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Abstract: The conventional paradigm in data envelopment analysis (DEA) is 
to develop an efficiency measurement model that assumes the input and output 
data are precise and equal to some nominal values. However, this paradigm 
does not take into consideration the inherent uncertainties in real-life 
performance measurement problems. As a result of these uncertainties, the 
input and output data may take non-nominal values and violate the basic 
assumptions in DEA. This phenomenon has motivated us to design a DEA 
model that is ‘robust’ and immune to uncertain data. We present a robust DEA 
model with a common set of weights (CSWs) under varying degrees of 
conservatism and data uncertainty. We use goal programming (GP) and 
compute the relative efficiencies of the decision making units (DMUs) by 
producing CSWs in one run. The proposed model uses a confidence criterion to 
produce a ranking of the DMUs and determine a set of efficient DMUs. We 
present a numerical example and a case study to exhibit the efficacy of the 
procedures and to demonstrate the applicability of the proposed method to a 
performance measurement problem in the banking industry. [Received  
13 December 2014; Revised 13 August 2015; Accepted 19 January 2016] 
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1 Introduction 

Data envelopment analysis (DEA) is a widely used non-parametric mathematical 
programming approach for evaluating the relative efficiency of decision making units 
(DMUs) in organisations. Non-parametric frontier analysis was initially introduced by 
Farrell (1957) and later developed into DEA by Charnes et al. (1978). The Charnes  
et al.’s (1978) model, called the CCR model, is also known as a constant returns to scale 
(CRS) DEA model. DEA does not require the assignment of predetermined weights to 
the input and output indices. DEA has been used in evaluating DMUs and computing the 
efficiency score in various organisations and industries including the energy and power 
industry (Lo et al., 2001; Sueyoshi and Goto, 2001; Chien et al., 2003; Fallahi et al., 
2011), education (Sarricl et al., 1997), research and development (Chen et al., 2004), 



   

 

   

   
 

   

   

 

   

    Robust efficiency measurement with common set of weights 387    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

healthcare (Bannick and Ozcan, 1995; De Nicola et al., 2012), banking (Schaffnit et al., 
1997; Seiford and Zhu 1999; Ebrahimnejad et al., 2014), and military (Charnes et al., 
1985; Sutton and Dimitrov, 2013) among others. Further reviews and additional 
applications are provided by Charnes et al. (1994), Seiford (1997), and Cook and Seiford 
(2009). 

In conventional DEA models, each DMU is evaluated by its own weight. The 
advantage of this approach is that each DMU can augment its efficiency using suitable 
weights compared to the other DMUs, while the disadvantage is that solving different 
models provide different weights for the inputs and outputs. This may not be rational and 
acceptable by a decision maker because of the variation between the weights. To 
overcome this problem, several methods have been proposed in the DEA literature. Cook 
et al. (1990) and Roll et al. (1991) were among the first who introduced a common set of 
weights (CSWs) in DEA models for evaluating highway maintenance units. The role of 
multiplier bounds in calculating the efficiency score of DMUs was presented by 
Thompson et al. (1990). They described a special case of an assurance region to construct 
linear homogeneous conditions on the multipliers in efficiency analysis. Cook and Kress 
(1990, 1991) proposed a subjective ordinal preference ranking based on DEA in the 
presence of upper and lower bounds on the weights. Hosseinzadeh Lotfi et al. (2000) and 
Jahanshahloo et al. (2005) worked on two different DEA models with CSWs in which the 
efficiency of DMUs could be obtained by a nonlinear programming problem instead of 
solving n linear programming models. Hosseinzadeh Lotfi et al. (2000) utilised the 
concept of multi objective programming and obtained the efficiency score of all the 
DMUs using CSWs. Jahanshahloo et al. (2005) introduced an approach based on the 
concept of CSWs and ranked efficient DMUs in a two-step process to measure the 
efficiency scores. Amin and Toloo (2007) presented a model capable of finding the most 
efficient DMUs using CSWs. Davoodi and Zhiani Rezai (2011) suggested a CSWs 
method for solving a linear programming problem and calculating the efficiency scores 
and rankings of all the DMUs. 

The uncertainty of data in traditional DEA models is ignored. These models consider 
the best estimation of the required data known as nominal data. However, these models 
may involve a perturbation in the nominal data, which in turn violates several constraints. 
Consequently, the optimal solution obtained using the nominal data may no longer be 
optimal or even feasible. To cope with this problem, researchers have focused on the 
theoretical developments of techniques using uncertain data. In many real-life 
applications with uncertain data, the distribution of data is not known and only two 
extreme points of a range may be available for inclusion in the model. Despotis and 
Smirlis (2002) presented two models using interval data for computing the upper and 
lower bounds of the efficiency scores of each DMU, which are known as the optimistic 
and pessimistic cases, respectively. Wang et al. (2005) proposed another pair of interval 
DEA models for measuring the efficiencies of DMUs by using a fixed production 
frontier. Jahanshahloo et al. (2004) determined the radius of stability for all DMUs using 
interval data and showed that the original classification remained unchanged under 
perturbations of data. Park (2007) considered the same classification as that of Despotis 
and Smirlis (2002) but in a more general structure of imprecise data consisting of any 
combination of bounded and ordinal data. 

Another approach for dealing with uncertain data is known as the robust optimisation 
method. This approach uses an uncertain but bounded data model. Indeed, robust 
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optimisation constructs a solution that is optimal for any realisation of the uncertainty in a 
given set. The first step in this approach was taken by Soyster (1973) who considered a 
linear optimisation model to obtain a solution that is feasible for all data lying in a convex 
set. Recent works using this general approach include Ben-Tal and Nemirovski (1998, 
1999, 2000), El-Ghaoui and Lebret (1997), and El-Ghaoui et al. (1998). Bertsimas and 
Sim (2004) proposed a different approach of robust optimisation to control the level of 
conservatism in the robust solution in terms of probabilistic bounds of constraint 
violations. Sadjadi and Omrani (2008) proposed a robust DEA model assuming 
uncertainty for the output parameters. Based on a robust optimisation model, Shokouhi  
et al. (2010) proposed a robust DEA model in which the input and output parameters vary 
only in a certain range. It should be noted that this method completely covers the interval 
approach presented by Despotis and Smirlis (2002). 

Omrani (2013) introduced a robust optimisation method for finding CSWs in DEA 
with uncertain input and output data. He first solved the proposed robust DEA model and 
found the ideal solution for each DMU. He then found the CSWs for all the DMUs by 
utilising a goal programming approach. Avkiran (2015) studied dynamic network DEA in 
commercial banking with emphasis on testing robustness. He conceptualised a bank 
network as comprised of two divisions and used robustness testing to discuss 
discrimination by the dimensionality of the performance model, efficiency estimates, 
stability of estimates through re-sampling, and sensitivity of results to divisional weights 
and returns-to-scale assumptions. Ghahtarani and Najafi (2013) used goal programming 
and proposed a robust optimisation model for the portfolio selection problem. They used 
robust optimisation to deal with uncertain parameters and guarantee the feasibility of the 
solutions. Mardani and Salarpour (2015) proposed a DEA model with uncertain data to 
analyse the technical and scale efficiency in agriculture. They also used a Monte Carlo 
simulation to compute the conformity of the rankings obtained from their robust DEA 
model. Hafezalkotob et al. (2015) proposed a robust DEA model to investigate the 
efficiencies of DMUs when there are discrete uncertain input and output data. Their 
method is based on the discrete robust optimisation approach proposed by Mulvey et al. 
(1995) that utilises probable scenarios for capturing the effects of uncertain data. Lu 
(2015) developed robust DEA models by representing uncertain outputs with uncertainty 
sets and maximising the DMUs’ worst-case efficiencies with respect to their uncertainty 
set. A genetic algorithm and a set of parameter settings of a simulated annealing heuristic 
were used to evaluate the robustness of the models. 

In this paper, we present a robust DEA model with CSWs under adjusting degrees of 
conservatism and data uncertainty. A new model is proposed to measure the efficiency of 
DMUs with CSWs, where inputs and outputs can vary in an interval. Initially, the relative 
efficiency of DMUs are computed by goal programming (GP) and a confidence criterion 
ranks the DMUs to determine the efficient units. Then, a novel model based on the 
adjusting degrees of conservatism is presented. DMUs are evaluated by the same 
production possibility set (PPS) using a conservatism level determined for each input and 
output. The proposed GP model is solved only once to determine the efficiency of all the 
DMUs. Moreover, the obtained efficiency can be considered as a method for ranking 
DMUs because of the availability of the CSWs. Because the data varies in an interval, 
DMUs can be divided into a set of efficient DMUs or inefficient DMUs for some values 
of the interval with a confidence criterion. Numerical examples demonstrate the efficacy 
and applicability of the proposed model. 
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The rest of the paper is organised as follows. In Section 2 we present some 
preliminary concepts. In Section 3 we present the details of the model proposed in this 
study. We present a numerical example and a case study in Section 4 to exhibit the 
efficacy of the procedures and to demonstrate the applicability of the proposed method to 
a performance measurement problem in the banking industry. Finally, Section 5 presents 
our conclusions and future research directions. 

2 Preliminaries 

Assume that there are n DMUs under consideration with m inputs and s outputs. Relative 
efficiency is defined as the ratio of total weighted outputs to total weighted inputs, i.e., 
the efficiency score of DMUo is given as follows: 
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where ur and vi are the non-negative weight factors. Charnes et al. (1978) utilised the 
following model to compute the CCR-efficiency score of DMUo. 
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where ε is a non-Archimedean number. The optimal objective value of model (2) ranges 
between 0 and 1. DMUo is called CCR-efficient if and only if the optimal objective value 
of model (2) obtains a score of 1 (Charnes et al., 1978). Note that the abovementioned 
model is used in a fractional programming problem. This model can be converted to a 
linear programming problem via the transformation approach proposed by Chanes and 
Cooper (1962) as follows: 
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Model (3) seeks input and output weights that maximise the efficiency score of DMUo. 
constraint (3a) is a normalisation constraint and constraints (3b) guarantee DMUs place 
in PPS. Because there are no restrictions on the multipliers in model (3), a set of 
unbounded input and output weights is involved. One of the drawbacks associated with 
the CCR model is that it obtains a set of different weights for different DMUs. 
Consequently, the DMUs cannot be compared appropriately and an acceptable economic 
interpretation cannot be presented. Several methods have been proposed to deal with 
these drawbacks. The weights obtained by model (3) can be used in the cross-efficiency 
method to identify the rankings of the DMUs. The CSWs in DEA is one approach for 
ensuring that all the DMUs are evaluated with unique weights. Using this method, only 
one model is solved to calculate the efficiency score of the DMUs (in the most optimal 
fashion). In this case, the following multi-objective fractional programming (MOFP) 
problem can be applied to maximise the efficiency score of all the DMUs simultaneously: 
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There are several methods for solving the above MOFP problem (e.g., Chankong and 
Haimes, 1983; Hwang and Masud, 1979; Marler and Arora, 2004; Sawaragi et al., 1985; 
Steuer, 1986). The following GP based model proposed by Liu and Peng (2008) is 
introduced here to simultaneously maximise the efficiency of the DMUs with CSWs: 
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where jδ−  and jδ+  are the negative and positive deviations of the jth goal, respectively, 
and the goals for the objective functions are considered to be one. Therefore, the DMUs 
should minimise the sum of the total virtual gaps to the benchmarking frontier by adding 

jδ+  to 
1
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 for each DMU 

such that the efficiency value of the DMUs approaches one. The following linear 
programming model is presented by converting model (5) to linear form using the cross-
multiplication method: 
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Model (6) can be written as model (7) by setting ,j jjδ δ δ j+ −= + ∀  as follows: 
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It is clear that constraints (7b) are redundant because of constraints (7a). 

Definition 1: DMUj is efficient if and only if * 0jδ =  in model (7). We can also calculate 
the efficiency scores of DMUj as follows: 

Let * * *( , , )r i ju v δ  be the optimal solution of model (7), then the efficiency scores of DMUj 
can be obtained as follows: 
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Definition 2: DMUj is efficient if and only if in equation (8), ej = 1. 

3 Proposed performance measurement model 

In this section we formulate a model to measure the efficiency of DMUs with CSWs 
where the input and output data belong to intervals. Assume that there are n DMUs under 
consideration with m inputs and s outputs. Let the observed input and output vectors of 
DMUo be xj = (x1j, x2j,…,xmj) and yj = (y1j, y2j,…, ysj), respectively, where all components 
of vectors xj and yj for all DMUs are non-negative, and each DMU has at least one strictly 
positive input and output. It is assumed that the input and output values of each DMUj is 
located in a certain interval, where L

ijx  and U
ijx  are the lower and upper bounds of the ith 

input, respectively, and L
rjy  and U

rjy  are the lower and upper bounds of the rth output, 

respectively, that is to say, [ , ]L U
ij ij ijx x x∈  and [ , ].L U

rj rj rjy y y∈  
The interval of the uncertain input and output data are used for sensitivity analysis 

and historical records. The sensitivity analysis explores and quantifies the impact of 
possible errors in the data on the system performance indices. On the other hand, the 
historical records of the system can determine an interval of uncertain data by applying 
an expert system or calculating uncertainty as a confidence interval. In addition, the  
non-negative weights ur and vi are associated with output r and input i, respectively. Let 

x
jJ  and y

jJ  denote the set of indices of the interval input and output parameters for 
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DMUj, respectively. In real-life problems, it is unlikely for all uncertain data to be equal 
to their nominal value or values in their intervals. Therefore, it is desirable to be 
conservative and measure the efficiency score of the DMUs with interval data. Hence, 
values [0,| |], 1, ,x x

j jγ J j n∈ = …  and [0, | |], 1, ,y y
j jγ J j n∈ = …  are defined such that x

jJ  

and y
jJ  are the set of indices of the interval input and output parameters for DMUj, 

respectively. In addition, x
jγ  and y

jγ  are not necessarily integer-valued. 

The parameters x
jγ  and y

jγ  are used to adjust the robustness of the proposed method 
against the level of conservatism of the solution. Indeed, they impose a budget of 
uncertainty in the sense that the total (scaled) variation of the parameters cannot exceed 
some thresholds | |x

jJ  and | | .y
jJ  The variables prj, qij, x

jz  and y
jz  are auxiliary variables 

used to ensure the inputs and outputs can take fixed values in their intervals. The 
deviations from the benchmarking frontier is defined by ρj. 

Then, model (7) can be written as follows: 
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In comparison with model (7), model (9) is obtained by considering the variables prj, qij, 
, yx

j jz z  and the parameters x
jγ  and y

jγ . Consequently, the inputs and outputs can take 

fixed values in their intervals by varying x
jγ  and y

jγ  from zero to | |x
jJ  and | |,y

jJ  
respectively. In fact, the efficiency score of DMUs is computed using a CSW and the 
conservatism level. The objective function of the model (9) minimises the sum of 
deviations from the efficiencies for all the DMUs. Constraints (9a) guarantee that all the 
DMUs lie on the same side of the hyperplane and calculate the CSWs in the model in 
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relation to output y. Constraints (9b), (9c), (9f) and (9h) control the level of conservatism 
in the solution and guarantee that the input and output data are within their interval. 
According to constraints (9b) and (9c), we have .y yL U

rj rjrj rj rj jy y y z γ p≤ ≤ − −  By setting 

0,y
jγ =  this relation becomes .L U

rj rjrj rjy y y p≤ ≤ −  Because prj can be equal to zero due 

to constraints (9f) and (9h), the relation L U
rjrj rjy y y≤ ≤ can be obtained (i.e., U

rjy can be the 

maximum value of yrj). Moreover, if | |,y y
j jγ J=  then by using constraints (9i) and (9d), 

the value of y y
rjrj jz γ p+  increases and becomes equal to .L

rjy  In additional, if 

| | 1,y y
j jγ J= =  then we have .y U L

rjrj rj rjz p y y+ = −  Assuming 0 | |,y y
j jγ J< <  then model 

(9) can be used to determine U
rjy  as the maximum value of yrj using constraints (9f) and 

(9h). If there exists some t such that 0y
tjtjz p= =  and constraints (9h) are satisfied, then, 

0y
jz ≠  and there exists an output of DMUj, ,y

ljz  such that 0y
ljz ≠  because of  

constraints (9f). Therefore, we have 0y y
ljjljz γ p+ ≠  and U

lj ljy y<  using constraints (9b). 

Note that the non-zero value of the parameters y
jγ  is imposed on the lth output of DMUj. 

Constraints (9d), (9e), (9g), and (9i) have the same interpretation as constraints (9b), (9c), 
(9f) and (9h). 

Theorem 1: Model (9) is always feasible. 

Proof: Assuming 0, , , 0,y yx x U L U L
ij rj jij rj j j ij ij rj rjz z z z q x x p y y ρ= = = = = − = − =  we can 

obtain U
ij ijx x≥  and U

ij ijx x≤  using constraints (9d) and (9e), respectively. Similarly, can 

obtain L
rj rjy y≤  and L

rj rjy y≥  using constraints (9b) and (9c), respectively. Therefore, 

U
ij ijx x=  and .L

rj rjy y=  By setting 1
ij U

ij
v

x
=  and 1 ,rj L

rj
u

y
=  the proof is completed.  

Theorem 2: If x x
j jγ γ<  and y y

j jγ γ<  then ( , ) ( , ).y yx x
j j j jη γ γ η γ γ≤  

Proof: Since constraints (9a), (9c), (9e), (9f), (9g), (9h) and (9i) are independent of 
( , )yx

j jγ γ  and ( , ),yx
j jγ γ  it is sufficient that constraints (9b) and (9c) are considered. 

Let ( , , , , , , , , , , )yx x x
rj ij ij rj ij rj jj j ij rju v z z z z q p x y ρ  and ( , , , , , , , , ,yx x x

rj ij ij rj ijj j ij rju v z z z z q p x  

, )rj jy ρ  be optimal solutions for ( , )yx
j jγ γ  and ( , ),yx

j jγ γ  respectively. Then, the relation 
y y y yU U

rj rj rj rjrj rj j rj rj jy y z γ p y y z γ p− − − ≥ − − −  is established because of (9j) and (9k), and 

.y y
j jγ γ<  Similarly, we can obtain .L x x L x x

ij ij ij ijij ij j ij ij jx x z γ q x x z γ q− + + ≤ − + +  Hence, 

( , , , , , , , , , , )yx x x
rj ij ij rj ij rj jj j ij rju v z z z z q p x y ρ  is a feasible solution for the case ( , )yx

j jγ γ  

and ( , ).yx
j jγ γ  Thus, we can obtain the inequality ( , ) ( , ).y yx x

j j j jη γ γ η γ γ≤   

Corollary 1: ( | |, | |) ( 0, 0)y y yx x x
j j j j j jη γ J γ J η γ γ= = ≥ = =  
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Theorem 3: Let ** * * * * * * * * *( , , , , , , , , , , )yx x x
rj ij ij rj ij rj jj j ij rju v z z z z q p x y ρ  be the optimal solution of 

models (9). Then, there is j  ∈ {1,…,n} such that * 0.jρ =  

Proof: By contradiction, suppose * 0.jρ ≠  Therefore, there is a feasible solution *( , ,rj iju v  
** * * * * * *, , , , , , , , )yx x x

ij rj ij rj jj j ij rjz z z z q p x y ρ  such that * .rjrju u>  Consequently, the relation 

* * * * * * *

1 1 1 1
rj i ij r rj i ij

s m s m

r
r i r i

u y v x u y v x
= = = =

− > −∑ ∑ ∑ ∑  is obtained. Therefore jρ can be decreased as 

*( 0) .j jρ ρ= <  This is a contradiction and completes the proof.  

Theorem 4: The hyperplane obtained from model (9) is supporting. 

Proof: We have to demonstrate that all the DMUs lie on the same side of the hyperplane 
and there is at least one DMU on the hyperplane. Constraints (9a) guarantee that all 
DMUs lie on the same side of the hyperplane. According to Theorem 3, there is at least 
one optimal solution ** * * * * * * * * *( , , , , , , , , , , )yx x x

rj ij ij rj ij rj jj j ij rju v z z z z q p x y ρ  with * 0,jρ =  ensuring 
the existence of a DMU on the hyperplane.  

Theorem 5: DMUj is efficient if and only if * 0jρ =  in model (9). 

Proof: (If only part): Suppose that DMUj is efficient. Because of Theorem 4, there is a 
binding hyperplane. In other words, DMUj is a boundary point and therefore * 0.jρ =  

(If part): We prove that if DMUj is efficient, then * 0jρ =  in model (9). 

In order to prove this, we can prove its contrapositive, that if DMUj is inefficient then 
* 0jρ ≠  in model (9). 

Assume that DMUj is inefficient and therefore an interior point. Thus there is no binding 
hyperplane in DMUj implying that * 0.jρ ≠   

We can calculate the efficiency scores of DMUj. Assuming ** * * * *( , , , , , ,yx x x
r i j j ij rju v z z z z  

* * * * *, , , , )ij rj ij rj jq p x y ρ  to be the optimal solution of model (9), then the efficiency scores of 
DMUj can be obtained as follows: 

*
*

1

* *

1 1

1 , .
r

s

r
jr

j m m

i i i i
i i

u y
ρ

E j
v x v x

=

= =

= = − ∀
∑

∑ ∑
 (10) 

Corollary 2: DMUj is efficient if and only if Ej = 1 in equation (10). 

Each DMU can be categorised as either efficient or inefficient because model (9) presents 
different values for all inputs and outputs using Γ variation, Γ(= γx + γy). Hence, a set of 
efficient DMUs are introduced to identify the confidence criterion of inefficient DMUs 
belonging to the efficient set. Note that some DMUs may be efficient for all conservatism 
levels and the others may be inefficient. Moreover, there may exist DMUs that are 
efficient and inefficient corresponding to their conservatism level. Therefore, the 
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definition of this set is important. Let Γe be a conservatism level in which a DMU 
assumes an efficiency score less than unity. When a DMU is inefficient for Γe, it cannot 
be efficient for Γ greater than Γ because of Theorem 2. All DMUs that are efficient for all 
Γ’s have a confidence criterion of 100%. It is evident that the confidence criterion of 
DMUs is decreased when their efficiency scores are reduced from unity. The confidence 

criterion of the DMUs can be calculated by the relation Γ 100.
| |

e

J
×  

4 Numerical results 

In this section, we demonstrate the practical aspects of the proposed model with an 
example and a real-life problem. In the first example, a problem is considered with five 
DMUs, one interval input, and one interval output. The interval input and output data are 
given in Table 1 and Figure 1. 

Figure 1 Input and output data for five DMUS (see online version for colours) 

 

Table 1 Input and output data for five DMUs 

DMUj x y 

1 [0.75, 1.05] [9.00, 10.00] 
2 [1.25, 1.50] [1.00, 11.30] 
3 [1.20, 1.75] [6.00, 7.50] 
4 [1.10, 1.60] [2.00, 9.00] 
5 [0.80, 1.40] [3.00, 8.00] 



   

 

   

   
 

   

   

 

   

    Robust efficiency measurement with common set of weights 397    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

As previously mentioned, when Γ = 0, model (9) can take the input and output values for 
each DMU in the associated intervals in such a way that the sum of efficiency scores of 
the DMUs is maximised. As seen in Figure 1, DMUs 1, 2, and 5 obtain the input and 
output values in such a way that the sum of the efficiency scores is maximised and these 
DMUs remain efficient. All inputs and outputs take their lowest boundary value when has 
Γ its minimum value. However, as the value of Γ is between 0 and 2, the model can 
compute the corresponding input and output values. 

Model (9) was run for different combinations of ( )x x
jγ γ=  and ( ),y y

jγ γ=  and a fixed 

Γ( ),x yγ γ= +  using the generalised algebraic modelling system (GAMS) and 610 .ε −=  

As mentioned before, the parameters x
jγ  and y

jγ  (and consequently parameter 

Γ )x yγ γ= +  are intended to adjust the robustness of the proposed method against the 
level of conservatism of the solution. Bertsimas and Sim (2004) have shown that it is 
sufficient to choose x

jγ  and y
jγ  at least equal to 11 Φ (1 ) ,iθ n−+ −  where Φ is the 

cumulative distribution function of the standard normal variable and ni is the number of 
uncertain data. In each case, the efficiency scores were obtained for the five DMUs. The 
efficiency scores of these DMUs are shown in Figure 2 for all possible γx and γy such that 
Γ = γx + γy. It is clear that there are many γx and γy so that Γ = γx + γy where 0 < Γ < 2. 
Therefore, the efficiency scores of each DMU were calculated for all possible cases. 

Figure 2 Efficiency scores of five DMUS (see online version for colours) 

 

In the second example, the model proposed in this study was used to solve the real-life 
performance measurement problem in Jahanshahloo et al. (2009). Jahanshahloo et al. 
(2009) studied the performance of 14 commercial bank branches in Iran. Each branch 
uses three inputs in order to produce five outputs. The inputs and outputs data for these 
DMUs are given in Tables 2 and 3, respectively. 
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Table 2 Input data for 14 bank branches 

DMUj 
1 

 
2 

 
3 

Lower Upper Lower Upper Lower Upper 

1 587.69 1,205.47  27.29 27.48  27,827 29,005 

2 4,646.39 9,559.61  24.52 25.07  9,070 9,983 

3 1,554.29 3,427.89  20.47 21.59  412,036 413,902 

4 17,528.31 36,297.54  14.84 15.05  8,638 10,229 

5 2,444.34 4,955.78  20.42 20.54  500 937 

6 7,303.27 14,178.11  22.87 23.19  16,148 21,353 

7 9,852.15 19,742.89  18.47 21.83  17,163 17,290 

8 4,540.75 9,312.24  22.83 23.96  17,918 17,964 

9 3,039.58 6,304.01  39.32 39.86  51,582 55,136 

10 6,585.81 13,453.58  25.57 26.52  20,975 23,992 

11 4,209.18 8,603.79  27.59 27.95  41,960 43,103 

12 1,015.52 2,037.82  13.63 13.93  18,641 19,354 

13 5,800.38 11,875.39  27.12 27.26  19,500 19,569 

14 1,445.68 2,922.15  28.96 28.96  31,700 32,061 

Model (9) was run for different combinations of x
jγ  and ,y

jγ  assuming a fixed Γ value 
and ε = 10–8. In each case, the efficiency scores were obtained for the 14 DMUs. The 
efficiency scores of all the DMUs are shown in Figure 3 for all possible x

jγ  and .y
jγ  The 

value of Γ lies between [0,8] and increases by 0.2 in each step. The efficiency score of 
the branches is computed for all γx and γy such that Γ = γx + γy. It is evident that DMUs 1, 
3, 4 and 11 are efficient for all Γ’s; however, there are also DMUs that are inefficient for 
all Γ’s (i.e., DMUs 6, 7, and 11). In addition, some DMUs have become inefficient when 
Γ is increased. DMUs 1, 3, 4, and 11 belong to the efficient set with the confidence 
criterion that is equal to 100%. Note that the confidence criterion of the inefficient DMUs 
belonging to the efficient set was increased when Γe becomes larger. 

To evaluate the performance of the proposed model, the results obtained from the 
proposed method are compared with models presented by Kao and Hung (2005), Liu and 
Peng (2008), and Omrani (2013). Kao and Hung (2005) proposed the concept of 
compromise solution and obtained an ideal solution by using standard DEA models and 
generating CSWs based on the vector of efficiency score closet to the ideal solution. 
Omrani (2013) introduced a robust optimisation approach to find the CSWs in DEA with 
uncertain data. In this study, we consider a numerical example used by Kao and Hung 
(2005). In this example, there are 17 forest districts; four inputs: budget (in US dollars), 
initial stocking (in cubic metres), labour (in number of employees), land (in hectares); 
and three outputs: main product (in cubic metres), soil conservation (in cubic metres), 
and recreation (in number of visits). The data are shown in Table 4. 
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Table 3 Output data for 14 bank branches 
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Figure 3 Efficiency scores of 14 DMUS (see online version for colours) 

 

Table 4 Kao and Hung’s (2005) data 

DMU 

Input Output 
Budget 

(US 
dollars) 

Initial 
stocking 

(m3) 

Labour 
(employees) 

Land 
(hectares)

Main 
product 

(m3) 

Soil 
conservation 

(m3 ) 

Recreation 
(visits) 

1 51.62 11.23 49.22 33.52 40.49 14.89 3,166.71 
2 85.78 123.98 55.13 108.46 43.51 173.93 6.45 
3 66.65 104.18 257.09 13.65 139.74 115.96 0 
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Table 4 Kao and Hung’s (2005) data (continued) 

DMU 

Input Output 
Budget 

(US 
dollars) 

Initial 
stocking 

(m3) 

Labour 
(employees) 

Land 
(hectares)

Main 
product 

(m3) 

Soil 
conservation 

(m3 ) 

Recreation 
(visits) 

4 27.87 107.6 14 146.43 25.47 131.79 0 
5 51.28 117.51 32.07 84.5 46.2 144.99 0 
6 36.05 193.32 59.52 8.23 46.88 190.77 822.92 
7 25.83 105.8 9.51 227.2 19.4 120.09 0 
8 123.02 82.44 87.35 98.8 43.33 125.84 404.69 
9 61.95 99.77 33 86.37 45.43 79.6 1252.6 
10 80.33 104.65 53.3 79.06 27.28 132.49 42.67 
11 205.92 183.49 144.16 59.66 14.09 196.29 16.15 
12 82.09 104.94 46.51 127.28 44.87 108.53 0 
13 202.21 187.74 149.39 93.65 44.97 184.77 0 
14 67.55 82.83 44.37 60.85 26.04 85 23.95 
15 72.6 132.73 44.67 173.48 5.55 135.65 24.13 
16 84.83 104.28 159.12 171.11 11.53 110.22 49.09 
17 71.77 88.16 69.19 123.14 44.83 74.54 6.14 

It is supposed that the input and output data values lie within 5% of the nominal value. 
For example, the value 4 is in the interval [3.80–4.20]. To analyse the sensitivity of the 
solution, the values of x

jγ  and y
jγ  are set to 1 and 3. The results of the models CCR 

(Mosel 4), Kao and Hung’s (2005) model, Liu and Peng’s (2008) model, Omrani’s 
(2013) model and our model (9) are shown in Table 5. The CCR-efficiency scores of 
DMUs calculated from the CCR ratio model (4) are shown in the first column of Table 5. 
These scores are considered as the ideal solutions because of their highest attainable 
values. There are nine efficient units, which cannot be differentiated. The second column 
of Table 5 shows the efficiency scores calculated from Kao and Hung’s (2005) model. 
Here, the Euclidean distance is taken into consideration in Kao and Hung’s (2005) model. 
The third column of Table 5 presents the results obtained from Omrani’s (2013) model in 
which Γ is the total of the uncertain parameters. The results obtained from the proposed 
model are shown in the last two columns in Table 5. 

As expected, the CCR model has the largest average efficiency score of 0.91, while 
other models have smaller values. The proposed model also has the smallest variance for 
the efficiency deviations of the DMUs. The calculated efficiency scores of the proposed 
method are suitable for ranking of the DMUs. In general, the rankings of the DMUs in 
model (9), as shown in Table 5, are consistent with those of the CCR model, indicating 
that the results are reasonable. Moreover, the efficiency scores reported by model (9) are 
more informative because they not only differentiate the efficient units, but also identify 
some abnormal efficiency scores calculated from the CCR model. As shown in Table 5, 
when the values of the parameters x

jγ  and y
jγ  increase, the values of efficiency scores 

will decrease because by increasing the parameters x
jγ  and ,y

jγ  the protection level 
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against violation is increased and less value is obtained from the objective function. 
These results confirm conclusions obtained by Bertsimas and Sim (2004) and Omrani 
(2013). Moreover, the average efficiency score of Omrani’s (2013) model is no larger 
than the proposed model, while the variance efficiency score of our model is less that 
Omrani’s (2013) model. 
Table 5 Comparative CSWs results 

DMU CCR 
model 

Kao and 
Hung’s (2005) 

model 

Liu and Peng’s 
(2008) model 

Omrani’s (2013) 
model Γ = 4 

Model (9) 

1yx
j jγ γ= =  3yx

j jγ γ= =  

1 1 1 1 0.9637 0.9857 0.9138 
2 1 1 1 0.9482 0.9640 0.9138 
3 1 0.9989 1 0.9797 0.9900 0.9229 
4 1 0.9927 1 0.9362 0.9636 0.8904 
5 1 0.9866 0.9876 0.9578 0.9838 0.9048 
6 1 0.9123 0.9305 0.9499 0.9404 0.9229 
7 1 0.8849 0.8937 0.8072 0.8421 0.7564 
8 1 0.8707 0.8794 0.8262 0.8415 0.7722 
9 1 0.669 0.6824 0.6495 0.8629 0.8081 
10 0.9403 0.8768 0.8856 0.8517 0.6560 0.6238 
11 0.9346 0.6518 0.6583 0.6463 0.6470 0.6150 
12 0.829 0.7282 0.7428 0.6820 0.6926 0.6513 
13 0.7997 0.626 0.6323 0.6074 0.6122 0.5793 
14 0.7733 0.7142 0.7285 0.6973 0.7008 0.6608 
15 0.7627 0.721 0.7282 0.6866 0.7013 0.6523 
16 0.7435 0.6811 0.6879 0.6289 0.6449 0.6006 
17 0.6873 0.6068 0.6189 0.5604 0.5728 0.5315 
Average 0.9100 0.8189 0.8268 0.7870 0.8001 0.7482 
Variance 0.0132 0.0222 0.0215 0.0222 0.0232 0.0201 

5 Conclusions and future research directions 

In this study we analysed the efficiency score of the DMUs in performance measurement 
problems with interval inputs and outputs using the CSW approach. We used GP and 
constructed a feasible model where exact values for the inputs and outputs were selected 
from their interval and the CSW and conservatism level concept were used to maximise 
the efficiency score of the DMUs. The proposed method uses a finite number of points 
that are representatives of the intervals. The GP method and the varying conservatism 
levels concept are used to rank order the DMUs. There are obviously DMUs that achieve 
the efficiency score of unity for all conservatism level values. In contrast, there are 
DMUs that are inefficient for all conservatism level values. There are also DMUs that 
have both efficient and inefficient performance for various conservatism level values. 
These circumstances indicate the necessity of identifying a set of efficient DMUs through 
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a confidence criterion. As for future research directions, we are considering two 
extensions of the method proposed in this study. In the first case, we are studying a robust 
DEA model with uncertain data where the profit Malmquist index is used to rank the 
DMUs with respect to the overall profit efficiency. In the second case, we are considering 
the ellipsoidal uncertainty set to represent the uncertain parameters in the proposed 
model. 
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