate the eco-efficiency assessment in com-

ination with different energy sources and technology systems, provid-

ng an impression of the effectiveness of various management measures.

ig. 3(a) shows the histogram of the eco-efficiency scores as a function

f the four electricity source categories: 1 =̂ purchased conventional

lectricity, 2 =̂ purchased conventional electricity in combination with

n on-site photovoltaic system, 3 =̂ purchased green electricity, and 4

̂  purchased green electricity in combination with a photovoltaic sys-

em. This figure shows that the less green the electricity source, the

igher the frequencies with little eco-efficiency. In the case of pure con-

entional electricity, we have a considerable increase in cases with an

co-efficiency of less than 0.5. 

Fig. 3(b) displays the corresponding histogram regarding the four

eating source categories: 1 =̂ district heating, 2 =̂ heat pump, 3 =̂ heat

ecovery unit, 4 =̂ natural gas. Using a heat pump or a heat recovery unit

orresponds to high eco-efficiencies in our case. In contrast, there is a

ide spread of frequencies for natural gas; in addition, there are more

nefficient than efficient cases. Fig. 3(c) summarizes the eco-efficiency

istogram for the three types of refrigerants: 1 =̂ CO2 , 2 =̂ R404, 3 =̂
449A. Interestingly, although the first refrigerant is the most environ-

entally friendly, there is also widespread use of other refrigerants. This

ould be an initial indication that we need to examine pairs of actions

ather than individual actions to achieve eco-efficiency. 

We will now evaluate the results conditioned under more than one

easure to assess the above presumption better. Thus, Fig. 4 illustrates
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Fig. 3. Eco-efficiency assessment grouped by supermarket equipment. 

Fig. 4. Eco-efficiency histogram and intensity map. 
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f  
n eco-efficiency histogram and intensity map regarding five manage-

ent actions: 1 =̂ {purchased green electricity} ∧ ({heat pump} ∨ {heat

ecovery unit}) ∧ {CO refrigerants}, 2 =̂ {purchased conventional elec-
2 

253
ricity} ∧ ({district heating} ∨ {natural gas}) ∧ {CO2 refrigerants}, 3 =̂
purchased green electricity} ∧ ({district heating} ∨ {natural gas}) ∧
CO2 refrigerants}, 4 =̂ {purchased conventional electricity} ∧ ({heat

ump} ∨ {heat recovery unit}) ∧ ({R404 refrigerants} ∨ {R449A}), 5 =̂
purchased conventional electricity} ∧ ({heat pump} ∨ {heat recovery

nit}) ∧ {CO2 refrigerants}. 

The first action implies the most environmentally friendly mea-

ures —and hence, all scenarios lead to eco-efficient solutions; see the

ntensity map below the histogram in Fig. 4 . However, these may re-

uire significant investments in new technologies, such as heat pumps

nd CO2 cooling systems, as well as additional costs for purchasing

reen electricity. The second measure does not require additional in-

estment in heating technology, but rather a CO2 cooling system that

an be operated without purchasing green electricity. In such cases, the

co-efficiencies in the corresponding scenarios vary significantly. Ac-

ion three demonstrates that an additional purchase of green electricity

esults in high eco-efficiency frequencies and low frequencies in eco-

nefficient scenarios. Actions four and five are interesting, as they show

hat investing in heat pumps or a heat recovery system in combination

ith a CO2 cooling system is nearly a guarantee for eco-efficient scenar-

os. 

However, eco-efficiency is only one side of the coin; we also need to

ocus on temperature alignment, as discussed in the preceding section.
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Table 3 

Temperature alignments for the five management actions. 

Actions Average temperature alignment 

1 1.10 °C 

2 3.09 °C 

3 1.18 °C 

4 2.35 °C 

5 2.00 °C 
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(

n the next step, we calculate the effects on temperature by inferring the

emperature scores that result when management actions one to five are

mplemented. Table 3 summarizes the results: 

Table 3 shows that if we apply all measures via Action 1, we can

chieve an average temperature value of 1.10 °C, well below the limit

f 1.5 °C set in the Paris Agreement. From an investment perspective,

nvesting in heat pumps or a heat recovery system in combination with a

O2 cooling system is the most cost-intensive. Still, from an environmen-

al perspective, it is only a good deal if it is combined with green elec-

ricity. Otherwise, we have only come close to 2.0 °C. Interestingly, com-

ining a CO2 cooling system and purchasing green electricity (Action 3)

s associated with the most favorable projected temperature alignment

nd requires less investment than Action 5. This result is plausible —as

ong as the green electricity is composed of renewables only —because of

he enormous amount of electricity required in supermarkets for lighting

nd refrigeration. It would also be interesting to isolate the pure tem-

erature effect of green electricity; however, our data do not yet allow

s to answer this question. 

.3. Limitations of the proposed approach 

While this study provides valuable insights into the integration of

co-efficiency analysis with temperature alignment ratings, several lim-

tations must be acknowledged. 

While our simulation approach is grounded in a structured empirical

rocess, we acknowledge that using generated data introduces inher-

nt uncertainty. To address this, we applied random subsampling with

epeated regression estimation across 1000 iterations, allowing us to

xamine the sensitivity of DEA results to fluctuations in the simulated

ariables, supporting the internal consistency of our findings. Never-

heless, we caution that point efficiency estimates may be sensitive to

imulation assumptions. As such, interpretations should emphasize gen-

ral trends and comparative insights rather than exact numerical values.

uture work with full access to primary operational data could further

nhance the precision of this analysis. 

A primary limitation of this study is the reliance on data col-

ected from a relatively small sample of 25 grocery stores. While the

ataset provides meaningful insights into the relationship between eco-

fficiency and temperature alignment, its generalizability to the broader

ood retail sector may be limited. Additionally, some variables, such as

otal sales and staff numbers, were imputed based on correlations rather

han directly observed, which introduces potential biases. 

The Data Envelopment Analysis (DEA) model applied in this study is

nherently a static efficiency assessment tool. It evaluates performance

ased on a single period and does not account for dynamic changes in

tore operations, technology adoption, or market conditions over time.

uture research could extend this approach using dynamic DEA mod-

ls to capture longitudinal improvements in eco-efficiency and sustain-

bility measures. While the DEA-based application employs a pollution-

enerating technology approach to integrate undesirable outputs into

EA, which ensures adherence to the Material Balance Principle, it

oes not account for uncertainties in environmental performance eval-

ations. Stochastic or fuzzy DEA models could be explored in future

tudies to enhance robustness under data uncertainty, particularly in

missions reporting and energy use variations resulting from seasonal

ffects. 
254
Lastly, the temperature alignment scores were estimated using a lin-

ar regression model that linked carbon intensity to global tempera-

ure outcomes. While this approach provides a useful approximation

nd exhibits a high correlation with real temperature scores, it does

ot account for non-linear climate feedback mechanisms. Future re-

earch should consider integrating more complex climate models di-

ectly into DEA frameworks —such as bilevel programming and coun-

erfactual analysis, as suggested by Bogetoft et al. [ 14 ] —to refine tem-

erature alignment assessments. 

Despite these limitations, this study presents a novel first applica-

ion that links eco-efficiency analysis with climate alignment metrics.

ddressing the identified limitations through improved data collection,

ynamic modeling approaches, and a broader range of sustainability

easures can enhance the relevance and applicability of this research

or informing corporate sustainability strategies. 

. Conclusions 

This paper presents a pioneering application that integrates eco-

fficiency analysis with temperature alignment ratings, providing a com-

rehensive approach to assessing the environmental performance of gro-

ery stores. By linking eco-efficiency scores to temperature alignment,

ur study presents a novel approach to evaluate how operational effi-

iency improvements contribute to climate objectives, particularly the

.5 °C target established by the Paris Agreement. 

From a practical perspective, our findings indicate that most of

he 25 grocery stores analyzed can enhance their temperature align-

ent with this target through strategic operational adjustments, such as

pgrading refrigeration systems, optimizing energy consumption, and

ransitioning to greener electricity sources. These insights offer action-

ble guidance for store operators, policymakers, and sustainability man-

gers aiming to reduce carbon emissions in the retail sector. On a the-

retical level, our study extends the application of pollution-generating

echnology within a DEA framework, demonstrating its effectiveness in

inking efficiency metrics with climate policy objectives. Unlike con-

entional DEA models, our approach considers temperature alignment

s an additional sustainability criterion, broadening the scope of eco-

fficiency analysis in the food retail sector. 

Future research could explore model enhancements, such as incorpo-

ating stochastic variations in energy consumption or integrating multi-

bjective optimization methods, to further refine the robustness and ap-

licability of this approach. By advancing the intersection of efficiency

nalysis and climate alignment, this study provides a solid foundation

or future sustainability assessments in the food retail industry. 
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