
European Journal of Operational Research 318 (2024) 549–559

Available online 15 May 2024
0377-2217/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Decision Support 

Data envelopment analysis: From non-monotonic to monotonic 
scale elasticities 

Andreas Dellnitz a, Madjid Tavana b,c,1,* 

a Leibniz-Fachhochschule School of Business, Hannover, Germany 
b Business Systems and Analytics Department, Distinguished Chair of Business Analytics, La Salle University, Philadelphia, USA 
c Business Information Systems Department, Faculty of Business Administration and Economics, University of Paderborn, Paderborn, Germany   

A R T I C L E  I N F O   

Keywords: 
Data envelopment analysis 
Scale elasticity 
Monotonicity 
Multiplicative models 
Variable returns to scale 

A B S T R A C T   

The concept of returns to scale (RTS) or local scale elasticities in data envelopment analysis (DEA)—stemming 
from variable returns to scale (VRS) technology—has been recently criticized because of its misbehavior in the 
case of decreasing returns to scale (DRS). Here, the instrument should imply a downsizing force for improving 
productivity. In classical VRS technologies, however, it can hide respective improvement potentials: the more, 
the larger a company is. The non-monotonic behavior of local scale elasticities can address this effect. This study 
shows this phenomenon does not apply when using multiplicative DEA models. Therefore, we propose a new 
global scaling index that works in the classical VRS technology. We prove the new index is weakly monotonic and 
illustrate our theoretical findings in a banking context.   

1. Introduction 

To remain competitive, for-profit and non-profit organizations must 
continually enhance their efficiency, improve performance, and show 
potential productivity gains. Expansion and downsizing are often used 
as practical strategies to achieve these goals. 

Data envelopment analysis (DEA) is a well-established technique for 
measuring efficiency and productivity among a group of comparable 
entities—called decision-making units (DMUs)—since the notable con-
tributions of Charnes, Cooper, and Rhodes as well as Banker, Charnes, 
and Cooper (CCR and BCC), cf. Charnes et al. (1978) and Banker et al. 
(1984). In recent years, especially the BCC technology—also called 
variable returns to scale (VRS) technology—has attracted a lot of 
attention, as sizing decisions can be motivated by this technology 
inferring scale elasticities of the DMUs under consideration (e.g., Banker 
et al., 1984; Banker & Thrall, 1992; Førsund, 1996; Golany & Yu, 1997; 
Fukuyama, 2000; Tone, 2001; Butler & Li, 2005; Podinovski et al., 2009; 
Zarepisheh et al., 2010; Kleine et al., 2016; Rödder et al., 2017; Ren 
et al., 2021; Dellnitz et al., 2022; and Taleb et al., 2022). However, 
Dellnitz and Rödder (2021) recently showed that scale elasticity exhibits 
non-monotonic behavior in the case of decreasing returns to scale (DRS). 
Rödder et al. (2022) further show that this non-monotonic behavior is 

not compatible with the classical concept of productivity. The 
non-monotonicity of the scale elasticity measure is not a pure weakness 
but arises from the affine-linear equations of technology implementa-
tion. From an economic perspective, this shortcoming can, in the worst 
case, even lead to large companies being falsely attributed a scale 
elasticity of maximum productivity. This possible misclassification 
makes classic scale elasticity an unreliable indicator for BCC tech-
nologies—even though this economic evaluation criterion made the BCC 
idea so scientifically successful 40 years ago, with more than 26,000 
citations today. 

This study introduces several concepts that do not suffer from this 
deficiency. First, we show that the scale elasticity behaves weakly 
monotonically when multiplicative models are used. Second, to enable 
an analyst to study sizing potentials in classical BCC technology, we 
propose a new global scaling index and prove that it also behaves weakly 
monotonic—even if an affine-linear face generates the surface of a 
technology. The new global scaling index measures the distance to the 
output level of the DMU exhibiting the most productive scale size 
(MPSS) (Banker, 1984; Podinovski, 2004a, 2004b; Cook & Zhu, 2011; 
Esfandiar et al., 2022); which is becoming an increasingly important 
theoretical concept in practical applications of DEA (e.g., Ray, 2007; 
Kounetas et al., 2009; Hung et al., 2010; Asmild et al., 2013; Lee, 2015; 

* Corresponding author at: Business Systems and Analytics Department, Distinguished Chair of Business Analytics, La Salle University, Philadelphia, PA 19141, 
United States. 

E-mail address: tavana@lasalle.edu (M. Tavana).   
1 Web: http://tavana.us/ 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

https://doi.org/10.1016/j.ejor.2024.05.018 
Received 8 July 2023; Accepted 7 May 2024   

mailto:tavana@lasalle.edu
www.sciencedirect.com/science/journal/03772217
https://www.elsevier.com/locate/ejor
https://doi.org/10.1016/j.ejor.2024.05.018
https://doi.org/10.1016/j.ejor.2024.05.018
https://doi.org/10.1016/j.ejor.2024.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2024.05.018&domain=pdf


European Journal of Operational Research 318 (2024) 549–559

550

Ray, 2015; Assani et al., 2018). This global scaling index provides 
management with an answer to the extent to which an activity as a 
whole needs to be proportionally scaled (reduced or expanded) to ach-
ieve an optimal level of productivity—in the DEA ductus, the DMU is 
then scale efficient. Due to its weakly monotonic behavior, this index 
could serve as a strategic tool to incentivize scaling decisions and could 
be complemented by successively reducing inefficiencies along this 
path. 

The remainder of this paper is organized as follows: Section 2 lays 
out the theoretical and conceptual foundation of our contribution. 
Section 3 is devoted to DEA preliminaries, developing equations to 
determine scale elasticities in the context of a classical BCC technology 
(Section 3.1), and justifying the non-monotonicity problem (Section 
3.2). Section 4 exhibits the main results on weakly monotonic scale 
elasticities in multiplicative technologies. Section 5 shows the new 
global index and proves its monotonicity property. In Section 6, we 
demonstrate our theoretical results in a banking context and show that 
the new index addresses the weaknesses of classical scale elasticities. 
Additionally, we discuss the economic implications of our results in 
Section 7. Section 8 presents our concluding remarks and future research 
directions. 

2. Theoretical and conceptual foundation 

From a theoretical and economic perspective, elasticities have been a 
standard tool of micro- and macroeconomic theory since Alfred Marshall 
(1885)—i.e., for more than one hundred years. Here, they are used to 
motivate decisions on substitutions, expansions, or contractions etc. by 
organizations or institutions; in other words, they are, among other 
things, a standard tool for classifying the size of companies, regions, or 
countries as evidenced by myriads of publications; a quick search on the 
Web of Science returns over 17,000 publications on elasticities. 

Theoretically, scale elasticities point towards organizations or in-
stitutions with maximum productivity. In a single input and single 
output (SISO) production situation, maximum productivity means hav-
ing the highest output per input, with no overhead overstressing the 
input. The following two figures show such a situation, where y ∈ R+ is 
the output, and x ∈ R+ the input. The first figure illustrates a smooth 
production function y = f(x), and the second figure is the productivity y 
/x when wandering along the frontier of the smooth production func-
tion. 

In the above SISO case, the two figures show maximum productivity 
y/x when reaching the red dot. As well known, one can find such a point 
using a ray that starts in the origin; see again Fig. 1. 

In classical parametric studies, the above type of function is specified 

in advance and then estimated by regression to obtain an approx-
imation—but again with a smooth boundary and often with constant 
productivity gains along the frontier (e.g., Cobb-Douglas production 
functions). In contrast, DEA is a data-driven approximation of an un-
derlying production function that works based on observations but 
connects the observations via piecewise linear segments, as illustrated in 
Fig. 3. 

In this approximation based on the points observed, the productivity 
gain is often estimated by applying the concept of scale elasticity, which 
is the change rate of the output as a function of the input change rate. 
Fig. 2 visualizes that the red dot has the highest productivity. To signal 
this, the scale elasticity is set to one; this means that any deviation would 
no longer improve the output-input ratio via scaling per scale elastici-
ty—one percent input change yields one percent output change. A 
problem with piecewise linear approximations now arises when we 
realize companies “above” maximum productivity, e.g., the blue and 
green points at the top of Fig. 3. When calculating scale elasticity, both 
numbers are below one, indicating an improvement potential for 
reducing both companies: i.e., for each percent input reduction, we lose 
less than one percent in the output. However, when comparing the two 
numbers, one realizes that the number for the blue point is closer to one 
than for the green point. This is counterintuitive because the green point 
is closer to maximum productivity. Even worse, if we imagine that the 
blue company becomes bigger and bigger just by extrapolating the path 
spanned by the green and blue points, its scale elasticity converges to 
one—but this number should be reserved to indicate the maximum 
productivity so that the inference process is unique. Consequently, the 
classical concept of scale elasticity is not working properly in some re-
gions when applying the piecewise linear approximations of DEA; this 
makes it an unreliable tool—especially in high-dimensional input and 
output spaces because here we cannot check a company’s position 
visually. These observations suggest two basic attitudes:  

a. We can discard the piecewise linear approximation due to its 
misbehavior and follow the economists by favoring, for example, 
piecewise Cobb-Douglas production functions as a construction 
principle (see Section 4).  

b. In many cases, however, the first option is not desirable from a 
practical point of view due to the success of the piecewise linear 
approximation in DEA-based studies. Eventually, one can try to find 
a way to avoid the above misjudgment by developing a new index, 
which can be proven to behave accurately when using piecewise 
linear approximations (see Section 5). The following figure might 
indicate the concept of this novel idea: 

Fig. 1. Smooth production function y = f(x). Fig. 2. Productivity along the frontier.  
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The core concept of our idea is that we calculate the distance to the 
output level of maximum productivity based on rays crossing the origin, 
as shown in Fig. 4. This approach is based on the paths determined by 
the red parts in Fig. 4; one can already guess that the path for the blue 
company is a little longer than for the green one. In principle, this 
measure has two significant advantages: First, one can use usual DEA- 
based calculation results—so we can use established software—to 
determine the distance. Second, one can prove that this distance behaves 
monotonically on (high-dimensional) input and output spaces. The 
latter, in particular, makes the concept a potent tool when examining a 
context that includes many large companies—as in the banking 
sector—as here, one is often confronted with the problem that scale 
elasticities are close to one. Before developing the main results of this 
paper, we need to revisit the central philosophy of DEA in the next 
section. 

3. Scale elasticities in DEA 

3.1. Scale elasticities in BCC models 

Scale elasticities as a local index have a long history in DEA since 
Banker et al. (1984). From a conceptual point of view, this index should 
point the way towards maximum productivity. However, Dellnitz and 
Rödder (2021) have shown that this index fails in the most critical cases, 

namely when activities are too large and should shrink because they are 
very far from maximum productivity. Before pointing out this short-
coming and developing an index that better supports the expansion and 
downsizing of companies, we will develop important, well-known 
principles of DEA and scale elasticities in this section. 

Although we focus exclusively on the input-oriented efficiency of 
DMUs so as not to overload the content, the results can easily be applied 
to other efficiency measures, e.g., output-oriented or slack-based ver-
sions. That is, for a DMU k ∈ J , with J = {1, ..., J}, we solve the BCC 
multiplier form (1) to calculate its efficiency; an axiomatic foundation 
can be found in Banker et al. (1984). 

max gk = UT
k yk + uk

s.t.
VT

kxk = 1
UT

kyj + uk − VT
kxj ≤ 0 ∀j ∈ J

Uk,Vk ≥ 0 and uk free

(1) 

Let 
(

xj, yj

)
∈ RM+S

+ ∀j ∈ J be the observed activities—with xj =

(
x1j,…, xmj,…xMj

)Tbeing the inputs and yj =
(

y1j,…, ysj,…ySj

)T
the 

outputs—of all DMUs. Uk,Vk are the non-negative vectors of output and 
input multipliers. Let U*

k,V
*
k, u*

k be an arbitrary optimal solution con-
cerning (1), then g*

k ≤ 1 determines the DMU’s efficiency and u*
k in-

dicates its RTS situation: if u*
k > 0 ( < 0), we have increasing 

(decreasing) RTS; a DMU k encompasses constant RTS if u*
k = 0. To 

justify these statements, one has to prove the following Lemma 1. 

Lemma 1. Let g*
k, U*

k,V
*
k, u*

k be an arbitrary optimal solution regarding 
(1). Then, radial output changes yk→(1+εk)yk under infinitesimal radial 
input changes xk→(1+δ)xk must yield 

εk

δ
=

U*T
k yk + u*

k

U*T
k yk

= 1 +
u*

k

U*T
k yk

, with δ ∈ R\{0}, (2)  

to maintain the efficiency level g*
k of DMU k. 

Eq. (2) measures the local scale elasticity of DMU k given an arbitrary 
optimal solution regarding (1). Please note that Eq. (2) is valid only as 
long as the weights U*

k,V
*
k, u*

k remain optimal (Kleine et al., 2014). To 
prove Lemma 1, one has to reorder the following (in-)efficiency equation 
U*T

k (1+εk)yk + u*
k − g*

kV*T
k (1+δ)xk = 0 (Dellnitz & Rödder, 2021). 

However, the above reasoning may suffer from multiple optimal 
solutions in Eq. (1). Therefore, Banker and Thrall (1992) have proven 
that for an efficient (g*

k = 1) DMU k, the optimization of (2) is sufficient 
to fully fathom a DMU’s RTS interval. Dellnitz and Rödder (2021) 
extended the statement of Banker and Thrall (1992) and have proven 
that it is also true for an inefficient (g*

k < 1) DMU k. 

u−
k = inf uk and u+

k = sup uk

s.t.
VT

kxk = 1
UT

k yk + uk = g*
k

UT
k yj + uk − VT

kxj ≤ 0 ∀j ∈ J

Uk,Vk ≥ 0 and uk free

(3) 

Applying (3) with U+
k ,V

+
k , u+

k and U−
k ,V

−
k , u−

k being respective 
optimal solutions, we then have:  

• u+
k ≥ u−

k > 0 → increasing RTS (IRS)  
• u−

k ≤ u+
k < 0 → decreasing RTS (DRS)  

• u+
k ≥ 0 ≥ u−

k → constant RTS (CRS) 

Consequently, scale elasticities can vary with u−
k ≤ uk ≤ u+

k , i.e., we 

obtain ε
−
k
δ =

U− T
k yk + u−k
U− T

k yk 
and ε

+

k
δ =

U+T
k yk + u+

k
U+T

k yk
; this particular effect occurs e.g. 

Fig. 3. Approximation of production function y = f(x).

Fig. 4. The concept of the new index.  
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when an efficient DMU’s activity—or its projection if g*
k < 1—is on a 

vertex of the underlying BCC technology or polyhedron. 
With the above nomenclature, we can characterize another activity 

feature: a DMU with MPSS if it is efficient (Banker, 1984) and exhibits 
CRS (cf. Section 5). 

3.2. Non-monotonic scale elasticities in BCC technology 

In the latter section, we argued that scale elasticities could vary if an 
activity or its projection is on a vertex of a BCC technology. However, 
scale elasticities also vary on the face or edge of such technology due to 
the measure’s dependence on the activity’s output level. The next the-
orem provides this link. 

Theorem 1. Let g*
k, U*

k,V
*
k, u*

k be an arbitrary optimal solution regarding 
(1). When running on the supporting hyperplane 

U*T
k y + u*

k − V*T
k x = 0  

via the trajectory 

U*T
k (1+ εk)yk + u*

k − V*T
k (1+ δ)xk = 0,

the corresponding scale elasticity εk
δ depends on the actual output level. 

Proof. The proof is an immediate consequence of Lemma 1 and Eq. (2), 
respectively. □ 

Theorem 1 postulates the reason for the misbehavior of the scale 
elasticity in the case of DRS; the following corollary summarizes this 
result, see Dellnitz and Rödder (2021): 

Corollary 1. Let g*
k, U*

k,V
*
k, u*

k be an arbitrary optimal solution regarding 
(1), we then have:  

• for u*
k > 0 and radially increasing outputs, εk

δ decreases.  

• for u*
k < 0 and radially increasing outputs, εk

δ increases. 

The issue of misleading values of εk
δ can thus be traced back to the fact 

that affine-linear supporting hyperplanes construct the facets of the 
technology or polyhedron. The following example illustrates the above 
statements. 

Numerical Example 
Consider the following BCC technology with one input and one 

output, as indicated in Fig. 5; the bold line indicates the efficient fron-
tier, and the grey area is the feasible set. The DMUs or activities 

determine the vertices of this technology: (x1,y1) = (1.5,2); (x2,y2) =

(2,4); 
(
x3,y3

)
= (3,6.2); 

(
x4,y4

)
= (5,7); 

(
x5,y5

)
= (8,7.5). Fig. 6 shows 

the ε
δ values for the boundary of Fig. 5. 
To approximate the graph in Fig. 6, we generate 6501 activities along 

the efficient frontier via incrementally increasing the input by 0.001 
from 1.5 to 8 and calculating the corresponding efficient outputs. Next, 
we solve the optimization problem (3) for these efficient activities. The 
optimal solutions of the vertex activities (x1,y1) = (1.5,2), (x2,y2) = (2,
4), 

(
x3,y3

)
= (3,6.2), 

(
x4,y4

)
= (5,7), 

(
x5, y5

)
= (8, 7.5) are non-unique 

and thus εδ ditto. This non-uniqueness results in an interval with respect 
to εδ for each vertex activity leading to the red vertical lines in Fig. 6, the 
dashed line shall indicate that the u+

k of (3) for the activity (x1, y1) is 
unbounded; hence, εδ goes to infinity. Table 1 presents the scale elasticity 
intervals. 

The generated non-vertex activities on the efficient frontier have 
unique optimal solutions, and thus εδ is also unique, corresponding to the 
black parts of ε

δ. In Fig. 6, we observe a monotonically decreasing 
behavior of εδ for the outputs between 2 and 6.2 (the IRS case), which is a 
consequence of the affine nature of the underlying hyperplanes and the 
fact that the intercept of these hyperplanes approaches the origin as one 
approaches MPSS located at 

(
x3,y3

)
= (3,6.2). This DMU is the only one 

that has an optimal solution with εδ = 1, because εδ ∈ [0.194; 1.065], see 
Table 1. There is a nearly horizontal black line between outputs 4 and 
6.2, but even here εδ still decreases monotonically, from 1.1 to 1.065; see 
the scale elasticity entries for DMU 2 and DMU 3 in Table 1. 

The non-monotonicity is due to the increase in εδ between outputs 6.2 
and 7, and between outputs 7 and 7.5; the DRS cases due to εδ < 1. Worse 
still, Dellnitz and Rödder (2021) have recently shown that exploiting 
this non-monotonicity can generate very large activities with decreasing 
returns to scale, leading to a scale elasticity of close to one. These 
oversized activities thus lose their incentive to downsize. 

These figures show that if we approach MPSS from the left, then ε
δ 

Fig. 5. BCC technology.  

Fig. 6. Non-monotonicity of ε
δ in BCC.  

Table 1 
Vertex activities and local scale elasticity intervals.  

No Input Output Scale elasticity intervals wrt (3) 

1 1.5 2 3; ∞ 
2 2 4 1.1; 2 
3 3 6.2 0.194; 1.065 
4 5 7 0.119; 0.286 
5 8 7.5 0; 0.178  
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decreases monotonically. However, when approaching this activity from 
the right, then εδ behaves non-monotonically. In other words, in the case 
of DRS, due to Eq. (2) composition, local scale elasticity increases rather 
than decreases as one moves from left to right along a supporting hy-
perplane (see Corollary 1). The next section studies this relationship in 
the context of multiplicative DEA. 

4. Weak monotonicity of scale elasticities in multiplicative DEA 

This section leads to a new result and shows that multiplicative DEA 
models do not suffer from the problem of non-monotonicity of local 
scale elasticities. For the sake of consistency, we immediately present 
the linearized dual formulation of the multiplicative DEA model: 

min ġk = U̇T
k ỹk − V̇T

k x̃k − u̇k

s.t.
U̇T

k 1 = 1

U̇T
k ỹj − V̇T

k x̃j − u̇k ≤ 0 ∀j ∈ J

U̇k, V̇k ≥ 0 and u̇k free

(4)  

where the tilde sign denotes logarithms, and the dot indicates that the 
weights originate from a different technology. For detailed documen-
tation on multiplicative models, their dual relationships, and respective 
properties, see Banker et al. (2004) and Zarepisheh et al. (2010). 

To continue the reasoning consistently, we use the next lemma to 
develop the equations for determining scale elasticities in multiplicative 
models. 

Lemma 2. Let ġ*
k, U̇

*
k =

(
U̇*

1k,⋯, U̇*
sk,⋯U̇*

Sk
)T
, V̇*

k =
(
V̇*

1k,⋯, V̇*
mk,⋯ 

V̇*
Mk

)T
, u̇*

k be an arbitrary optimal solution regarding (4). Then, radial output 
changes yk→(1+εk)yk under infinitesimal radial input changes 
xk→(1+δ)xk must yield 

(1+ εk) = (1 + δ)
∑M

m=1
V̇*

mk
(5)  

to maintain the (in)efficiency level of DMU k. 

Proof To prove Lemma 2, first, we convert the log-linear efficiency 
equation by taking antilogarithms: 

∏S

s=1
yU̇*

sk
sk = eu̇*

k
∏M

m=1
xV̇*

mk
mk 

Embedding the scaling parameters (1 + δ), (1 + εk), we obtain: 

∏S

s=1
[(1 + εk)⋅ysk]

U̇*
sk = eu̇*

k
∏M

m=1
[(1 + δ)⋅xmk]

V̇*
mk  

⇒ (1 + εk)

∑S

s=1
U̇*

sk ∏S

s=1
yU̇*

sk
sk = (1 + δ)

∑M

m=1
V̇*

mk
eu̇*

k
∏M

m=1
xV̇*

mk
mk  

⇒ (1+ εk)
∑S

s=1
U̇*

sk

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
=1

= (1 + δ)
∑M

m=1
V̇*

mk eu̇*
k
∏M

m=1xV̇*
mk

mk
∏S

s=1yU̇*
sk

sk⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟
=1  

⇒ (1+ εk) = (1 + δ)
∑M

m=1
V̇*

mk □ 

For a different proof of Lemma 2, see Banker et al. (2004). 

Now, logarithmization of (1+εk) = (1 + δ)
∑M

m=1
V̇*

mk leads to the scale 
elasticity estimate: 

ln(1 + εk)

ln(1 + δ)
=

∑M

m=1
V̇*

mk (6) 

The following conclusions can now be drawn from Eqs. (5) and (6), 

see also Banker et al. (2004):  

• Iff 
∑M

m=1V̇*
mk > 1 for all optimal solutions to (4) → increasing RTS 

(IRS)  

• Iff 
∑M

m=1V̇*
mk < 1 for all optimal solutions to (4) → decreasing RTS 

(DRS)  

• Iff 
∑M

m=1V̇*
mk = 1 for some optimal solutions to (4) → constant RTS 

(CRS) 

To check for the above reasoning, one can solve (7): 

v̇−k = inf V̇T
k1 and v̇+k = sup V̇T

k1
s.t.
U̇T

k 1 = 1

U̇T
k ỹj − V̇T

k x̃j − u̇k ≤ 0 ∀j ∈ J \{k}

U̇T
k ỹk − V̇T

k x̃k − u̇k = 0
U̇k, V̇k ≥ 0 and u̇k free

(7) 

Now, applying (7) with v̇−k and v̇+k being respective optimal objective 
function values, we then have:  

• v̇+k ≥ v̇−k > 1 → increasing RTS (IRS)  
• v̇−k ≤ v̇+k < 1 → decreasing RTS (DRS)  
• v̇+k ≥ 1 ≥ v̇−k → constant RTS (CRS) 

With yk→(1+εk)yk and xk→(1+δ)xk, we form a trajectory on the 

corresponding supporting hyperplane 
∏S

s=1
yU̇*

sk
s − eu̇*

k
∏M

m=1
xV̇*

mk
m = 0, where 

the index k is omitted for the outputs and inputs to indicate their free 
variation. As a consequence, we can derive the following Theorem 2. 

Theorem 2. Let ġ*
k, U̇*

k, V̇
*
k, u̇*

k be an arbitrary optimal solution regarding 
(4). When running on the supporting hyperplane 

∏S

s=1
yU̇*

sk
s = eu̇*

k
∏M

m=1
xV̇*

mk
m  

via the trajectory 

∏S

s=1
[(1 + εk)⋅ysk]

U̇*
sk = eu̇*

k
∏M

m=1
[(1 + δ)⋅xmk]

V̇*
mk ,

the corresponding scale elasticity is independent of the output level. 

Proof. The proof follows from Lemma 2 and Eq. (5). □ 

Theorem 2 illustrates that in the case of multiplicative models, the 
non-monotonic behavior of scale elasticities—as observed for BCC 
technologies—does not occur. Rather, it can be concluded that the 
output independence of Eq. (5) leads to constant scale elasticities on a 
trajectory, as given above. Accordingly, scale elasticities must behave 
weakly monotonic along the technology’s surface. We continue the 
example already introduced to illustrate this fact. 

Numerical Example (continued) 
Again, we consider the efficient activities (x1, y1) = (1.5, 2); (x2,

y2) = (2,4); 
(
x3,y3

)
= (3,6.2); 

(
x4,y4

)
= (5,7); 

(
x5,y5

)
= (8,7.5). Fig. 7 

shows the graph of the scale elasticity values obtained by Eqs. (6) and 
(7). As in the classical DEA case, the optimal solutions of the vertex 
activities (x1,y1) = (1.5,2), (x2,y2) = (2,4), 

(
x3,y3

)
= (3,6.2), 

(
x4,y4

)
=

(5, 7), 
(
x5, y5

)
= (8, 7.5) are non-unique in the multiplicative model, 

and thus, the same holds for the corresponding scale elasticities ln(1+εk)
ln(1+δ) =

∑M
m=1V̇*

mk given by (6). Fathoming the intervals of ln(1+εk)
ln(1+δ) via (7) for the 

five vertex activities leads to the red vertical lines in Fig. 7, and the red 
dashed line shall indicate that the upper value of (7) for (x1,y1) = (1.5,
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2) tends to infinity. Table 2 presents the scale elasticity intervals of the 
vertex activities, corresponding to the red lines in Fig. 7. 

At first glance, the graph shown in Fig. 7 resembles the graph of scale 
elasticity presented in Fig. 6. The intervals of the vertex activities are 
very similar if one compares the scale elasticity intervals of the vertex 
activities in both models (see Tables 1 and 2). However, there is a sig-
nificant difference: No increasing (black) trajectory exists. More pre-
cisely, the black parts between the vertical lines are flat. Fig. 7 
demonstrates that scale elasticities satisfy the property of weak mono-
tonicity in multiplicative DEA models. 

An important economic consequence of the above observations is 
that we cannot—like in the classical BCC case, as demonstrated in 
Dellnitz and Rödder (2021)—generate a substantial activity beyond 
MPSS with decreasing returns to scale that pretends to have MPSS. So 
scale elasticities in multiplicative DEA models always point in the right 
direction to MPSS; i.e., the underlying technology and the local measure 
to substantiate scaling decisions are compatible. However, the 
decision-makers cannot gauge the distance to the MPSS due to the flat or 
horizontal lines. 

Monotonicity of scale elasticities is a compelling property that must 
be satisfied. Otherwise, the measure does not accurately reflect scaling 
potentials, and this failure can imply disincentives. From this point of 
view, approximating a real technology via multiplicative models is 
preferable to classical BCC technologies. However, it would be desirable 
to have an adequate measure in other technologies, as discussed in the 
next section, that both fulfill the monotonicity condition and reveal the 
remaining distance to the MPSS. 

5. Monotonicity via a global scaling index 

In the first step, we have pointed out some irregularities, i.e., a non- 
monotonic behavior, of local scale elasticities caused by the affine-linear 
structure of the supporting hyperplanes (see Eq. (2) and Theorem 1). As 

shown in the previous section, this problem can be circumvented by 
changing the technology. From a scientific point of view, finding a 
measure that works correctly for most or even all technologies is 
desirable. 

To fill this gap, we propose a new index, measuring the distance to a 
DMU exhibiting the most productive scale size (MPSS)—a DMU that is 
efficient in both the CCR and BCC worlds (e.g., Banker, 1984; Zhu & 
Shen, 1995; Fukuyama, 2003; Dellnitz et al., 2018). Consequently, our 
approach is conceptually related to global RTS (see Podinovski, 2004a, 
2004b). For the first time, we prove that the approach implies mono-
tonicity. The starting point is the following envelopment form of the 
classical CCR problem: 

min hk

s.t.
hkxk − αk

∑

j
λkjxj ≥ 0

αk

∑

j
λkjyj ≥ yk

∑

j
λkj = 1

λkj ≥ 0 ∀j ∈ J and αk > 0

(8) 

In Eq. (8), for the sake of transparency, we omit the case of partial 
inefficiencies, but it can be easily inserted if needed. Eq. (8) is the non- 
linear version of the CCR problem due to the scaling parameter α. 
However, this CCR problem shows the convexity constraint, which is 
likewise present in the CCR world and is important for our development. 
When substituting λʹ

kj = αkλkj in Eq (8), one obtains the linear problem 
(9). 

min hk

s.t.
hkxk −

∑

j
λ’

kjxj ≥ 0
∑

j
λ’

kjyj ≥ yk

∑

j
λ’

kj = αk

λ’
kj ≥ 0 ∀j ∈ J and αk > 0

(9) 

With this transformation, the convexity constraint is softened by αk, 
and thus it does not have a restrictive effect when minimizing the effi-
ciency factor hk. Eq (9) allows determining a path to MPSS, as demon-
strated in Banker (1984), Cooper et al. (1996), and Esfandiar et al. 
(2022): 

Corollary 2. Let h*
k, λ

ʹ*
kj and 

∑

j
λ

ʹ*
kj = α*

k be an arbitrary optimal solution 
regarding (9). Then, we have the following statements:  

1. Iff h*
k = 1 holds and all slacks are zero, then DMU k has MPSS; see 

Banker (1984) for proof of this.  

2. If h*
k < 1 and all slacks are zero, then DMU k can be transformed into an 

MPSS by 
(

h*
k

α*
k
xk,

1
α*

k
yk

)

.Here, the scaling direction depends on α*
k; i.e., 

for α*
k < 1, it is an upscaling (increasing RTS), and for α*

k > 1, it is a 
downscaling (decreasing RTS). This preliminary work now allows for 
the definition of the global scaling index. 

Definition 1. Let h*
k and 

∑

j
λ

ʹ*
kj = α*

k be an arbitrary optimal solution 
regarding (9). Then, we call 

φ*
k =

1
α*

k
(10)  

the global scaling index of DMU k. 

It is important to mention that if the slacks are nonzero after scaling 

Fig. 7. Weak monotony of scale elasticity in multiplicative DEA.  

Table 2 
Vertex activities and scale elasticity intervals in multiplicative DEA.  

No Input Output Scale elasticity intervals wrt (7) 

1 1.5 2 2.409; ∞ 
2 2 4 1.081; 2.409 
3 3 6.2 0.238; 1.081 
4 5 7 0.147; 0.238 
5 8 7.5 0; 0.147  
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the activity, contrary to the condition in Corollary 2, we need to adjust 
the input and output vectors according to these slacks to make the ac-
tivity an MPSS; for more details on correcting for partial inefficiencies or 
slacks, see Cooper et al. (1996) and Esfandiar et al. (2022). The latter 
point, however, does not diminish the managerial implications and 
(weak) monotonicity property of the global scaling index, which has yet 
to be proven since the principle of proportional scaling as defined by the 
second statement of Corollary 2—which is also the philosophy of the 
flawed concept of local scale elasticity—remains valid. 

From a geometric point of view, we illustrate the quality of the global 
scaling index and verify that for a BCC technology, it satisfies the 
property of (weak) monotonicity—sometimes even in a strict form. 

Numerical Example (continued) 
Again, we consider the activities (x1,y1) = (1.5,2); (x2,y2) = (2,4); 

(
x3,y3

)
= (3,6.2); 

(
x4,y4

)
= (5,7); 

(
x5,y5

)
= (8,7.5). 

Now, we solve Eqs. (9) and (10) for the (weakly efficient) activities of 
the boundary of BCC technology, leading to the graph depicted in Fig. 8. 
Fig. 8 shows the global scaling index—i.e., the values for 1

α on the full 
BCC technology. Interestingly, the graph is strictly monotonically 
decreasing and thus exhibits the desired property. We have also marked 

the two scaling indices 1α for activity 1 and activity 2 in red. Here, 1
α*

1
=

3.1 means that activity (x1, y1) = (1.5,2) must increase its activity from 
(1.5,2) to (4.65,6.2) = (1.5,2)⋅3.1 to reach MPSS level; the activity 
(x2, y2) = (2, 4) is closer to the MPSS unit and consequently 1

α*
2
= 1.55 is 

also smaller. 
Fig. 9 illustrates the scaling path for the activity (x1, y1) = (1.5,2)

with 1
α*

1
= 3.1; that is, the scaling from the first red point (1.5,2) to the 

second (4.65,6.2) = (1.5,2)⋅3.1. 
The theoretical explanations and the last example have shown that 

the new measure fulfills the desired properties; more surprisingly, the 
monotonicity property in the example was even strictly fulfilled. How-
ever, this is not always true: When multiple MPSS are present in a BCC 
technology—even with a single input and single output—the global 
scaling index decreases monotonically in a weak sense. 

The MPSS scaling path, as given in the second statement of Corollary 
2, is not necessarily unique, nor is the global scaling index. Therefore, 
Banker et al. (1996) propose the following optimization problem to 
fathom the interval in which 

∑

j
λ́kj can vary: 

a−
k = min αk and a+

k = max αk

s.t.

h*
kxk −

∑

j
λ’

kjxj ≥ 0

∑

j
λ’

kjyj ≥ yk

∑

j
λ’

kj = αk

λ’
kj ≥ 0 ∀j ∈ J and αk > 0

(11)  

Corollary 3. Let h*
k ≤ 1 and α−

k , α+
k be the optimal solutions to Eq. (10). 

To determine the minimal scaling path towards MPSS, the following rationale 
holds: 

• 1 < 1
α+

k
≤ 1

α−
k
→ increasing RTS (IRS); where 1

α★
k
:= 1

α+
k 

determines the min-

imal scaling path.  

• 1 > 1
α−

k
≥ 1

α+
k
→ decreasing RTS (DRS); where 1

α★
k
:= 1

α−
k 

determines the 

minimal scaling path.  

• 1
α−

k
≥ 1 ≥ 1

α+
k 

→ constant RTS (CRS); where 1
α★

k
:=1 because DMU k 

already has the right scale size but only has to improve efficiency or 
eliminate partial inefficiencies, if necessary. 

We use the rationale of Corollary 3 to assign a unique scaling index to 
the activities under consideration; this reasoning is compatible with the 
minimum principle often propagated in economics. 

To demonstrate the effect or impact of multiple MPSS activities on 
the global scaling index 1α, we study a modified numerical example. 

Numerical Example (continued) 
We consider the BCC efficient activities (x1, y1) = (1.1, 1.1); (x2,

y2) = (2,3); 
(
x3,y3

)
= (3,4.5); 

(
x4,y4

)
= (5,5). These activities lead to a 

modified BCC technology, as shown in Fig. 10. The activities (x2, y2) =

(2, 3) and 
(
x3, y3

)
= (3, 4.5) are both MPSS, but so is any activity that 

can be generated by convex combinations λ(x2,y2)+ (1 − λ)
(
x3,y3

)
. As a 

consequence, every activity which is located on the red line in Fig. 10 is 
BCC and CCR efficient, and hence, we can find an optimal solution to Eq. 
(10) for it with h*

k = 1 and 1
α★

k
= 1. 

The latter statement and the rationale of Corollary 3 make 1α a weakly 
monotonically decreasing index, which is illustrated in Fig. 11. Here, the 
range for optimal solutions of Eq. (10), i.e., 1

α+

k
, 1

α−
k 

is depicted by the 

shaded area. The blue and the red line, which is connected, show the 

Fig. 8. Monotonicity of 1
α in BCC.  

Fig. 9. Illustration of 1
α for activity 1.  
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curve we obtain when using the rationale of Corollary 3. This is the 
weakly monotonic function we are looking for. 

The—more intuitively gained—insights are now to be formally 
substantiated. First, we give: 

Lemma 3. Let h*
k < 1 and 

∑

j
λ

ʹ*
kj ∈

[
α−

k ,α
+
k
]

be an optimal solution 
regarding (9). Then, we get that 

∑

j
λ

ʹ*
kj ∈

[
α−

k ,α
+
k
]

is independent with respect 

to further proportional disposal of the inputs of 
(
xk, yk

)
. 

Proof. According to the requirements, we have that h*
k < 1 and 

∑

j
λ

ʹ*
kj =

α*
k ∈

[
α−

k , α+
k
]

is an optimal solution to Eq. (9), satisfying the constraints 

h*
kxk −

∑

j
λ

’*
kj xj ≥ 0

∑

j
λ

’*
kj yj ≥ yk

∑

j
λ

’*
kj = α*

k  

with some restrictions being active, of course. 

Now, we construct an activity xl meeting the equation xl = t⋅xk, 
where t > 1 is a scalar that can arbitrarily be chosen. Next, one has to 
replace xk in the above restrictions, obtaining: 

h*
k⋅

1
t
⋅xl −

∑

j
λ

’*
kj xj ≥ 0

∑

j
λ

’*
kj yj ≥ yk

∑

j
λ

’*
kj = α*

k 

Compressing h*
k⋅1/t to h*

l , we have an optimal solution to Eq. (9) for 
(xl,yk). Supposing now that h*

l and 
∑

j
λ

ʹ*
kj = α*

k are suboptimal to Eq. (9) 

leads to a contradiction because we can simply reverse this trans-
formation. That is, the suboptimality of h*

l and 
∑

j
λ

ʹ*
kj = α*

k regarding Eq. 

(9) contradicts the optimality of h*
k and 

∑

j
λ

ʹ*
kj = α*

k w.r.t. Eq. (9). □ 

Lemma 3 makes the proof of the next theorem easier accessible 
because radial disposals of inputs do not additionally dilute the prop-
erties of the global scaling index. 

Theorem 3. Applying the rationale of Corollary 3, 1
α behaves weakly 

monotonically on the entire BCC technology. 

Proof. To prove this theorem, w.l.o.g. we can pick any feasible BCC 
efficient but CCR inefficient activity (x,y); i.e., for (x,y), we have g* = 1 
and h* < 1. Let 1

α★ be the corresponding global scaling index according 
to Corollary 3. We have to prove the theorem by two cases, namely for 
1

α★ > 1 (situation of increasing RTS) and 1
α★ < 1 (situation of decreasing 

RTS); we show only the reasoning for 1
α★ > 1, the other case can be 

derived in the same way. 
First, suppose we have 1

α★ > 1 (situation of increasing RTS). Now, 
when choosing 1α such that 1

α★ > 1
α > 1 and scaling (x, y) up via (xʹ,yʹ) =

(
1
α x,1α y

)

, then (xʹ,yʹ) has the same CCR efficiency h* as (x, y) does. This 

transformation must lead to a feasible activity due to 1
α★ > 1

α > 1. Next, it 
follows that the new global scaling index 1

αʹ★ of (xʹ,yʹ) to reach MPSS 
must be smaller than 1

α★ of (x,y) because of (xʹ,yʹ) > (x,y), if all inputs/ 
outputs are nonzero, and the new global scaling index can directly be 

calculated via 1
αʹ★ =

1
α★

1
α

. Due to the proportional scaling of inputs and 

outputs, which is only a CCR invariant transformation, we have gʹ* <

g* = 1 for the BCC efficiencies, which can be checked by applying Eq. 
(1). Projecting (xʹ, yʹ) onto the boundary via (x̂ʹ

:= gʹ*xʹ,yʹ), ultimately, 
one can make use of Lemma 3 and realizes that 1

αʹ★ must also be optimal 

for (x̂ʹ
,yʹ). 

For the case 1
α★ < 1 (situation of decreasing RTS), one can make use 

of nearly the same lines of argumentation. The only difference is that we 
need to reverse some relations as we are now dealing with downsizing 
processes. 

The global scaling index proposed in Corollary 3 satisfies the prop-
erty of weak monotonicity since we can apply this inference process to 
any arbitrary (feasible) activity of the BCC technology. □ 

The latter theorem shows that the global scaling index always works 
weakly monotonic because it measures the distance to an MPSS 
activity—a global reference point from a technological perspective. Due 
to this feature, we can apply this concept to several, if not all, technol-
ogies, e.g., free disposal hull, multiplicative, etc. Hence, the above 
general property makes the global scaling index more powerful than 
local scale elasticities. To illustrate that the global scaling index ad-
dresses the weaknesses of the concept of local scale elasticities, we 

Fig. 10. Modified BCC technology.  

Fig. 11. Weak monotonicity of 1
α in BCC.  
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consider an application from the banking sector in the next section. 

6. The global scaling index: a better tool to drive banks’ scale 
decisions 

Dellnitz and Rödder (2021) demonstrate the misleading nature of 
local scale elasticities via a dataset of 37 Brazilian banks studied first by 
Henriques et al. (2018). In this context, the authors consider three inputs 
(fixed assets, total deposits, and personnel expenses) and one output 
(total loans), making use of the so-called intermediation approach 
(Henriques et al., 2018). Accordingly, Table 3 presents the data for the 
business year 2016 in thousands of Brazilian reais. 

We obtain the solutions in Table 4 when solving the optimization 
problems presented for the 37 Brazilian banks. Four banks are of MPSS: 
Alfa, Cooperativo Sicredi, Ribeirão Preto, and Intermedium—these 
banks are efficient in all three models, and the corresponding CCR and 
BCC multipliers are nonzero. Different from Esfandiar et al. (2022), we 
do not need to normalize our data because we are only interested in 
determining the (minimal) scaling path to an MPSS, not in the partial 
inefficiencies—which is the next step after scaling a DMU to the MPSS 
level. Consequently, the optimization problems remain units invariant 
(Lovell & Pastor, 1995), so our considerations are not affected by the 
magnitude of the data. The fifth column of Table 4 shows the local scale 
elasticities determined by Eqs. (2) and (3). The most interesting 

observation is that the DMUs 23 and 32 operate under DRS, and their 
local scale elasticities draw near one—usually indicating that they are 
close to an MPSS unit. The latter observation is a consequence of 
non-monotonicity. When checking the local scale elasticities of both 
DMUs in the sixth column, obtained by the multiplicative model, the 
incentive effect of reducing activity is noticeably greater due to the more 
significant productivity gain. However, DMUs 23 and 32 display the 
same productivity gains due to the measure’s weak monotonicity 
property. The last column shows the enormous distance from MPSS 
activity for both banks, but Original (DMU 32) is nevertheless signifi-
cantly closer to MPSS than BMG (DMU 23). DMU 9 (Arbi), for example, 
has a low level of loans but a high level of deposits, fixed assets, and 
personnel expenses compared to DMU 22 (Ribeirão Preto). Here, the 
unique 1

α indicates that Arbi should increase its activity by approxi-
mately 8.41 to reach an MPSS level; additionally, it should significantly 
improve its efficiency level (CCR and BCC). Such an activity redesign 
involves a huge effort and, thus, the recommendation according to 1α is 
strategic. 

The information on the scale elasticities is only local and does not 
show the long path Arbi, for example, has ahead of it in realizing this 
growth. There are various possibilities here: internal or external 

Table 3 
Activities of 37 Brazilian banks.  

Bank No Fixed 
assets 

Total 
deposits 

Personnel 
expenses 

Total loans 

Alfa 1 323,417 40,626 309,151 6748,462 
Bonsucesso 2 301,688 8779 939,761 308,364 
Semear 3 1689 3023 567,958 400,229 
Topázio 4 4005 3197 266,165 147,256 
Banestes 5 276,560 79,967 9310,156 3473,396 
Banif 6 6696 6029 490,918 73,687 
Banrisul 7 956,272 401,681 37,793,700 29,808,188 
BB 8 31,221,063 5246,319 455,560,520 667,786,191 
Arbi 9 8558 1544 70,717 46,319 
Capital 10 354 657 5478 3079 
Cooperativo 

Sicredi 
11 151,596 26,463 10,362,623 14,442,009 

Banco da 
Amazônia 

12 278,514 130,794 2909,788 3873,265 

Banco da 
China Brasil 

13 6451 4777 294,503 484,293 

Banese 14 82,376 39,238 2895,553 2050,738 
Banpará 15 114,978 67,197 3884,973 3431,025 
BNB 16 236,206 426,027 10,352,508 12,678,428 
Fibra 17 78,659 23,233 2173,689 2479,147 
Ficsa 18 1074 972 79,236 6116 
La Nacion 

Argentina 
19 16,351 1251 4433 29,052 

Luso Brasileiro 20 12,463 5876 639,616 697,948 
Rep Oriental 

Uruguay 
21 2294 553 1272 14,248 

Ribeirão Preto 22 1575 1698 67,483 373,867 
BMG 23 1873,997 46,798 5200,705 8087,786 
Bradesco 24 51,076,723 3209,178 189,864,277 317,809,283 
BRB 25 418,334 214,699 9157,803 9522,840 
CEF 26 13,153,796 5018,876 451,018,737 672,513,474 
Citibank 27 619,525 296,551 14,677,936 16,009,264 
HSBC 28 3099,668 894,990 55,709,668 55,630,103 
Intermedium 29 6627 14,391 1220,503 2187,713 
Itaú 30 84,219,449 3641,920 297,347,284 396,500,032 
Mercantil do 

Brasil 
31 235,083 87,432 7825,089 7646,678 

Original 32 728,170 35,671 1466,660 2587,370 
Panamericano 33 840,450 87,330 12,960,426 16,230,243 
Rendimento 34 38,449 29,799 583,234 318,071 
Safra 35 3099,710 440,788 9228,824 38,610,052 
Santander 36 16,448,887 1736,403 137,822,766 212,243,750 
Sofisa 37 83,495 16,278 2885,708 1738,000  

Table 4 
Efficiencies, local scale elasticities, and global scaling indexes.  

No CCR 
eff. 

BCC 
eff. 

Mult. 
eff 

ε−k
δ

; 
ε+k
δ  

v̇−k ; v̇+k 1
α+

k
; 

1
α−

k  

1 1.00 1.00 1.00 0.1636; 
1.0104 

0.6316; 
1.2517 

1.0000 

2 0.12 0.15 0.10 1.0470 1.0725 1.8945 
3 0.80 0.91 0.98 1.2587 1.2295 2.3257 
4 0.19 0.31 0.18 1.2272 0.9933 2.9822 
5 0.15 0.19 0.16 0.9878 0.8659 0.1788 
6 0.05 0.13 0.05 1.1110 0.8616 5.5581 
7 0.27 0.53 0.40 0.9751 0.8659 0.0180 
8 0.51 0.98 0.99 0.9193 0.0000 0.0024 
9 0.13 0.40 0.16 1.5188 2.9124 8.4126 
10 0.09 1.00 1.00 12.0746; ∞ 2.5518; 

6.0000 
140.2599 

11 1.00 1.00 1.00 0.2417; 
1.0203 

0.7323; 
1.3305 

1.0000 

12 0.20 0.39 0.24 0.9114 0.8402 0.1234 
13 0.42 0.46 0.41 0.7395 0.8616 0.8952 
14 0.21 0.32 0.23 0.9651 0.8659 0.2292 
15 0.22 0.43 0.28 0.8881 0.8659 0.1232 
16 0.23 0.79 0.50 0.9514 0.8395 0.0297 
17 0.40 0.52 0.35 0.9539 0.8659 0.2158 
18 0.03 0.66 0.16 2.8118 4.4120 66.7775 
19 0.30 0.51 0.55 1.5595 1.2517 232.2891 
20 0.42 0.44 0.36 0.8385 1.0725 0.8469 
21 0.51 1.00 1.00 1.9527; ∞ 1.1215; 

6.0000 
473.6428 

22 1.00 1.00 1.00 0.3479; 
1.5694 

0.8395; 
4.4120 

1.0000 

23 0.60 0.64 0.50 0.9968 0.8112 0.0742 
24 0.42 1.00 0.82 0.8180; 

0.9431 
0.6316 0.0013 

25 0.20 0.51 0.31 0.9566 0.8402 0.0401 
26 0.51 1.00 1.00 0.0000; 

0.9979 
0.0000; 
0.8659 

0.0009; 
0.0007 

27 0.24 0.59 0.36 0.9475 0.8402 0.0250 
28 0.26 0.55 0.38 0.9594 0.8659 0.0078 
29 1.00 1.00 1.00 0.2561; 

1.0549 
0.7544; 
1.2295 

1.0000 

30 0.42 0.86 0.79 0.9602 0.8112 0.0012 
31 0.33 0.55 0.38 0.9414 0.8659 0.0681 
32 0.33 0.36 0.27 0.9944 0.8112 0.1459 
33 0.58 0.75 0.56 0.8024 0.8112 0.0472 
34 0.09 0.09 0.09 1.0075 0.8402 1.3637 
35 0.46 1.00 0.67 0.3695; 

0.8974 
0.6316 0.0189 

36 0.48 0.96 0.77 0.9798 0.8112 0.0023 
37 0.31 0.31 0.26 0.9927 1.0725 0.5352  
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growth—e.g., Arbi could consider entering into a strategic alliance with 
the smaller DMUs (e.g., 10, 18, 19, etc.) to realize some of the growth. 
This also shows one of the weaknesses of the new index, namely that it 
only determines the scaling path to maximum productivity but not the 
optimal sub-decisions to realize it; future work could remedy this 
shortcoming by developing an interactive tool. 

A similar reasoning applies to the DMUs 10, 18, 19, and 21, but the 
required level of activity scaling is even higher. Likewise, the large 
numbers could hint that Henriques et al. (2018) compared inhomoge-
nous DMUs—banks with different business models or asset foci; local 
scale elasticities do not encourage such thoughts. 

The shortcomings discussed in this manuscript are particularly 
evident in DMUs 13 and 23. For example, DMU 13 has a scale efficiency 
(CCR divided by BCC efficiency) of 0.91 and a scale elasticity of 0.7395 
(DRS); DMU 23, on the other hand, has a scale efficiency of around 0.94 
and a scale elasticity of almost 1 (0.9968)—the conclusion that 23 is 
closer to the maximum productivity is nevertheless inadmissible: 
Downscaling from DMU 13 can be realized with 0.8952; downsizing 
from DMU 23, on the other hand, requires a factor of 0.0742! This means 
that the latter global index implies that DMU 23 must make much more 
effort to reach the productivity maximum if it intends to achieve this. 

The above observations demonstrate the global scaling index is more 
suitable than the local scale elasticities in BCC technologies because of 
its monotonicity property. This measure reveals—even in piecewise 
linear technologies—the direction and distance to MPSS activities and 
thus more reliably assists management in improving productivity. 

7. Economic implications 

From a conceptual and economic perspective, elasticities have been a 
standard tool of micro- and macroeconomic theory since Alfred Marshall 
(1885)—i.e., for more than one hundred years. Here, they are used to 
motivate decisions on substitutions, expansions, or contractions etc. by 
organizations or institutions; in other words, they are, among other 
things, a standard tool for classifying the size of companies, regions, or 
countries as evidenced by myriads of publications; a quick search on the 
Web of Science returns over 17,000 publications on elasticities. 

About 40 years ago, Banker et al. (1984) transferred this idea to 
activities comprising multiple inputs and multiple outputs—here, too, 
with a rigorous conceptual approach. However, in their paper and the 
subsequent analyses, it was not noticed that the approximation of pro-
duction functions via DEA using piecewise linear functions undermines 
the well-grounded concept of scale elasticities. It might not have been 
noticed over the years because the issue resolved in this paper cannot 
happen with smooth and differentiable functions—as they were always 
assumed in earlier micro- and macroeconomic considerations (e.g., 
Cobb-Douglas production functions). 

This means that analyses via DEA can be noisy when scale elasticities 
of organizations or institutions are applied to determine increasing, 
constant, or decreasing returns to scale. This observation suggests two 
basic attitudes: 

First, we may reject the BCC instrument outright, as the method may 
imply misclassifications. So we could, for example, prefer piecewise 
Cobb-Douglas production functions as the technology; see Section 4 
again. However, this is not very desirable from a practical point of view 
due to the success of the classical BCC technology in DEA-based studies. 

Second, we can try to find a way to avoid these misclassifications in 
the BCC model. Our global index provides such a corrective; cf. Section 
5. 

Economic theories have always been characterized by diversity in 
their conceptual approaches and the associated problem solutions; 
consequently, our idea may only be the beginning of developing new 
model adaptations or indices that resolve the shortcomings discussed in 
this manuscript. 

8. Conclusions and future research directions 

Improving productivity is increasingly important in the DEA litera-
ture. In this context, the concept of local scale elasticities arising from 
technologies with VRS should assist an analyst in inferring respective 
potentials. The concept of local scale elasticities resulting, however, has 
been recently questioned in the literature. This study shows that in 
classical VRS technologies—enveloped by affine-linear supporting 
hyperplanes—local scale elasticities can blur sizing potentials: the more, 
the larger a company is. This is due to the non-monotonicity of local 
scale elasticities. We also show this issue does not apply to multiplicative 
DEA models. Here, local scale elasticities demonstrate a weakly mono-
tonic behavior. We propose a global scaling index with the desired 
property in most if not all, technologies. The new index is shown to be 
(weakly) monotonic and, thus, a more reliable candidate for incentiv-
izing scaling decisions than local scale elasticities. Ultimately, we 
exhibit its practical usefulness via an application stemming from the 
Brazilian banking system. In particular, strategic decisions about the 
scale of operations should be made based on the new global scaling 
index rather than on local scale elasticities because of the shortcomings 
of local scale elasticities. Large or high-volume companies are common 
in our modern business world, especially in banking. When DEA analysts 
here rely on traditional indices, scaling potential may go unrecognized, 
and banks may be reported as highly productive even though the scale of 
operations is not optimally designed. The new index reveals a com-
pany’s weakness is due to its properties. 

Further studies on adequately embedding local and global scaling 
indicators in incentive schemes—e.g., in the context of centralized 
management—might be a worthwhile focus for future research. Due to 
its strategic nature, it would be fruitful to advance the presented global 
scaling index to a (time) robust indicator that prepares a DMU for future 
periods. Another exciting avenue might be to extend the idea of the new 
index to network models or pollution-generating technologies; espe-
cially the latter context could be of public interest due to the green 
movements in almost all developed countries, where scaling issues are 
currently hotly debated. 
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