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ABSTRACT

Measuring environmental efficiency, or eco-efficiency, has become increasingly critical as regulatory frameworks
tighten in developed countries, requiring companies to mitigate climate change actively. Data Envelopment Anal-
ysis (DEA) is a widely used, non-parametric method for assessing eco-efficiency in comparable decision-making
units (DMUs). Traditionally, DEA has relied on single-technology models, which are effective for macro-level anal-
yses but present challenges in micro-level studies involving pollutants due to incompatibility with the material
balance principle. This study applies an established DEA approach based on pollution-generating technologies to
evaluate the eco-efficiency of 25 food retailers, incorporating both operational and environmental performance.
For the first time in a DEA-based application, we link eco-efficiency scores with temperature alignment scores.
This emerging sustainability metric assesses a company’s compatibility with the Paris Agreement’s 1.5 °C target.
Our findings reveal that focusing solely on emission reduction based on DEA recommendations does not nec-
essarily ensure alignment with global climate goals, underscoring the importance of an integrated assessment
approach. Moreover, pure benchmarking based on empirical observations is insufficient; assessing sustainability
improvements requires concrete measures, such as upgrading refrigeration systems or implementing energy-
efficient technologies. This study provides practical insights for corporate decision-makers and policymakers,
supporting more comprehensive, sustainability-driven management actions in the retail sector.

1. Introduction

1.1. Motivation and structure of the work

ties, it is widely recognized that farm production and land use change
contribute the largest share of food system emissions, while process-
ing, transportation, and retail further add to the overall environmental
performance [46]. As pressure to decarbonize food systems increases,

The global food supply chain comprises multiple stages, ranging from
raw material production (e.g., cereals, sugar beets, potatoes, oilseeds,
milk, meat, eggs, vegetables, and fruits) to food processing, distribu-
tion, and final consumption. These processes contribute significantly to
greenhouse gas (GHG) emissions, making the food sector a critical focus
for climate mitigation efforts. Food systems are estimated to account
for 23 % to 42 % of total global emissions, with this range reflecting
the 95 % confidence interval of emission estimates [46]. Variability in
global emission contributions also arises from uncertainties in emission
data, including those related to land use change, agricultural inputs, pro-
cessing, transportation, and retail operations. Despite these uncertain-

improving the eco-efficiency of all actors in the food supply chain, par-
ticularly within the retail sector, is crucial for achieving sustainability
and climate targets.

Although the food retail sector plays a crucial role in shaping both
upstream production and downstream consumption patterns, its envi-
ronmental efficiency remains largely underexplored. Prior research has
predominantly focused on supply-side mitigation strategies, such as re-
ducing agricultural emissions, optimizing fertilizer use, and minimizing
food waste [3]. However, limited attention has been given to assess-
ing the eco-efficiency of food retailers themselves, particularly through
quantitative, non-parametric methods. Given that retailers serve as key
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intermediaries, influencing both agricultural supply chains and con-
sumer behavior, understanding their eco-efficiency is essential for de-
veloping holistic sustainability strategies.

Furthermore, conventional efficiency benchmarking approaches pre-
dominantly emphasize emission reductions, yet mitigating emissions
alone does not necessarily ensure alignment with global climate objec-
tives. To address these gaps, this study links eco-efficiency scores with
temperature alignment scores. This emerging sustainability metric eval-
uates whether a company’s climate performance aligns with the Paris
Agreement’s 1.5 °C target. Adopted in 2015, the Paris Agreement is a
legally binding international treaty under the United Nations Frame-
work Convention on Climate Change (UNFCCC), aimed at mitigating
climate change by significantly reducing greenhouse gas emissions and
achieving global net-zero emissions by 2050. The 1.5 °C threshold is
particularly critical, as scientific research [12,13,50] highlights that ex-
ceeding this limit could result in severe climate-related consequences,
including extreme weather events, rising sea levels, and biodiversity
loss.

This study bridges the existing research gap by applying a DEA-based
approach to pollution-generating technology in food retail, ensuring
that efficiency improvements contribute to broader climate action goals.
To further explore these issues, this study seeks to answer the following
research questions:

1. How can the environmental efficiency of food retailers be quanti-
tatively assessed, incorporating both direct (Scope 1) and indirect
(Scope 2) emissions?

. What are the primary determinants of eco-efficiency in food retail,
and how do they vary across different retail formats?

. How does eco-efficiency in food retail relate to sustainability perfor-
mance metrics, such as temperature alignment scores, which assess
alignment with the Paris Agreement’s 1.5 °C target?

To answer these questions, we determine the eco-efficiency of super-
markets or grocery stores, focusing on direct and indirect CO, emissions
(so-called Scope 1 and Scope 2 emissions) arising from the operation of
the buildings; for a recent study on embodied greenhouse gas emissions
in buildings, see Rankin et al. [49] and the references therein. Our find-
ings offer practical implications for corporate decision-makers and poli-
cymakers, supporting more targeted sustainability management actions
in the retail sector.

The remainder of this paper is organized as follows: To frame this
issue better, we provide an overview of related work in Section 1.2.
Section 2.1 presents preliminaries on classical DEA; Section 2.2 dis-
cusses the established approach of pollution-generating technologies
and its adaptation to the specific context of food retail efficiency
assessment. Section 3 addresses eco-efficiency in food retailing and
presents our findings on eco-efficiency. Section 4.1 relates the re-
sults from Section 3—pinpointing corresponding managerial implica-
tions—to the ever more important subject of temperature alignment.
Section 4.2 discusses the managerial implications in light of the avail-
able measures, while Section 4.3 outlines the limitations of this study.
Finally, Section 5 concludes this work.

1.2. Related work

There is a large body of research connecting eco-efficiency analysis
with Data Envelopment Analysis (DEA). A search conducted in the Web
of Science Core Collection database using the keywords ‘eco-efficiency
analysis’ and ‘Data Envelopment Analysis’ in the topic field yielded 860
results. The search covered publications from 2004 to 2025, highlight-
ing applications across various sectors, including agriculture [47,53],
energy supply [31,33], and supply chain management [41,55]. How-
ever, a notable research gap exists—none of the 860 identified scien-
tific papers establishes a direct connection between eco-efficiency anal-
ysis and temperature alignment. As a result, no studies attempt to con-
nect eco-efficiency findings with global warming indicators, an issue of
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particular importance in sustainability assessments of the retail sector.
Furthermore, as outlined in the introduction, research focusing on eco-
efficiency in food retailing remains limited. A literature search using the
terms ‘environmental efficiency’ OR ‘eco-efficiency’ AND ‘food retailing’
in Web of Science yields only 79 results from 2010 to the beginning of
2025, with a secondary Science Direct search revealing no additional
sources.

The majority of studies on food retail focus on food waste reduc-
tion using various methods, including experiments, simulations, life cy-
cle assessments, and surveys [16,35,45]. Another key research stream
examines the environmental footprint of different supply chain strate-
gies and business models, such as comparing pooling systems, opti-
mizing energy supply strategies, and transportation route optimization
[28,32,43,48,58].

A handful of studies attempt to assess the environmental perfor-
mance of food retailing, but they rely on alternative methodologies such
as life cycle assessments and utility analysis-based benchmarking, rather
than DEA [15,25,26,29]. Notably, Ferreira et al. [26] employed descrip-
tive statistics to establish carbon emission benchmarks for the largest
250 retailers, revealing that best-in-class retail buildings emit less than
115 kg CO, per square meter annually for food retail and below 70 kg for
non-food retail. These benchmarks serve as a useful reference for evalu-
ating the eco-efficiency of food retail, as further discussed in Section 4.1.

Recent studies emphasize the importance of incorporating the Ma-
terial Balance Principle (MBP) into DEA models for more comprehen-
sive assessments of environmental efficiency. Research by Lozano [42],
Arabi et al. [7], and Trang et al. [56] has explored DEA applications
that incorporate undesirable outputs and MBP constraints, offering valu-
able insights into efficiency evaluations in pollution-intensive indus-
tries. This perspective is crucial, as early eco-efficiency analyses that
overlooked the MBP often failed to account for contradictions with fun-
damental physical laws. The pollution-generating technology approach,
which models efficiency by intersecting two production possibility sets
to preserve the MBP, has emerged as a robust methodology for in-
corporating undesirable outputs into DEA models [1,2,18,22,44]. Ad-
ditionally, new studies have incorporated artificial intelligence tech-
niques to enhance the accuracy of predictions in eco-efficiency assess-
ments [4,59]. The integration of stochastic models into DEA frameworks
has also improved the handling of uncertainty in environmental perfor-
mance evaluation [5], which is particularly relevant given the measure-
ment uncertainty (23 %-42 %) associated with food system emissions
[36]. Further, non-radial DEA models have been proposed to better ac-
count for input-output trade-offs, which is crucial in sectors where car-
bon neutrality goals are integral to strategic planning [54].

A significant research gap exists in integrating eco-efficiency assess-
ments with global climate policy objectives that extend beyond merely
reducing carbon emissions. While DEA is commonly used to evaluate ef-
ficiency within operational, financial, or carbon emission reducing con-
texts, it has not been systematically linked to temperature alignment
scores, which measure how well companies align with the Paris Agree-
ment’s 1.5 °C target. This study aims to bridge this gap by applying an
established DEA-based approach to pollution-generating technology in
food retail, while linking eco-efficiency scores with temperature align-
ment scores. This novel integration enables a more comprehensive sus-
tainability assessment, ensuring that efficiency improvements align with
climate action targets.

2. Preliminaries

DEA enables the efficient measurement of multidimensional activ-
ities in comparable profit or non-profit entities, known as decision-
making units (DMUs). However, classical DEA, as introduced by Charnes
et al. [17], is not well-suited for activities involving pollutants, as
these represent a form of joint production [1,18,22,27,44]. To address
this limitation, we adopt an established approach from the DEA liter-
ature—the “pollution-generating technology” framework, primarily de-
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veloped by Murty et al. [44]. Accordingly, Section 2.1 outlines the classi-
cal single-technology DEA approach. Section 2.2 presents our adaptation
of the pollution-generating technology framework to the supermarket
context, leveraging the intersection of two technological perspectives:
one representing business efficiency and the other accounting for envi-
ronmental constraints.

2.1. The classical case of single technologies

In activity analysis, Koopmans [38], Shephard [52], and Deprins
et al. [23] focus on production possibility sets or technologies as de-
scribed by:

T = {(x,y)| y can be realized by x}, (€))

in which xT = (X[seees Xy e s Xpp) € Rf’ is the vector of inputs allowing
the realization of the outputs y* = (. ..., y;. ..., ys) € RS. Accordingly,
Eq. (1) establishes the set of possible activities (x,y) € Rf +Sina general
form without specifying the exact design of 7.

Since Charnes et al. [17] and Banker et al. [9], DEA has been a
meaningful non-parametric instrument for measuring efficiency among
a group (j =1,...,J) of profit or non-profit entities, so-called DMUs,
generating 7 by:

J
T()= {(x, em®Y k2 Y ax,
j=1

where A(t) constrains the intensity variables (4,,...,4;) with which
activities may contribute to constructing comparable activities on the
right-hand side of the inequalities. The specification of A(t) can be con-
vex or non-convex; the two most prominent convex are given in the
following matrix:

Xm

J
V<2 Ay (i) € Am}* @
=1

A(r)
CCR {(Ags s APIA; 2 0V}
BCC {(Ays s APIA; 20 V)5 Z/ A =1)

The acronyms CCR and BCC trace back to their inventors, Charnes,
Cooper, and Rhodes (CCR) and Banker, Charnes, and Cooper (BCC). For
more details on the corresponding axioms and implications, see, e.g.,
Banker et al. [9], Tulkens [57], Kuosmanen [39], Abad and Briec [1],
and Dellnitz and Rodder [21]. Efficiency analysis in the presence of the
above technologies may take different forms depending on the control-
lable parts of the activities and the corresponding efficiency measures;
i.e., such analysis can be based on input and output orientation using ra-
dial, slack-based, or hyperbolic measures; see Charnes et al. [17], Banker
et al. [9], Scheel and Scholtes [51], and Hasannasab et al. [34] again.

Due to the nature of the food retail sector, where outputs depend on
external factors such as the number of consumers that can be reached
and the income levels of customers, they cannot be directly controlled.
As a result, we adopt an input-oriented approach with a classical radial
efficiency measure. Specifically, we focus on input orientation rather
than slack-based or hyperbolic measures, which attempt to optimize
both inputs and outputs simultaneously, for two key reasons:

1. At the operational level of a grocery store, controllable factors pri-
marily include personnel levels and energy intensity related to heat-
ing, cooling, and lighting. These inputs can be adjusted to improve
efficiency.

. In contrast, outputs such as sales volume and customer numbers
are subject to external market conditions and cannot be directly in-
fluenced in the short term. Therefore, they should not be incorpo-
rated into the objective function. Instead, these variables serve to
define the appropriate set of observations for benchmarking, which
we achieve by applying relevant constraints.

We employ a radial efficiency measure because we prefer a conser-
vative estimate that aligns with the logic of a radial approach due to its
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reliance on the Tchebychev norm. This ensures that efficiency evalua-
tions remain prudent by proportionally scaling inputs while maintaining
feasibility within the production possibility set. Formally, for each ac-
tivity (x;,¥;) € [Ri’”s, withk € J = {1, ..., J}, to be evaluated, we need
to solve the following optimization problems or envelopment forms:

min Ay
S t.

X = D, Ajx; 20
z ©)

7
Z Ai¥; 2 Vi
j=1
(Ag1s---» Ag) € A(r) and hy free
Dealing with undesirable or bad outputs (e.g., pollutants or emis-
sions) in efficiency analysis now requires a reformulation of 7 ().
For more details on axioms regarding different modeling techniques,
technology misspecifications, and corresponding properties, see, e.g.,
Forsund [27], Kuosmanen and Matin [40], Kleine et al. [37], Dellnitz
[19], Dellnitz et al. [20], and Abad and Briec [1]. Following the idea of
Baumol and Oates [11], one could treat the bad output like the input:

} N C))

where x € Rﬂ‘f is the vector of inputs as above, but the vector of outputs
y € Rf is now a composition of two vectors y = (y¢, y*), namely the good
outputs y¢ € R** and the bad outputs y* € [be (e.g., pollutants or emis-
sions). This, in turn, leads to the following input-oriented optimization
problems:

J
x>zj P AXG YES YA

T'r) =14 (xy) € RS
T {XY) + |bZZ/.:ll/yj,(}.l,...,}.J)GA(T)

min Ay
S. t

hx, — Z/lij >0

2 Ay} 2

J
Z Ak]y < yk

(Aggs - AkJ) € A(r) and hy, free

This approach is a simple way to deal with bad outputs in macro
analyses [22,27] and, according to Fgrsund [27], can be considered a
“...reduced form of a larger system.” When modeling micro-level activ-
ities, however, this approach is flawed because it contradicts the first
law of thermodynamics: Obviously, one cannot substitute material in-
puts and residuals discharged to the environment—but Eq. (5) and its
dual, if it exists, allow such trade-offs; see Murty et al. [44] again. The
following section shows a modern approach that addresses this short-
coming.

(&)

2.2. The emerging case of pollution-generating technologies

Recently, pollution-generating technologies have been developed to
measure eco-efficiency and avoid unnatural trade-offs between material
inputs and/or outputs and pollutants. These technologies are modeled
as the intersection of an intended production technology 7! and nature’s
residual generation set 72; cf. Murty et al. [44], Dakpo et al. [18], and

Abad and Briec [1]. Consequently, we have:
T n 72(1) ©6)

with x! € Rfl and x% e [R{+M2, x=(x!,x)eRM, and
J

T'(2) = { (x,¥%) € (R)ﬁ“sg|x > ZA,X
Jj=1

J
2 ¥ Al,...,/lj)eA(r)} (7)
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and

Tz(r) — {(xz,yb) e (R)yhsh

J J
YA Y2 Y Ny (2,0 € A(r)} 8)
j=1 J=1
Obviously, 7!(t) establishes the relationship between all inputs x =
(x',x?) and the intended outputs y%. 72(t) on the other hand, repre-
sents the relationship between the inputs x> and the undesirable out-
puts or pollutants y?; hence, x? are the inputs responsible for the emis-
sions. In the residual-generation technology 72(t), the intensity vari-
ables A; v; differ from those of 7!(t). With this formulation, we can
embed various individual extrapolation properties (e.g., CCR or BCC,
etc.) in 7'(t) and 72(t). This nomenclature leads to the input-oriented
optimization problem (9). Here, we adhere to the same reasoning as
outlined in Section 2.1; neither the good nor the bad outputs can be
directly controlled at the operational level. Instead, carbon emission re-
duction is a consequence of input reduction, reinforcing the rationale
for an input-oriented approach.

min Ay
S.t.
J
1 1
Z ﬂijj <x
j=1
J
hxg = Y digx 20
j=1
J
> s = vy ©
j=1
J
X = ), x5 <0
j=1
J
! b b
Z h¥i Vi
j=1
(it oo ) (A5 ,Al’d) € Ar), hy free

When solving the above variant, one obtains the (optimal) radial
reduction potential 4} for the emission-causing inputs of DMU k; it is
a type of technical input efficiency. The (optimal) intensity variables
(A pseees Ap ) (Akl, ,A;(*J), if nonzero, provide information about the
best practlces used to determine this reduction potential. Given the
above rationale—that carbon emission reduction is a consequence of
input reduction—h; does not directly measure the environmental per-
formance of k’s activity. With this in mind, we define environmental
performance based on the achieved emissions of the optimal benchmark
references (/Ikl, s Ay J) (Akl, which are selected according to
the input reduction potential:

A,

Definition 1. Let hy, (/lkl,u ) (ikl, “) be an optimal solu-
tion regarding Eq. (9). The env1ronmental efficiency or eco-efficiency
of DMU k is then defined by

Ty b
: (Zj=1 ’%yj)

HTyl’z

eco, = €1[0,1] (10

with [ being an all-one column vector.

Eq. (10) can vary in [0,1], where O implies a potential for a zero-
emission activity (depending on the alternatives), and 1 means no re-
duction potential in emissions at all. Eq. (10) cannot be greater than 1
due to the restrictions in Eq. (9). However, Eq. (10) is only well defined
if DMU k’s activity is nonzero, i.e., y? > 0 with y? # 0. If DMU k has a
zero-emission activity, then eco, := 0 because DMU k already performs
ecologically efficient. The latter statement does not automatically imply
h}; =1, DMU k can be eco-efficient but still waste inputs.

In linear optimization problems, there may be multiple optima. That
is, in the DEA domain, the optimal objective function value A; is unique
after solving Eq. (9), but the intensities (Akl, “) and (/lkl, s A
can be ambiguous—and hence eco, too. There are several ways to deal
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with such ambiguities in DEA. Here, most approaches are based on a
two-stage procedure: first, optimize the efficiency objective; next, opti-
mize a secondary objective, fixing the optimal value of the first stage. For
some popular approaches, see Banker and Thrall [10], Doyle and Green
[24], and Golany and Yu [30]. We can adapt such a philosophy, calcu-
lating the optimistic and pessimistic values for Eq. (10) via Eq. (11).

min s, and max (Ts,
s.t.
J
Z 2
X
[ an

J
2

kyj t8 =
=1

!
(Feqs -

Using the objective functions of Eq. (11), we push the sum of the
emission slacks—thus controlling the numerator of Eq. (10); the denom-
inator is constant and can, therefore, be neglected. In this new optimiza-
tion problem, the imperative max (min) corresponds to an optimistic (a
pessimistic) estimate that gives the maximum (minimum) gap between
both components of the fraction.

yk

i) €A, 520

Proposition 1. Eq. (11) is a perfect surrogate model to fathom the limits
of Eq. (10).

PROOF. To prove this statement, multiply the group of constraints

Z ' y +s, =y byl"
j=1

constraints corresponding to 7 L(1) in Eq. (9) because (4, ...
unaffected by the optimization of Eq. (11) due to the fixed h;}.

and rearrange. Furthermore, we can neglect the

,Aky) is

Remark 1. The minimization in Eq. (11) can be trivially solved; thus,
the estimated pessimistic emission reduction potential is always zero.

PROOF. To prove this, one chooses the activity of k which leads to
an optimal s, = 0 regardless of the technology assumption.

In the following sections, we address eco-efficiency in food retail and
identify corresponding reduction potentials for 25 grocery stores.

3. Eco-efficiency of grocery stores

Generally, the primary sources of carbon emissions in retail food
buildings stem from heat and electricity consumption, as well as re-
frigeration, particularly when older refrigeration systems require fre-
quent replenishment of harmful coolants [8]. This study analyzes data
from 25 grocery stores, selected based on their participation in a third-
party funded project focused on energy efficiency and emissions re-
duction in the retail sector. The data was collected through a struc-
tured questionnaire distributed to store operators as part of this ini-
tiative (https://www.dbu.de/projektdatenbank/3741701). The dataset,
reflecting store conditions as of 2022, includes the following variables:

= Inputs:
1. Total store area
2. Electricity consumption
3. Heat consumption
4. Coolant refill quantity
= Bad outputs:
5. CO, emissions from electricity consumption
6. CO, emissions from heat consumption
7. CO, emissions of the coolants

The selected stores vary in size, ranging from approximately 1400
m? to over 10,000 m? of total store area, as well as in location and op-
erational characteristics. For instance, heating systems include natural
gas, district heating, and heat pumps, with some stores also utilizing
photovoltaic systems. Additionally, staffing levels range from 10 to 170
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Fig. 1. Technical efficiencies for pure BCC and pure CCR regarding Eq. (9).

full-time equivalents (FTEs). These variations enable a comprehensive
analysis of grocery store building operations, their associated carbon
emission patterns, and potential mitigation strategies within the sector.
For confidentiality reasons, neither the raw data nor detailed descriptive
statistics of the seven variables can be published. However, the follow-
ing matrix presents the correlations among them:

Total Elec Heat Coolant  CO, COy  COq

Area Consum Consum Refill Electricity Heat Coolant
Total Area 1.00 0.79 0.77 0.18 0.68 0.73 0.39
Elec Consumption 0.79  1.00 0.80 0.14 0.97 0.76  0.47
Heat Consumption 0.77  0.80 1.00 0.14 0.75 0.97  0.60
Coolant Refill 0.18 0.14 0.14 1.00 0.07 023  0.14
CO,, Electricity 0.68 0.97 0.75 0.07 1.00 072  0.42
CO, Heat 0.73 0.76 0.97 0.23 0.72 1.00 0.52
CO, Coolant 0.39 047 0.60 0.14 0.42 0.52 1.00

These correlations may facilitate the generation of correlated ran-
dom numbers to validate the accuracy of our results, a common ap-
proach in empirical applications.

Furthermore, it is important to note that we do not have access to
the total sales and staff numbers of the 25 grocery stores. Fortunately,
we have a second data set; it contains more than 1000 entries with sales
area (which is also available for the 25 grocery stores mentioned above),
total sales, and number of employees in full-time equivalents; the cor-
responding correlations can be derived from the following matrix:

Sales area Total sales Full-time equivalents
Sales area 1.0000 0.7494 0.6707
Total sales 0.7494 1.0000 0.6973
Full-time equivalents 0.6707 0.6973 1.0000

Based on the above correlations, we simulate 1000 data tuples per
grocery store—with sales area as the independent variable—to obtain
realistic sales figures and full-time equivalents. We thus complete the
above list:

= Simulated input:

8. Full-time equivalents of staff
= Simulated good output:

9. Total sales

Averaging the stores’ technical efficiencies, see again Eq. (10), over
the 1000 simulations might show a more appropriate overview of the
stores’ improvement potentials. That is, Fig. 1 shows the histogram of
the average technical efficiencies of the 25 DMUs and 1000 scenarios
resulting from Eq. (9) for a BCC-only (the blue bars) and a CCR-only case
(the red bars); i.e., we apply the same technology constraint for both the
intended-production and the nature’s residual-generation technology,
namely, (A, ..., 4¢y) and (4], ..., 4}) € A(x = BCCO) or (4, ..., 4y) and
(4}, .-+, #}) € A(r = CCR). Unsurprisingly, more cases are efficient in the
BCC-only case—this naturally implies the more restrictive technology
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structure in Eq. (9). In the BCC-only case, five grocery stores (Nos. 6,
14, 18, 19, 21) are technically efficient in all scenarios. Three grocery
stores (Nos. 17, 22, 25) are weakly efficient only.

We also calculated efficiency scores under the mixed technology as-
sumptions. However, these results did not provide additional insights,
as they were numerically identical to the pure technology cases. This is
reflected in the following correlation matrix:

BCC-BCC CCR-CCR BCC-CCR CCR-BCC
BCC-BCC 1.0000 0.7035 1.0000 0.7035
CCR-CCR 0.7035 1.0000 0.7035 1.0000
BCC-CCR 1.0000 0.7035 1.0000 0.7035
CCR-BCC 0.7035 1.0000 0.7035 1.0000

Although all constraint groups in Model (9) must be satisfied simul-
taneously, the first three—which govern the use of desirable inputs and
the production of desirable outputs—define the primary production pos-
sibility set and impose the core structural restrictions. In contrast, the
final two constraints, involving an auxiliary weight vector (4}, ..., ),
serve as additional environmental or regulatory filters. While they may
further restrict the feasible region, they do not enlarge it. Thus, from a
structural standpoint, the first three constraint groups are dominant and
effectively determine the applicable production technology.

To keep the results transparent and because of their promising re-
sults to be discussed in Section 4.1, Table 1 presents respective numbers
for the BCC-only and the CCR-only case; furthermore, we add the cor-
responding average optimistic values of the eco-efficiencies calculated
via Eq. (11).

Table 1 shows that the last two columns provide lower bounds for
the first two columns. Store No. 3, for example, can reduce its emissions
to 0.262 of its current level on average—optimistically in the BCC-only
case. In total, the second column of Table 1 reveals that five grocery
stores (Nos. 6, 14, 18, 19, 21) have no potential to reduce energy-related
inputs; this statement remains true even in the optimistic calculations
for five grocery stores (see Nos. 14, 18, 19, 21, 25 in the fourth column)
regarding energy-related carbon emissions. In the CCR-only case, as ex-
pected, nearly all stores’ (eco-)efficiencies decrease. Still, Nos. 18 and
21 remain eco-efficient in all scenarios.

Table 1
Mean eco-efficiencies for 25 grocery stores and different models.

Store BCC-BCC CCR-CCR BCC CCR
Number Eq. (10) Eq. (10) Eq. (11) Eq. (11)
1 0.251 0.216 0.205 0.071
2 0.736 0.235 0.728 0.130
3 0.598 0.491 0.262 0.112
4 0.622 0.209 0.585 0.078
5 0.968 0.914 0.972 0.914
6 1.000 0.229 0.425 0.080
7 0.620 0.205 0.576 0.079
8 0.869 0.356 0.651 0.189
9 0.419 0.289 0.388 0.289
10 0.799 0.474 0.402 0.193
11 0.939 0.491 0.948 0.491
12 0.682 0.450 0.971 0.899
13 0.206 0.177 0.088 0.043
14 1.000 0.807 1.000 0.968
15 0.873 0.847 0.942 0.900
16 0.959 0.897 0.952 0.644
17 0.995 0.973 0.994 0.337
18 1.000 1.000 1.000 1.000
19 1.000 0.854 1.000 0.735
20 0.698 0.224 0.224 0.038
21 1.000 1.000 1.000 1.000
22 0.999 0.420 0.998 0.256
23 0.293 0.263 0.317 0.171
24 0.874 0.688 0.752 0.514
25 0.997 0.993 1.000 0.993
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Now, zooming in on grocery store No. 13, which has a high reduction
potential (optimistic eco-efficiency 0.088), we find that it uses outdated
refrigeration equipment with high levels of environmentally harmful re-
frigerants. DEA recommends replacing this technology with an ecologi-
cally better alternative—a CO, cooling system.

In addition to such technical conversions, however, there is also an
avoidable waste of resources. Store No. 15 has about 14 percent more
retail space than Store No. 18; when checking the remaining slack in
the optimal solution of Eq. (9), however, Store No. 18 consumes more
than 40 percent more electricity and more than 80 percent more heat
energy with comparable technical equipment, which could indicate mis-
management.

The above results illustrate that eco-efficiency is, of course, a ques-
tion of equipment and management. The results of the next section are
linked to a new, emerging metric in the field of sustainability manage-
ment, also known as the temperature alignment score.

4. Temperature alignment and eco-efficiency: a managerial link
4.1. Eco-efficiency and temperature alignment in food retail

The Paris Agreement, adopted in 2015, is a legally binding inter-
national treaty under the United Nations Framework Convention on
Climate Change (UNFCCC). Its primary objective is to mitigate climate
change by significantly reducing greenhouse gas emissions and achiev-
ing net-zero emissions globally by 2050. The 1.5 °C target is particularly
crucial, as scientific research (e.g., IPCC reports) indicates that surpass-
ing this threshold would lead to more severe climate-related impacts, in-
cluding extreme weather events, rising sea levels, and biodiversity loss.

In our project, we also collected temperature alignment scores
from the right based on science GmbH (see https://www.right-
basedonscience.de/) for the 25 grocery stores. These scores, measured in
degrees Celsius, indicate whether a building or business activity aligns
with the Paris Agreement’s goal of limiting global warming to well be-
low 2 °C, preferably 1.5 °C, above pre-industrial levels. That is, tempera-
ture alignment scores serve as an operationalization of science-based tar-
gets, translating carbon emissions trajectories into corresponding global
warming projections. By linking emissions performance to climate out-
comes, these scores provide a meaningful assessment of an entity’s align-
ment with long-term climate goals [12,13,50].

It is essential to note that the models presented in this section are
intended as projection tools, rather than causal frameworks. Their pur-
pose is to estimate the association between variations in observed eco-
efficiency metrics and emission intensities, as well as temperature align-
ment scores, based on the available dataset. These models do not claim a
causal relationship between operational changes and climate outcomes.
Instead, they provide a data-driven, scenario-based approximation to
support science-based target setting and informed decision-making. The
temperature alignment scores used in this study indicate the degree to
which the carbon footprints of the selected grocery stores align with the
Paris Agreement’s climate targets. A score above 1.5 °C suggests that
the store’s operations contribute to global warming beyond the target
threshold, whereas a score below or at 1.5 °C indicates better climate
alignment. These scores provide a science-based metric to assess the
sustainability performance of retail food buildings and help identify po-
tential areas for improvement in reducing emissions. This indicator is
very appealing due to its straightforward design and is currently gain-
ing more and more attention and popularity. Before we turn to the de-
tails, we show the correlations between these temperature values and
the eco-efficiencies from the previous section in Table 2.

Unsurprisingly, our eco-efficiencies are negatively correlated with
the temperature ratings; i.e., if the eco-efficiency score worsens (the
number decreases), so does the temperature rating (the number in-
creases). They are not perfectly correlated because the focus of the
temperature rating is on CO, emissions; additionally, eco-efficiencies
consider both inputs and good outputs of the transformation processes.
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Table 2
Correlations between eco-efficiencies and temperature alignment.
BCC-BCC CCR-CCR BCC CCR Temperature
Eq. (10) Eq. (10) Eq. (11) Eq. (11) alignment
BCC-BCC Eq. (10) 1.000 0.8049 0.9673 0.7726 —0.7604
CCR-CCR Eq. (10) 0.8049 1.000 0.8032 0.9631 —0.7660
BCC Eq. (11) 0.9673 0.8032 1.000 0.8021 -0.7327
CCR Eq. (11) 0.7726 0.9631 0.8021 1.000 —-0.7209
Temperature —0.7604 —0.7660 —0.7327 -0.7209 1.000
alignment

Although the highest correlation with temperature ratings is observed
in the CCR-only case, the corresponding number is unreliable due to
the presence of multiple optima. When examining the correlations as-
sociated with the optimistic eco-efficiencies derived from Eq. (11), the
highest correlation is observed in the BCC-only case (e.g., fourth row
and last column).

Information that is easily interpreted and relates directly to an ac-
tion outcome is needed to achieve acceptance of change. A significant
strand of literature addresses the measurement of (perceived) efficacy
relative to the information available; see Angill-Williams and Davis [6]
and the references therein. DEA, as a mathematical tool, is incapable of
providing this insight since it requires an understanding of linear pro-
gramming. Even if this understanding is present, the relationships be-
tween coefficients, constraints, and objective functions are not always
fully comprehensible in large problem structures. Additionally, the eco-
efficiency indicator calculated in this manner may remain abstract, as it
reflects the potential for resource reduction rather than a direct measure
of environmental outcomes. Therefore, combining DEA as a planning
tool with temperature assessment can help illustrate and communicate
the effects of changes in degrees Celsius. Fig. 2 illustrates the associ-
ation between eco-efficiency scores and temperature alignment, using
projected temperature scores derived from the optimization results of
our DEA models. Specifically, the CCR temperature and BCC tempera-
ture (temp) values represent the estimated temperature alignment scores
obtained after applying efficiency improvements suggested by the CCR
and BCC pollution-generating DEA models, respectively.

To better understand the logic behind Fig. 2, we outline the estima-
tion and calculation steps as follows:

o The original temperature alignment scores for the 25 grocery stores
were obtained from the right based on science GmbH and serve as
the baseline values (red dots) in Fig. 2(a). These scores indicate the
expected contribution of each store’s operations to global warming
in degrees Celsius based on current carbon emissions.

e We applied a linear regression model to estimate the relationship
between carbon intensity (CO, emissions per store area) and tem-
perature alignment scores (represented by blue dots in Fig. 2(a)).
This regression function is used to estimate the association between
emission reductions and temperature alignment within the observed
dataset.

e Next, we calculated eco-efficiency scores using our pollution-
generating DEA models (Eqs. 9-11). These were based on two tech-
nology constellations:

O BCC—where each of the two intersecting technologies applies
the convexity restriction.

O CCR—neither of the two intersecting technologies applies the
convexity restriction.

These models estimate potential CO, reductions by optimizing emis-
sions related to inputs from electricity, heating, and refrigeration sys-
tems.

e Using the regression-derived formula, we projected new temperature
alignment scores based on the efficiency improvements suggested by
the DEA models. The CCR temp and BCC temp values in Fig. 2(b) rep-
resent the estimated temperature alignment scores after applying the
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optimized CO, reductions from the CCR and BCC models, respec-
tively.

Fig. 2(a) demonstrates that the temperature function can be effec-
tively approximated using a linear regression model, due to the nearly
proportional relationship between global temperature change and cu-
mulative CO, emissions (for further justification, see [60]). In this
model, temperature alignment (dependent variable) is predicted using
carbon intensity (CO, emissions per store area, independent variable),
achieving an R? of approximately 0.886, indicating a strong correlation.

Using this relationship, we estimated new temperature scores based
on the average optimistic eco-efficiencies derived from the DEA mod-
els. Fig. 2(b) presents these results, with the horizontal line at 1.5 °C
indicating the upper limit set by the Paris Agreement. Several stores
demonstrate the potential to align their operations with this thresh-
old by adopting practices observed in more energy-efficient peers, such
as upgrading equipment and implementing improved management ap-
proaches. It is worth noting that the temperature scores based on effi-
ciency improvements from the BCC model are equal to or slightly higher
than those from the CCR model. This reflects the BCC model’s generally
higher efficiency scores, which indicate equal or lower potential for fur-
ther improvement. In some cases, such as stores 16, 18, 21, and 25, these
differences are minor and may appear as overlapping values in Fig. 2(b).

Although achieving the 1.5 °C target appears more challenging in
the BCC-only case, it is essential to note that the regression model tends
to overestimate high-temperature scores (as seen in Fig. 2(b)). This
suggests that even more stores could potentially align with the 1.5 °C
target under BCC assumptions after efficiency improvements. Further-
more, Ferreira et al. [26] classify a best-in-class food retail building as
one with a carbon intensity of less than 115 kg CO, per square meter
per year. However, when applying our regression model to this bench-
mark, it yields a temperature alignment score of approximately 3.8 °C,
which is far above the Paris Agreement threshold. This finding chal-
lenges existing classifications of “best-in-class” retail buildings and fur-
ther highlights the value of integrating DEA-based eco-efficiency assess-
ments with temperature alignment modeling.

The following section examines the defining characteristics of Paris
Agreement-compatible grocery stores and explores how targeted opera-
tional improvements can enhance climate alignment.

4.2. Projected results of management measures on temperature alignment

Fig. 2(a) shows that seven grocery stores are already operating be-
low 1.5 °C. Fig. 2(b) illustrates that most grocery stores can achieve
this goal if they optimize eco-efficiency using a CCR-based, pollution-
generating technology. However, the complete transformation of a gro-

252

cery store can imply high investments in new technologies, such as CO,,
cooling or photovoltaic systems. To understand the break-even point
concerning the 1.5 °C limit, we examine how investments in replac-
ing old technologies with new ones are associated with projected out-
comes by comparing our simulated scenarios. Due to data confidentiality
constraints, the original values for total sales and full-time equivalents
could not be disclosed. To overcome this, we implemented a simulation
procedure based on a larger proprietary dataset, using k-means clus-
tering to identify similar entities. For each store, we repeatedly sam-
pled 30 observations from its cluster and re-estimated simple linear re-
gressions to project sales and staffing figures. This procedure was re-
peated 1000 times, generating a distribution of plausible values that
preserves the observed correlation structure and variability of the orig-
inal dataset. To test the robustness of the efficiency scores to the sim-
ulated data, we performed a sensitivity analysis through random sub-
sampling and repeated regression re-estimation. Specifically, for each
simulation run, the sales and personnel variables were recalculated us-
ing a new sub-sample, and the entire DEA procedure was repeated.
We then examined the variability in DEA scores and rankings across
simulations.

The following figures illustrate the eco-efficiency assessment in com-
bination with different energy sources and technology systems, provid-
ing an impression of the effectiveness of various management measures.
Fig. 3(a) shows the histogram of the eco-efficiency scores as a function
of the four electricity source categories: 1 = purchased conventional
electricity, 2 £ purchased conventional electricity in combination with
an on-site photovoltaic system, 3 = purchased green electricity, and 4
= purchased green electricity in combination with a photovoltaic sys-
tem. This figure shows that the less green the electricity source, the
higher the frequencies with little eco-efficiency. In the case of pure con-
ventional electricity, we have a considerable increase in cases with an
eco-efficiency of less than 0.5.

Fig. 3(b) displays the corresponding histogram regarding the four
heating source categories: 1 £ district heating, 2 £ heat pump, 3 = heat
recovery unit, 4 = natural gas. Using a heat pump or a heat recovery unit
corresponds to high eco-efficiencies in our case. In contrast, there is a
wide spread of frequencies for natural gas; in addition, there are more
inefficient than efficient cases. Fig. 3(c) summarizes the eco-efficiency
histogram for the three types of refrigerants: 1 = CO,, 2 £ R404, 3 =
R449A. Interestingly, although the first refrigerant is the most environ-
mentally friendly, there is also widespread use of other refrigerants. This
could be an initial indication that we need to examine pairs of actions
rather than individual actions to achieve eco-efficiency.

We will now evaluate the results conditioned under more than one
measure to assess the above presumption better. Thus, Fig. 4 illustrates
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an eco-efficiency histogram and intensity map regarding five manage-
ment actions: 1 £ {purchased green electricity} A ({heat pump} v {heat
recovery unit}) A {CO, refrigerants}, 2 = {purchased conventional elec-
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tricity} A ({district heating} v {natural gas}) A {CO,, refrigerants}, 3 =
{purchased green electricity} A ({district heating} v {natural gas}) A
{CO, refrigerants}, 4 = {purchased conventional electricity} A ({heat
pump} Vv {heat recovery unit}) A ({R404 refrigerants} v {R449A}), 5 =
{purchased conventional electricity} A ({heat pump} v {heat recovery
unit}) A {CO,, refrigerants}.

The first action implies the most environmentally friendly mea-
sures—and hence, all scenarios lead to eco-efficient solutions; see the
intensity map below the histogram in Fig. 4. However, these may re-
quire significant investments in new technologies, such as heat pumps
and CO, cooling systems, as well as additional costs for purchasing
green electricity. The second measure does not require additional in-
vestment in heating technology, but rather a CO, cooling system that
can be operated without purchasing green electricity. In such cases, the
eco-efficiencies in the corresponding scenarios vary significantly. Ac-
tion three demonstrates that an additional purchase of green electricity
results in high eco-efficiency frequencies and low frequencies in eco-
inefficient scenarios. Actions four and five are interesting, as they show
that investing in heat pumps or a heat recovery system in combination
with a CO, cooling system is nearly a guarantee for eco-efficient scenar-
ios.

However, eco-efficiency is only one side of the coin; we also need to
focus on temperature alignment, as discussed in the preceding section.
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Table 3
Temperature alignments for the five management actions.

Actions Average temperature alignment

1.10°C
3.09°C
1.18°C
2.35°C
2.00 °C

g s wWwN =

In the next step, we calculate the effects on temperature by inferring the
temperature scores that result when management actions one to five are
implemented. Table 3 summarizes the results:

Table 3 shows that if we apply all measures via Action 1, we can
achieve an average temperature value of 1.10 °C, well below the limit
of 1.5 °C set in the Paris Agreement. From an investment perspective,
investing in heat pumps or a heat recovery system in combination with a
CO, cooling system is the most cost-intensive. Still, from an environmen-
tal perspective, it is only a good deal if it is combined with green elec-
tricity. Otherwise, we have only come close to 2.0 °C. Interestingly, com-
bining a CO, cooling system and purchasing green electricity (Action 3)
is associated with the most favorable projected temperature alignment
and requires less investment than Action 5. This result is plausible—as
long as the green electricity is composed of renewables only—because of
the enormous amount of electricity required in supermarkets for lighting
and refrigeration. It would also be interesting to isolate the pure tem-
perature effect of green electricity; however, our data do not yet allow
us to answer this question.

4.3. Limitations of the proposed approach

While this study provides valuable insights into the integration of
eco-efficiency analysis with temperature alignment ratings, several lim-
itations must be acknowledged.

While our simulation approach is grounded in a structured empirical
process, we acknowledge that using generated data introduces inher-
ent uncertainty. To address this, we applied random subsampling with
repeated regression estimation across 1000 iterations, allowing us to
examine the sensitivity of DEA results to fluctuations in the simulated
variables, supporting the internal consistency of our findings. Never-
theless, we caution that point efficiency estimates may be sensitive to
simulation assumptions. As such, interpretations should emphasize gen-
eral trends and comparative insights rather than exact numerical values.
Future work with full access to primary operational data could further
enhance the precision of this analysis.

A primary limitation of this study is the reliance on data col-
lected from a relatively small sample of 25 grocery stores. While the
dataset provides meaningful insights into the relationship between eco-
efficiency and temperature alignment, its generalizability to the broader
food retail sector may be limited. Additionally, some variables, such as
total sales and staff numbers, were imputed based on correlations rather
than directly observed, which introduces potential biases.

The Data Envelopment Analysis (DEA) model applied in this study is
inherently a static efficiency assessment tool. It evaluates performance
based on a single period and does not account for dynamic changes in
store operations, technology adoption, or market conditions over time.
Future research could extend this approach using dynamic DEA mod-
els to capture longitudinal improvements in eco-efficiency and sustain-
ability measures. While the DEA-based application employs a pollution-
generating technology approach to integrate undesirable outputs into
DEA, which ensures adherence to the Material Balance Principle, it
does not account for uncertainties in environmental performance eval-
uations. Stochastic or fuzzy DEA models could be explored in future
studies to enhance robustness under data uncertainty, particularly in
emissions reporting and energy use variations resulting from seasonal
effects.
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Lastly, the temperature alignment scores were estimated using a lin-
ear regression model that linked carbon intensity to global tempera-
ture outcomes. While this approach provides a useful approximation
and exhibits a high correlation with real temperature scores, it does
not account for non-linear climate feedback mechanisms. Future re-
search should consider integrating more complex climate models di-
rectly into DEA frameworks—such as bilevel programming and coun-
terfactual analysis, as suggested by Bogetoft et al. [14]—to refine tem-
perature alignment assessments.

Despite these limitations, this study presents a novel first applica-
tion that links eco-efficiency analysis with climate alignment metrics.
Addressing the identified limitations through improved data collection,
dynamic modeling approaches, and a broader range of sustainability
measures can enhance the relevance and applicability of this research
for informing corporate sustainability strategies.

5. Conclusions

This paper presents a pioneering application that integrates eco-
efficiency analysis with temperature alignment ratings, providing a com-
prehensive approach to assessing the environmental performance of gro-
cery stores. By linking eco-efficiency scores to temperature alignment,
our study presents a novel approach to evaluate how operational effi-
ciency improvements contribute to climate objectives, particularly the
1.5 °C target established by the Paris Agreement.

From a practical perspective, our findings indicate that most of
the 25 grocery stores analyzed can enhance their temperature align-
ment with this target through strategic operational adjustments, such as
upgrading refrigeration systems, optimizing energy consumption, and
transitioning to greener electricity sources. These insights offer action-
able guidance for store operators, policymakers, and sustainability man-
agers aiming to reduce carbon emissions in the retail sector. On a the-
oretical level, our study extends the application of pollution-generating
technology within a DEA framework, demonstrating its effectiveness in
linking efficiency metrics with climate policy objectives. Unlike con-
ventional DEA models, our approach considers temperature alignment
as an additional sustainability criterion, broadening the scope of eco-
efficiency analysis in the food retail sector.

Future research could explore model enhancements, such as incorpo-
rating stochastic variations in energy consumption or integrating multi-
objective optimization methods, to further refine the robustness and ap-
plicability of this approach. By advancing the intersection of efficiency
analysis and climate alignment, this study provides a solid foundation
for future sustainability assessments in the food retail industry.
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