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A B S T R A C T   

This study presents an integrated multi-attribute decision-making (MADM) and data envelopment analysis (DEA) 
framework for solving problems with heterogeneous attributes. We classify the heterogeneous attributes into 
desirable and undesirable classes and provide a model for aggregating the attributes’ weights and the alterna-
tives’ scores. The proposed model is initially designed as a Multiple Objective Decision Making (MODM) problem 
with a Data Envelopment Analysis (DEA) policy and then reformulated as a linear programming model tackled 
through a goal programming approach. We apply the proposed model to a set of European countries based on 
their fulfillment of the 17 Sustainable Development Goals (SDGs) defined by the United Nations. We show the 
proposed approach minimizes computational efforts and complexities and maximizes the participation and 
satisfaction of decision-makers. We compare the rankings derived from our model with those obtained from 
standard MADM techniques such as Euclid and TOPSIS. We illustrate how the different normalization methods 
are applied to condition the discrimination power of the models and analyze the reversals triggered by TOPSIS 
relative to the other techniques. We conclude by noting that our model does not rely on the weights defined by 
the experts to determine the ranking, which constitutes a significant advantage over the standard MADM 
techniques in strategic evaluation environments.   

1. Introduction 

Multi-Criteria Decision-Making (MCDM) methods are one of the 
most widely used essential techniques among the managers of organi-
zations. This is mainly due to the inherent complexity of their decisions, 
which require considering multiple criteria simultaneously. Therefore, it 
is necessary to have a tool to improve the decisions’ quality. Manage-
ment effectiveness is closely related to decision-making excellence in 

organizations, as the effectiveness and efficiency of strategies, program 
quality, and overall results depend on the quality of decisions made by 
managers. MCDM methods are divided into two main categories: Multi- 
Objective Decision-Making (MODM) and Multi-Attribute Decision- 
Making (MADM). Generally, MODM methods are used for design pur-
poses, while MADM techniques are applied to select the best alternative 
from a set. The main difference between MODM and MADM is the 
definition of the former within a continuous decision space, while the 
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latter is defined in a discrete decision space. MODM methods are 
generally proposed to solve optimization problems with multiple 
objective functions. Such methods are widely used to solve problems in 
engineering, management, economics, medicine, and social sciences 
(Soltanifar, 2021a; Perosa et al., 2022; Cicciù et al., 2022; Hosouli et al., 
2023). 

MADM problems involve formulating alternative solutions, identi-
fying relevant evaluation attributes, assessing their importance, 
measuring their performance on each alternative, and synthesizing the 
results into alternative rankings for implementation purposes. In most 
MADM problems, evaluation attributes exhibit some level of heteroge-
neity. They could be classified into distinct homogeneous classes: costs 
and benefits, desirable and undesirable, qualitative and quantitative, 
precise and imprecise, etc. 

The available tools and methods used to solve MADM problems are 
generally mathematical, requiring the manipulation of numerical 
weights and scores before being able to select the most suitable alter-
native(s). MADM methods can be categorized from different points of 
view. From one point of view, these methods are divided into compen-
satory and non-compensatory approaches. In non-compensatory 
models, exchange between attributes is not allowed. This category in-
cludes methods such as the mastery method (method of domination), 
max-min, max-max, satisfactory inclusion method, specific satisfactory 
method, and the lexicographic method. In contrast, exchange between 
attributes is allowed in compensatory models, and one attribute’s 
strength can compensate for another’s weakness. Models such as the 
Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) (Silva and Filho, 2020; Hajiaghaei-Keshteli et al., 2023), 
Analytical Hierarchy Process (AHP) (Otaya et al., 2017; Abdullah et al., 
2023), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 
(Akram et al., 2021), ELimination and Choice Expressing REality 
(ELECTRE) (Zahid et al., 2022) and the LINear programming technique 
for Multidimensional Analysis of Preference (LINMAP) (Chen, 2013) are 
examples belonging to this latter category (Doumpos and Zopounidis, 
2011; Zou et al., 2022). Many of these models have been developed to 
handle uncertainty using interval, fuzzy, and probabilistic measures 
(Mohammed, 2020; Ortiz-Barrios et al., 2021; Venkatesh et al., 2019; 
Gal et al., 1999; Hwang and Yoon, 1981; Köksalan and Zionts, 2001; 
Tzeng and Huang, 2011; Ning et al., 2022). Alinezhad and Khalili (2019) 
have identified a total of 27 MADM methods. 

In many MADM methods, the complex process of information 
retrieval discourages the participation of experts. For example, in AHP, 
experts obtain information through pairwise comparisons. In some 
cases, the pairwise comparison process is time-consuming, confusing, 
and involves inconsistencies (Kou et al., 2016; Aguarón et al., 2021; Lin 
et al., 2022). There is a need to simplify and streamline the information 
retrieval process in MADM by developing effective and efficient hybrid 
methods. Some MADM methods are based on decision matrices repre-
senting alternative scores on each attribute. Attributes can be a cost or 
benefit variable. Most methods propose a process to convert cost attri-
butes into benefit attributes. This process replaces the column values 
related to cost attributes with other values. Tavana (2002) introduced a 
MADM method in which there is no need to convert cost attributes into 
benefits and cost attribute values play a direct role in the prioritization 
process of the alternatives. 

Data Envelopment Analysis (DEA) is a nonparametric method for 
estimating production frontiers (Charnes et al., 1978). This technique is 
used to measure the relative efficiency of Decision Making Units 
(DMUs). DEA is strongly related to production theory in economics and 
is also used for benchmarking in operations management. A substantial 
amount of literature has focused on establishing a relationship between 
MCDM and DEA. One of the main lines of research has aimed at 
improving the benchmarking quality of DEA with the help of interactive 
MODM methods (HosseinzadehLotfi et al., 2010a; Hosseinzadeh Lotfi 
et al., 2010b; Tavana et al., 2018). The relationship between DEA and 
MADM is also an intriguing topic that has always interested decision 

scientists and operations researchers. Conventional DEA models divide 
DMUs into efficient and inefficient and often require methods to 
distinguish among the efficient DMUs. 

MADM methods can be used to perform the task of selecting alter-
native DMUs. Chitnis and Vaidya (2016) proposed a unified approach 
based on DEA and TOPSIS to overcome the difficulty of unique ranking 
in prevalent benchmarking and performance evaluation processes such 
as DEA, Super efficiency DEA models, and several others. Keshavarz and 
Toloo (2020) presented a hybrid DEA and a MADM approach for sus-
tainability assessment. In their research, a hybrid approach involving 
DEA and MADM was proposed to calculate an index for each dimension 
of sustainability. Then, an overall sustainability index was calculated as 
the mean of the measured indexes. 

Soltanifar and Sharafi (2022) ranked DMUs in DEA using a modified 
cross-efficiency method in the presence of negative data. They applied a 
fuzzy version of VIKOR to define their proposed modified method. Puri 
and Verma (2020) also ranked DMUs using the DEA cross-efficiency 
method. Their approach has the advantage that each aggressive, 
benevolent, and neutral cross-efficiency formula helps select the best 
alternative among DMUs in a MADM problem. These authors use the 
Ordered Weighted Averaging (OWA) technique to aggregate the final 
cross efficiencies and achieve a complete ranking of the DMUs. Zhou and 
Zhan (2020) proposed three DEA-based models to obtain more reason-
able efficiency scores for DMUs. They used MADM to determine the 
weight of the outputs based on the preferred ratings within the outputs. 
Then, they multiplied the aggregated output quantities to obtain 
comprehensive performance scores for evaluation. 

The relationship between DEA and MADM can also be presented in 
the context of hybrid MADM-DEA techniques, where DEA models are 
used to improve the performance of MADM methods. DEA is a popular 
performance management method that can be combined with MADM to 
enhance the information retrieval process. Liu and Hai (2005) proposed 
a DEA model to improve AHP performance and used the resulting model 
to rank suppliers. Such research intuition can also be seen in Soltanifar 
and Hosseinzadeh Lotfi (2011) and Tavana et al. (2021). Soltanifar 
(2021b) improved the linear assignment method using a DEA model. 
This method replaces the mixed-integer model with a linear program-
ming model, prioritizes the alternatives, and determines the distance 
among them according to the concept of uncertainty (Baraka and Hei-
dary Dahooei, 2018; Liu et al., 2020). 

1.1. Contribution 

The complexity involved in the achievement of the different Sus-
tainable Development Goals (SDGs) and their categorization in terms of 
their relative importance require the application of formal models 
capable of simultaneously considering multiple objectives and variables 
and provide a consistent and unbiased evaluation of the progress ach-
ieved. We exploit the flexibility of DEA and its capacity to consider 
features expressed in different units of measurement to account for 
multiple sustainability dimensions by incorporating a large number of 
economic, environmental, and social indicators to the analysis. These 
qualities have indeed led DEA to gain importance in the construction of 
indicators designed to evaluate sustainable development environments 
(Zakari et al., 2022). However, the resulting models have generally 
focused on specific dimensions of the SDGs, ranging from CO2 emissions 
(De Castro Camioto et al., 2014) to food supply (Lucas et al., 2021). 

The current study presents a group of MADM methods based on DEA 
for solving problems with heterogeneous evaluation attributes. The 
proposed method is based on the concept of preferential voting and 
presented using a DEA model with a linear programming formulation. 
The model is first designed as an MODM problem and then reformulated 
as a linear programming problem that is formalized through a goal 
programming approach. In terms of complexity, it has the advantages of 
linear programming in comprehension and implementation. In addition, 
the proposed method is structured as a decision matrix and does not 
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need to change the nature of columns to differentiate between benefit 
and cost attributes. We compare the rankings derived from our method 
with those obtained from standard MADM techniques such as Euclid and 
TOPSIS. We illustrate how the different normalization methods applied 
to condition the discrimination power of the models and analyze the 
reversals triggered by TOPSIS relative to the other techniques. 

Our hybrid model requires interacting with experts to define the 
relative importance of the groups of categories that contain the different 
criteria. At the same time, the optimization problem provides a consis-
tent and neutral framework for the assignment of weights to the criteria, 
which can then be used in the evaluation of sustainability development 
policies. In other words, our hybrid model does not rely on the weights 
assigned by the experts to the different criteria when determining the 
ranking, which constitutes a significant advantage relative to standard 
MADM techniques in strategic evaluation environments. 

All in all, our MADM-DEA model generates consistent indexes 
applied to weight heterogeneous criteria. The model provides a simple 
but powerful formal framework to rank the 17 SDGs defined by the 
United Nations in 2015. In this regard, the model could be easily 
extended to incorporate the 169 targets. While plausible, this extension 
is outside the scope of the current paper. 

The remainder of the paper is organized as follows. Section 2 reviews 
the relevant literature on preferential voting and DEA, highlighting that 
undesirable outputs are widely used in DEA settings. In Section 3, these 
outputs will be used to present a new group voting model. Section 4 
describes the MADM aspects of the proposed method, while Section 5 
compares it with Euclid and TOPSIS. Section 6 presents a real-world case 
study to demonstrate the applicability and efficiency of the proposed 
method. Section 7 concludes and suggests future research directions. 

2. Preferential voting 

The problem of “election” using the aggregation of votes is one of the 
most important group decision questions for which several models have 
been proposed. Consider a group of people who need to make a group 
decision. Voting is the process of aggregating individual votes to reach a 
collective decision. The ballot structure is often divided into two cate-
gories. In the first category, voters may vote for one candidate, while 
voters may vote for more than one candidate in the second category. In 
other words, the second category is divided into two sub-categories. In 
one sub-category, the names of a few candidates are written on the ballot 
paper. In the second sub-category, voters could express their preferences 
and select several candidates. 

In the non-preferential voting mechanism, m is chosen among n 
candidates (m <n). Therefore, each voter on the ballot will vote for a 
maximum of m candidates, and in the end, the candidates with the most 
votes will win. One disadvantage of this voting process is not prioritizing 
the polling stations. Therefore, voters cannot transfer their preferences 
to the community. 

In preferential voting, more opinion information is used from the 
voters compared to other electoral systems. In this type of voting, voters 
are asked to choose their preferred candidate and nominate a second 
candidate in case their first choice does not win. They are also asked for 
a third-choice candidate if their first and second-choice candidates do 
not win. Therefore, each voter selects a subset of candidates and ar-
ranges them according to their preferences. Although no single prefer-
ential voting method is the best, some methods are preferred over 
others. A popular aggregation method is Borda’s count (de Borda, 1781), 
in which fixed weights are assigned to different preferences. Suppose yij 

represents the number of priority votes i (i = 1, 2, .,m) for candidate j (j 
= 1,2, .,n). The evaluation index of each candidate is defined as Eq. (1). 

Ej =
∑m

i=1
uiyij, u1 > u2 > … > um (1) 

The relative weight or importance of each priority must be greater 

than that of the next priority. de Borda (1781) defined the weights as 
ui = m − i + 1, i = 1, 2, ., m. The winning candidate is the one dis-
playing the highest overall evaluation index. However, the choice of 
predetermined weights does not necessarily maximize the overall eval-
uation index for each candidate, which changes when a different weight 
vector is considered. This drawback will undoubtedly cause the candi-
dates to protest. Using Thompson’s assurance region (Thompson et al., 
1986, 1989) and the optimistic policy of Charnes et al. (1978) in DEA, 
Cook and Kress (1990) provided a model for selecting the optimal 
weight vector for each candidate. Despite this fact, their model has two 
controversial problems. 

The first problem is the choice of the discrimination intensity func-
tion and the corresponding weight constraints, according to which the 
winner can change. The second problem is using an optimistic policy 
model where each candidate chooses the best weight vector, which 
could cause a tie in the ranking. In this regard, Green et al. (1996) 
ranked the candidates using Sexton’s cross-efficiency evaluation (Sexton 
et al., 1986). They also defined a weak weight order based on accu-
mulation. Hashimoto (1997) built on the super-efficiency method of 
Andersen and Petersen (1993) to propose the removal of the candidate 
under evaluation and introduced a constraint category in which the 
difference between two consecutive weights is greater than or equal to 
that of the two subsequent consecutive weights. Noguchi et al. (2002) 
introduced weight restriction through a strong order and provided a way 
to rank candidates with multiple attributes. Obata and Ishii (2003) 
designed a model to provide a fair distinction between efficient candi-
dates, which uses weights of the same size. Foroughi et al. (2005) and 
Foroughi and Tamiz (2005) developed Obata’s model for efficient and 
inefficient candidates and algorithmically reduced its computational 
complexity. Llamazares (2017) showed that the winning candidate in 
Obata’s model would change by selecting different norms. He also 
developed Obata’s model with the weight restriction of Green et al. 
(1996) to determine the winning candidate without solving the linear 
programming problem. Contreras (2011) designed a two-step method 
for determining the group ranking of candidates. In the first step, the 
weight vector model determines which candidate under evaluation has 
the best rank. The model looks for a weight vector that minimizes the 
candidate rank. In the second step, a compromise solution is obtained 
based on the best candidate rank obtained in the first step. Hosseinzadeh 
Lotfi et al. (2013) improved the model presented by Contreras (2011) 
and derived the ranking of the candidates in the worst case. They called 
the model anti-ideal rank and considered it the upper limit of each 
candidate’s group ranking. Gong et al. (2018) proposed a DEA model for 
preferential voting with abstentions. 

Several studies have used preferential voting as a decision support 
tool. Liu and Hai (2005) used preferential voting to select suppliers in 
the AHP. Suppliers were considered candidates and managers as voters. 
This method collects expert opinions without a pairwise comparison 
matrix and consistency verification. Soltanifar and Hosseinzadeh Lotfi 
(2011) used the Voting AHP to rank DMUs in DEA. Amin et al. (2012) 
applied preferential voting to aggregate information in the metasearch 
engine. Soltanifar and Shahghobadi (2013) used preferential voting to 
derive the best secondary goal model in cross-efficiency evaluation. 
Izadikhah and Farzipoor Saen (2019) applied this technique to assess 
suppliers’ sustainability. Zerafat Angiz et al., (2010, 2012) and Sharafi 
et al. (2022) studied the concept of preferential voting with fuzzy logic 
and developed several models. 

Preferential voting models have been extended to incorporate groups 
with unequal power. The resulting models are known as preferential 
group voting (Ebrahimnejad, 2012; Ebrahimnejad and Bagherzadeh, 
2016; Sharafi et al., 2019; Soltanifar, 2020). 

According to the intuition provided to define Eq. (1) and to eliminate 
the inherent shortcomings, Cook and Kress (1990) proposed model (2). 

Ep = max
∑m

i=1
uiyip, p = 1, 2, ., n (2) 
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s.t.
∑m

i=1
uiyij ≤ 1, j = 1, 2,…, n  

ui − ui+1 ≥ d(i, ε), i = 1, 2,…,m − 1  

um ≥ d(m, ε)

In this model, each candidate is free to choose the polling stations’ 
weights to get the best efficiency score. Only the weights of the polling 
stations apply to the constraints of model (2), representing the same 
priority pattern between the weights as the one described in Eq. (1). 
d(i, ε) : N × R≥0→R≥0 is called the discrimination intensity function and 
is a monotone increasing and non-negative function. Intuitively, d(i, ε)
defines the minimum distance between the i-th and (i + 1) priority 
weights. ε is called the discrimination factor. 

Assuming a system with n homogeneous DMUs where each unit has s 
inputs and m outputs, model (2′) is the constant returns to scale DEA 
multiplier form applied to evaluate this system. 

Ep = max
∑m

i=1
uiyip, p = 1, 2, ., n (2′)  

s.t.
∑s

r=1
vrxrp = 1,

∑m

i=1
uiyij −

∑s

r=1
vrxrj ≤ 0, j = 1, 2,…, n  

ui ≥ 0, i = 1, 2,…,m  

vr ≥ 0, r = 1, 2, ., s 

Model (2) is a special case of the constant returns to scale DEA model 
in multiplier form, in which each candidate plays the role of a DMU, and 
the aggregated votes received constitute the output. DMUs have a single 
input equal to 1 (r = 1 & x1j=1, j = 1,2,…,n). In addition, weight re-
strictions account for the appropriate discrimination intensity function 
applied to show the difference between polling stations. In model (2), 
candidates select the best weight vector for their polling stations. Any 
candidate with an optimal objective function value equal to one is 
efficient. 

A few points must be highlighted. First, since a separate model is 
solved for each candidate, and model (2) selects the best weight vector 
for each candidate, it is sometimes not possible to rank the candidates. 
That is, we may obtain E∗

p(ε) = 1 for multiple candidates simultaneously. 
Second, changing the weight difference between voting priorities can 
modify the winning candidate. We summarized the main models pro-
posed to address these shortcomings at the beginning of this section. The 
next one studies preferential voting in groups with unequal power levels. 
We will define a new model by introducing the concept of undesirable 
voters and use it to solve MADM problems. 

3. Group preferential voting 

Consider the process described in Section 2 and suppose voters are 

divided into k categories with unequal power levels, where the impact of 
the vote of a lower-index group is greater than that of a higher-index 
group. The process of aggregating votes in a group with an unequal 
level of voting power has already been investigated in DEA (Ebra-
himnejad, 2012; Ebrahimnejad and Bagherzadeh, 2016; Soltanifar, 
2020). We examine this process by dividing voters into desirable and 
undesirable categories and providing a model for aggregating their 
votes. 

Assume that we choose m representatives from among n candidates 
and divide them into k categories. These k categories are assigned un-
equal power. That is, the influence of votes with a lower index is greater 
than those with a higher index. Moreover, some voters are considered 
desirable and some undesirable, but they are unaware of this grouping. 
This division does not affect how the voters vote. 

Denote by yr
ij, i = 1, 2,…,m, j = 1, 2,…, n, and r = 1, 2,…k, the 

number of votes obtained by the jth candidate in the ith position within 
the rth group of desirable voters and by xr

ij, i = 1,2,…,m, j = 1,2,…,n,
and r = 1,2,…k, the number of votes obtained by the jth candidate in 

the ith position within the rth group of undesirable voters. Table 1 shows 
how these votes are aggregated. 

Now suppose ur
i , i = 1, 2, …m, and r = 1, 2, …, k, are the weights 

assigned to the desirable votes in the ith position of the rth group, and vr
i ,

i = 1,2,…m, and r = 1,2,…,k, are the weights assigned to the unde-
sirable votes in the ith position of the rth group. Note that, just as the 
positive impact of the votes of desirable voters with a lower index is 
greater than that of the votes of desirable voters with a higher index, the 
negative impact of the votes of undesirable voters with a lower index is 
greater than that of the votes of undesirable voters with a higher index. 
We use this difference in impact factor to define and introduce weight 
restrictions and the appropriate discrimination intensity functions, as 
Cook and Kress (1990) suggested. Models (3) and (4) illustrate the 
importance of the aggregation process of desirable and undesirable 
votes within and across categories for candidate p, (p = 1,2,…,n). 

max
∑k

r=1

∑m

i=1
ur

i y
r
ip (3)  

s.t. 

∑k

r=1

∑m

i=1
ur

i y
r
ij ≤ 1, j = 1, 2,…, n  

(a)

{
ur

i − ur
i+1 ≥ d1(i, ε), i = 1, 2,…,m − 1; r = 1, 2,…, k

ur
m ≥ d1(m, ε), r = 1, 2,…, k  

(b)

{
ur

i − ur+1
i ≥ d2(r, ε′), r = 1, 2,…, k − 1; i = 1, 2,…,m
uk

i ≥ d2(k, ε′), i = 1, 2,…,m  

min
∑k

r=1

∑m

i=1
vr

i x
r
ip (4)  

s.t. 

Table 1 
Aggregation of votes.  

First category Second category . kth category 

Desirable Undesirable Desirable Undesirable . Desirable Undesirable 

1th 2th . mth 1th 2th . mth 1th 2th . mth 1th 2th . mth . 1th 2th . mth 1th 2th . mth 

y1
11 y1

21 . y1
m1 x1

11 x1
21 . x1

m1 y2
11 y2

21 . y2
m1 x2

11 x2
21 . x2

m1 . yk
11 yk

21 . yk
m1 xk

11 xk
21 . xk

m1 

y1
12 y1

22 . y1
m2 x1

12 x1
22 . x1

m2 y2
12 y2

22 . y2
m2 x2

12 x2
22 . x2

m2 . yk
12 yk

22 . yk
m2 xk

12 xk
22 . xk

m2 
⋮ ⋮ . ⋮ ⋮ ⋮ . ⋮ ⋮ ⋮ . ⋮ ⋮ ⋮ . ⋮ . ⋮ ⋮ . ⋮ ⋮ ⋮ . ⋮ 
y1

1n y1
2n . y1

mn x1
1n x1

2n . x1
mn y2

1n y2
2n . y2

mn x2
1n x2

2n . x2
mn . yk

1n yk
2n . yk

mn xk
1n xk

2n . xk
mn  
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∑k

r=1

∑m

i=1
vr

i x
r
ij ≥ 1, j = 1, 2,…, n  

(a′)

{
vr

i − vr
i+1 ≥ d̂

1
(i, ε), i = 1,…,m − 1; r = 1, 2,…, k

vr
m ≥ d̂

1
(m, ε), r = 1, 2,…, k  

(b′)

{
vr

i − vr+1
i ≥ d̂

2
(r, ε′), r = 2,…, k; i = 1, 2,…,m

vk
i ≥ d̂

2
(k, ε′), i = 1, 2,…,m  

max
∑k

r=1

∑m

i=1
ur

i y
r
ip (5)  

min
∑k

r=1

∑m

i=1
vr

i x
r
ip  

s.t. 

∑k

r=1

∑m

i=1
ur

i y
r
ij ≤ 1, j = 1, 2,…, n  

∑k

r=1

∑m

i=1
vr

i x
r
ij ≥ 1, j = 1, 2,…, n  

ur
i − ur

i+1 ≥ d1(i, ε), i = 1, 2,…,m − 1; r = 1, 2,…, k  

ur
m ≥ d1(m, ε), r = 1, 2,…, k  
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d1(.,ε), d2(.,ε′), d̂
1
(., ε) and d̂

2
(., ε′) are monotonically increasing and 

non-negative discrimination intensity functions. These functions are 
determined based on the Decision Makers (DMs) preferences. We 
reviewed some suggestions for determining these functions in Section 2. 
According to the DEA policy used in model (2), each candidate in model 
(3) is allowed to choose the weights, observing the weight restrictions 
(a) and (b) most optimistically. Similarly, model (4) considers the un-
desirable votes of each candidate. Constraints (a) and (b) in model (3) 
represent the difference in the positive effect of the lower and higher 
index votes and the positive impact of the lower and higher index cat-
egories, respectively. Constraints (a′) and (b′) in model (4) represent the 
difference in the negative effect of the lower and higher index votes and 
the negative impact of the lower and higher index categories, 
respectively. 

These two models are combined in the model (5), endowed with two 
objective functions simultaneously considering the candidate’s desir-
able and undesirable votes p,(p = 1,2,…,n). This problem can be solved 
as a multi-objective problem by converting the objective function into 
constraints, applying weighting, absolute priority, or goal programming. 
The objective functions for models (3) and (4) should be equal to 1 
because of the respective first constraints. Using goal programming, 
model (5) becomes model (6) as follows: 

min d+ + d− (6)  
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d+, d− ≥ 0  

where d+and d− are variables accounting for the deviation from the 
goals of the objective functions. The goal programming approach allows 
for extensions of the model focused on the satisfaction of decision 
makers’ preferences. Furthermore, given its widespread use in goal 
programming environments, the pre-emptive (lexicographic) model 
could also be applied, allowing to prioritize the realization of the 
different goals. Given the optimal solution of model (6), ((u1∗

1 ,…,u1∗
m ,v1∗

1 ,

…v1∗
m ),…,(uk∗

1 ,…,uk∗
m ,vk∗

1 ,…vk∗
m )), the performance score of candidate p, E∗

p, 
can be obtained from Eq. (7): 

E∗
p =

∑k
r=1

∑m
i=1ur∗

i yr
ip

∑k
r=1

∑m
i=1vr∗

i xr
ip

(7) 

Once all the E∗
p scores of the candidates are calculated, they are 

sorted in descending order, and the list is used for selecting the winning 
candidates. 

4. Practical application 

In the previous section, we described how voters were divided into 
desirable and undesirable categories. This classification raises several 
important questions. How are undesirable voters used in the voting 
process? What are some potential applications of the model? How can 
the proposed model be used to solve real-world problems? We address 
these questions by solving a MADM problem. 

Many MADM problems include cost and benefit attributes where the 
goal is ranking a set of alternatives or choosing the most suitable one. 
Consider a car selection problem where quality is a benefit factor (a 
higher value is more desirable), and fuel consumption is a cost factor (a 
lower value is more desirable). In most MADM models, the cost attri-
butes are converted into benefit attributes through a normalization 
process. The model proposed in Section 3 can solve this problem without 
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attribute conversion by considering the benefit attributes as desirable 
voters with positive impact and the cost attributes as undesirable voters 
with negative impact. The proposed approach reduces computational 
efforts and promotes interaction with the DMs. Also, since in most 
methods the effects of different attributes on the final prioritization tend 
to vary, the weights of the attributes are determined first with the help of 
experts. The proposed method organizes attributes into different cate-
gories and introduces alternative attribute priorities in the discrimina-
tion intensity functions to determine the effect of the attributes. As a 
result, fewer judgments are sought from the experts. 

The proposed method collects limited judgment data from the DMs. 
However, the accuracy of decision-making often outweighs its speed. In 
such cases, the decision matrix presented in Table 1 cannot accurately 
rank the alternatives since some of the impacts of the alternatives and 
the attributes are not captured. It is sufficient to consider the aggregate 
score of the p(p = 1,2,…, n) different alternatives in the desirable and 
undesirable categories to eliminate this drawback from model (6). In 
fact, yr

ip and xr
ij are no longer the votes obtained by candidate p from the 

point of view of the desirable and undesirable voters; instead, these are 
now the sums of the scores obtained from the benefit and cost attributes. 
Consequently, a more informative decision matrix is used in the ranking 
process. 

Let us describe the proposed method. Assume we want to evaluate n 
similar alternatives (A1,A2,…, An) by considering s multiple attributes 
(C1, C2, …, Cs). Eq. (8) presents the overall decision matrix for this 
problem: 

D =

⎡

⎣
t11 ⋯ t1s
⋮ ⋱ ⋮
tn1 ⋯ tns

⎤

⎦ (8) 

Step 1: Normalize the decision matrix (8) using Eq. (9). 

t̂ pq =
tpq − t−q
t+q − t−q

; p = 1, 2,…, n; q = 1, 2,…, s. (9)  

where t−q = min
1≤p≤n

tpq and t+q = max
1≤p≤n

tpq, q = 1,2, .,s. This method is one of 

the many approaches suggested in the literature for normalizing deci-
sion matrices in MADM. It should be noted that normalization is used to 
standardize the unit of measurement regardless of the attribute type. 

Step 2: Categorize the attributes using the judgments of the experts. 
This categorization describes the importance of attributes. Suppose the 
experts divide the attributes into k categories so that the importance of 
the characteristics embedded in category a is higher than that of the 
characteristics embedded in category b whenever a < b. Each attribute 
category can be divided into benefit and cost categories. 

Step 3: Form the voting matrix shown in Table 1 using Eqs. (10) and 
(11). The number of alternatives and selected attributes will be equal in 
the resulting Table 1 (m = n) since we need to identify and allocate the 
priority of each alternative among all the alternatives in each category. 

yr
ij =

∑

q∈ rthcategory of profit attributes

t̂jq is the ithpriority in the column

t̂ jq (10)  

xr
ij =

∑

q∈ rthcategory of cost attributes

t̂jq is the ith priority in the column

t̂ jq (11) 

Step 4: Solve model (6) and calculate the score of the alternatives 
using Eq. (7). The flowchart of the proposed method is presented in 
Fig. 1. 

Fig. 1. Flowchart of the proposed method and Euclid.  
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5. Comparative assessment 

This section compares the proposed technique with the Euclid 
method defined by Tavana (2002). We discuss the similarities and dif-
ferences between the two methods and highlight their strengths and 
weaknesses. We have chosen Euclid as a comparison benchmark due to 
its similarity with the method being proposed. In both cases – and unlike 
most MADM techniques –, cost attributes are evaluated without being 
turned into profit attributes in the normalization process. We will also 
compare the results derived from the proposed method with those ob-
tained from one of the most widely applied MADM models, namely, 
TOPSIS. This latter technique will allow us to evaluate and compare the 
effect that different normalization methods have on the rankings 
obtained. 

5.1. Methodological comparison 

Tavana (2002) introduced a method for solving MADM problems 
based on the strategic alternative evaluation matrix. Consider our earlier 
problem with n alternatives,(A1,A2,…, An), s attributes (C1,C2,…, Cs), 
and the decision matrix in the form of Eq. (8). Euclid requires five steps 
as follows: 

Step 1: Normalize the decision matrix (8) by applying Eq. (9). 
Step 2: Assign an importance weight to each attribute. We have 

∑s
q=1wq = 1, if the weight specified for attribute q is equal to wq. 
Step 3: Calculate the weighted normalized matrix using Eq. (12). 

D =

⎡

⎣
t11 ⋯ t1s
⋮ ⋱ ⋮
tn1 ⋯ tns

⎤

⎦ =

⎡

⎣
t̂11 ⋯ t̂1s
⋮ ⋱ ⋮
t̂ n1 ⋯ t̂ ns

⎤

⎦×

⎡

⎣
w1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ws

⎤

⎦ (12) 

Step 4: Calculate an average benefit and average cost score for each 
alternative using Eqs. (13) and (14), respectively. 

PAj =

∑

q∈ benefit attributes
tjq

number of profit attributes
(13)  

CAj =

∑

q∈ cost attributes
tjq

number of cost attributes
(14) 

Step 5: Calculate the Euclidean distance of each alternative from the 
ideal point using Eq. (15) and rank the alternatives based on their 
Euclidean distances. An alternative with a lower Euclidean distance is 
preferred over an alternative with a higher one. 

EDj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
PAj − 1

)2
+
(
CAj − 0

)2
√

(15) 

The flowchart of the Euclid method is also presented in Fig. 1. As 
mentioned before, the proposed method and Euclid do not need to 
convert cost attributes into benefits in the normalization process. Both 
methods are designed to maintain the benefit and cost nature of the 
attributes. The proposed method considers the benefit and cost attri-
butes as desirable and undesirable voters, and Euclid considers them as 
benefit and cost scores. The Euclid method requires the alternative 
scores of each attribute plus the attribute weights – if needed – to build a 
decision matrix. After the decision matrix is constructed, there are no 
other interactions with the experts. The proposed method is less 
demanding on the experts, who only provide information on attribute 

Table 2 
Decision matrix for choosing the best car.  

Decision Matrix First Category Second Category 

Comfort Price Prestige MPG 

Attribute type Benefit Cost Benefit Cost 
Acura TL 0.705 0.937 0.707 0.818 
Toyota Camry 0.211 0.806 0.07 0.5 
Honda Civic 0.084 0.257 0.223 0.75  

Table 3 
Normalized decision matrix for choosing the best car.  

Normalized Decision Matrix First Category Second Category 

Comfort Price Prestige MPG 

Attribute type Benefit Cost Benefit Cost 
Acura TL 1.000 1.000 1.000 1.000 
Toyota Camry 0.205 0.807 0.000 0.000 
Honda Civic 0.000 0.000 0.240 0.786  

Table 4 
Voting matrix for choosing the best car.  

Voting Matrix First category, desirable (Comfort) First category, undesirable (Price) Second category, desirable (Prestige) Second category, undesirable (MPG) 

Polling Position 1 2 3 1 2 3 1 2 3 1 2 3 

Acura TL  1.000  0.000  0.000  1.000  0.000  0.000  1.000  0.000  0.000  1.000  0.000  0.000 
Toyota Camry  0.000  0.205  0.000  0.000  0.807  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
Honda Civic  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.240  0.000  0.000  0.786  0.000  

Table 5 
Results of the model (6) and Eq. (7) for different ε values.  

The results of 
model (6) andEq. (7) 

εmax= 0.143 ε = 0.071 ε = 0.048 ε = 0.010 ε = 0.007 ε = 0.004 

Acura TL  0.336  0.362  0.372  0.389  0.390  0.391 
Toyota Camry  0.077  0.135  0.155  0.190  0.192  0.196 
Honda Civic  0.069  0.094  0.103  0.117  0.118  0.119  

Table 6 
Weighted Normalized decision matrix for choosing the best car.  

Weighted Normalized Decision Matrix Comfort Price Prestige MPG 

Attribute type Benefit Cost Benefit Cost 
Acura TL 0.400 0.400 0.100 0.100 
Toyota Camry 0.082 0.323 0.000 0.000 
Honda Civic 0.000 0.000 0.024 0.079  

Table 7 
Results of the Euclid Method.  

The results of the Euclid method PA CA ED Rank 

Acura TL  0.250  0.250  0.791  1 
Toyota Camry  0.041  0.161  0.973  2 
Honda Civic  0.012  0.039  0.989  3  
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categorization. However, the interactions with the experts are not 
necessarily limited to their initial data. The development of the 
discrimination intensity functions may involve additional interactions. 
A familiar example introduced by Saaty (2013) in the decision sciences 
literature is used next to demonstrate the applicability of the two 

methods. 

5.2. Comparative Results 

Saaty (2013) introduced this numerical example to choose the best 
car among three alternatives (Acura TL, Toyota Camry, and Honda 
Civic) by considering different priorities for the following four attri-
butes: Prestige, Comfort, Price, and Miles per Gallon (MPG). This 
example is usually presented in the MADM literature in a hierarchical 
structure or a decision matrix. Table 2 shows the decision matrix for this 
problem. It is clear that the Comfort and Prestige attributes are of the 
benefit type, while the Price and MPG attributes are of the cost type. 
Experts have judged that Comfort and Price are more important than 
Prestige and MPG. After normalizing the decision matrix using Eq. (9), 
we obtain the (normalized) matrix presented in Table 3. We then form 
the voting matrix described in Table 4 using Eqs. (10) and (11). 

Intuition regarding the method being implemented can be obtained 
from the distribution of values within Table 4. Note, for instance, that 
the Honda Civic is ranked second within the Prestige and MPG criteria in 
Table 3. As a result, it is assigned the second position within the cor-
responding categories in Table 4, increasing the importance score 
received relative to its third position within the Comfort and Price 
criteria. The transition between Tables 3 and 4 illustrates how the pro-
posed model behaves when applied to a MADM setting. 

The results in Table 5 are obtained after solving model (6) for 
different discrimination intensity functions and calculating Eq. (7). Note 
that we can interact with the DM to select the most appropriate 
discrimination intensity functions leading to a satisfactory solution. In 
this example, we have assumed d1(.,ε) = d2(.,ε′) = ε, and solved model 
(6) for different epsilon values. εmax is the maximum value of epsilon for 
which model (6) remains feasible. The results show that 
AcuraTL ≻ ToyotaCamry ≻ HondaCivic. 

To implement the Euclid method, we need to obtain the weights of 
the attributes from the experts. Suppose that the weights of Comfort, 
Price, Prestige, and MPG are 0.4, 0.4, 0.1, and 0.1, respectively. Table 6 
presents the resulting weighted normalized decision matrix. In contrast, 
Table 7 shows the average benefit and cost scores, the Euclidean dis-
tances of each alternative from the ideal point, and the corresponding 
rankings. The ranking results are identical for both methods. 

Finally, we have incorporated TOPSIS into the analysis motivated by 
its different normalization method, which leads to a different ranking of 
the alternatives. The decision matrix in TOPSIS is normalized using the 
following formula: 

0

0.2

0.4

0.6

0.8

1

1.2

Euclid-Eu Euclid-Top Eps-Eu Eps-Top TOPSIS-Top TOPSIS-Eu

Acura TL ToyotaCamry Honda Civic

Fig. 2. Scores derived from all the techniques analyzed.  

Table 8 
Differences and similarities between Euclid and the proposed method.  

Similarities Differences  

• Using a decision matrix structure to rank 
alternatives  

• Normalization throughEq. (9)  
• No change in the nature of cost 

attributes during the normalization 
process.  

• Computation of the impact of 
different attributes on the final 
result  

• Interaction with experts during the 
solution process  

• The process of determining the final 
score of the alternatives  

Table 9 
Advantages and disadvantages of Euclid and the proposed method.  

Method Advantages Disadvantages 

Proposed 
Method  

• No change in terms of cost 
attributes during the 
normalization process  

• Low computational efforts in 
the solution process  

• The impact of attributes is 
determined through the 
prioritization of their 
respective categories.  

• Ability to interact with the 
experts to define the 
discrimination intensity 
functions determining the 
final score of the alternatives  

• Applying the benefits of linear 
programming features using 
DEA-based policies in the so-
lution process  

Euclid 
Method  

• No change in terms of cost 
attributes during the 
normalization process  

• Low computational efforts in 
the solution process  

• Possibility of invalidating the 
results in case of inaccuracy 
when determining the weight 
of the attributes  

• Impossibility of interacting 
with the experts when 
determining the Euclidean 
distance  
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t̂ pq =
tpq
̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1
t2
kq

√ , p = 1, ., n, q = 1, ., s; (9′) 

which differs from the one defined in Eq. (9). In particular, the 
normalization process described in Eq. (9’) does not assign a value of 
zero to any of the normalized entries of the matrix – unless the original 
entry consisted of a zero –. This is an important difference that modifies 
the evaluation of the alternatives and the subsequent ranking. Indeed, 
TOPSIS reverses the order of the ranking for the second and third al-
ternatives when compared to Euclid and the proposed method. 

TOPSIS ranks the cars as follows: 
AcuraTL ≻ HondaCivic ≻ ToyotaCamry. The intuition for this reversal is 
simple. Note that the distance between the second and third alternative 
ranking scores is relatively small under both Euclid and the proposed 
model. As a result, a different ranking is obtained when modifying the 
weighting method, allowing the Honda Civic to account for its Comfort 
benefits while also considering the MPG costs of the Toyota Camry. 

The scores derived from all the techniques are presented in Fig. 2, 
where the evaluation differences can be explicitly observed. The scores 
obtained for εmax using the normalization formula of Euclid and TOPSIS 
in the proposed model are denoted by Eps-Eu and Eps-Top, respectively. 
Fig. 2 also shows the rankings derived from Euclid and TOPSIS with each 
other normalization methods, denoted by Euclid-Top and TOPSIS-Eu, 
respectively. Note that higher values represent better performances in 
TOPSIS and the proposed method, while the opposite is true for Euclid. 

The results obtained show that the normalization method applied in 
TOPSIS exhibits more discrimination power than the Euclidean one. 
Therefore, by changing the normalization method of the proposed 
model to that of TOPSIS, we can expect results to display more marked 
differences across alternatives. This is indeed the case within the pro-
posed model, where shifting to the TOPSIS normalization method leads 
to a ranking that clearly separates the evaluation of the last two 
alternatives. 

Finally, we observe that all models remain consistent in terms of the 
ranking provided independently of the normalization formula being 
implemented – with TOPSIS reversing the ranking of the last two al-
ternatives relative to the other models –. The normalization and reversal 
effects described through this section constitute interesting outcomes 
from the analysis that should be investigated further in future research. 

In the next section, we describe some practical implications from 
comparing the Euclid method and the one proposed in this study. 

5.3. Practical implications and further discussion 

We have explored two methods for solving MADM problems: Euclid 
and the method proposed in this study. The similarities and differences 
between both methods are summarized in Table 8, while Table 9 de-
scribes the advantages and disadvantages of the two methods. 

As shown in Tables 8 and 9, the proposed MADM method applies a 
linear programming model designed according to the theoretical foun-
dations of DEA. These tables highlight that the proposed method faces 
limited computational requirements and enhances the interaction with 
the DMs through the discrimination intensity functions. In addition, our 
method preserves the consistency of the ranking when the normalization 
process applied to the decision matrix is modified. In the next section, 
we present a real-world study to demonstrate the applicability and ef-
ficacy of the method proposed in this study. 

Table 10 
A description of the decision attributes.  

Attribute Type Description* 

C1 Cost People at risk of income poverty after social transfers: 
People at risk of poverty, i.e., persons with an equalized 
disposable income below the risk-of-poverty threshold, which 
is set at 60% of the national median equalized disposable 
income (after social transfers). 

C2 Benefit Government support of agricultural research and 
development: Government Budget Appropriations or 
Outlays on R&D (GBAORD). GBAORD data measures 
government support of research and development (R&D) 
activities, or, in other words, how much priority 
Governments place on the public funding of R&D. 

C3 Cost Self-reported unmet need for medical examination and 
care: Share of the population aged 16 and over-reporting 
unmet needs for medical care due to one of the following 
reasons: ‘Financial reasons,’ ‘Waiting list’ and ‘Too far to 
travel’ (all three categories are cumulated). The attribute is 
derived from self-reported data, so it is, to a certain extent, 
affected by the subjective perception of the respondents as 
well as by their social and cultural background. 

C4 Benefit Tertiary educational attainment: Share of the population 
aged 30–34 who have successfully completed tertiary studies 
(e.g., university, higher technical institution, etc.). 

C5 Benefit Share of women in senior management positions: Share of 
female board members in the largest publicly listed 
companies. Publicly listed means that the shares of the 
company are traded on the stock exchange. 

C6 Cost Share of the total population having neither a bath nor 
shower nor indoor flushing toilet in their household. 

C7 Cost Greenhouse gas (GHG) emissions energy consumption 
intensity: Ratio between energy-related GHG emissions and 
gross inland energy consumption. It expresses how many 
tonnes of CO2 equivalents of energy-related GHGs are being 
emitted in a certain economy per unit of energy that is being 
consumed. 

C8 Benefit Real GDP per capita: Ratio of real GDP to the average 
population of a specific year. GDP measures the value of the 
total final output of goods and services produced by an 
economy within a certain period of time. 

C9 Benefit Gross domestic expenditure on R&D: Gross domestic 
expenditure on R&D (GERD) as a percentage of the gross 
domestic product (GDP). 

C10 Benefit Purchasing power adjusted GDP per Capita: GDP per 
capita is calculated as the ratio of GDP to the average 
population in a specific year. Basic figures are expressed in 
purchasing power standards (PPS), representing a common 
currency that eliminates the differences in price levels 
between countries to allow for meaningful volume 
comparisons of GDP. 

C11 Benefit The recycling rate of municipal waste: The tonnage 
recycled from municipal waste is divided by the total 
municipal waste. Recycling includes material recycling, 
composting, and anaerobic digestion. The municipal waste 
consists primarily of waste generated by households but may 
also include similar wastes generated by small businesses and 
public institutions and collected by the municipality. 

C12 Cost Generation of waste excluding major mineral wastes: 
Waste generated in a country. Major mineral wastes, 
dredging spoils, and soils are excluded. 

C13 Cost Greenhouse gas emissions: Total national emissions, 
including international aviation of the so-called ‘Kyoto 
basket’ of greenhouse gases. 

C14 Benefit Number and proportion of coastal and inland bathing sites 
with excellent water quality. 

C15 Benefit The surface of terrestrial sites designated under Natura 
2000. The Natura 2000 network comprises marine and 
terrestrial protected areas designated under the EU Habitats 
and Birds Directives to maintain or restore a favorable 
conservation status for habitat types and species of EU 
interest. 

C16 Cost Population reporting on crime, violence, or vandalism: 
Share of people who reported that they have a problem with 
crime, violence, and destruction in their district. 

C17 Benefit Official development assistance as a share of gross 
national income: Official development assistance (ODA)  

Table 10 (continued ) 

Attribute Type Description* 

consists of grants or loans undertaken by the official sector to 
promote economic development and welfare in recipient 
countries. 

*Source: Eurostat (2021) 
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Table 11 
Decision matrix**.  

Country C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 
Cost Benefit Cost Benefit Benefit Cost Cost Benefit Benefit Benefit Benefit Cost Cost Benefit Benefit Cost Benefit 

Belgium  14.8  5.0  1.8  47.5  35.9  0.1  86.8  35950  2.89  36700  54.7  3504  82.7  97.62  13  13.3  0.42 
Bulgaria  22.6  4.0  1.4  32.5  18.5  7.5  99.1  6840  0.84  16500  31.5  3097  57.2  67.03  35  20.2  0.10 
Czechia  10.1  5.6  0.5  35.1  18.2  0.2  75.0  18330  1.94  28900  33.3  1542  64.8  0  14  7.8  0.13 
Denmark  12.5  17.5  1.8  49.4  30.0  0.3  68.5  49720  2.91  40500  51.5  1774  70.7  87.62  8  7.5  0.71 
Germany  14.8  10.8  0.3  35.5  35.6  0  90.0  35840  3.18  37500  66.7  1872  70.4  86.65  15  13.1  0.60 
Estonia  21.7  5.2  15.5  46.2  9.4  3.5  90.8  15760  1.61  26100  30.8  9711  50.0  51.85  18  7.4  0.13 
Ireland  13.1  19.7  2.0  55.4  26.  0.1  82.8  60170  0.78  60200  37.6  1611  113.6  71.74  13  8.8  0.31 
Greece  17.9  5.0  8.1  43.1  10.3  0.2  81.4  17750  1.27  20700  21.0  1478  90.8  95.77  27  16.9  0.14 
Spain  20.7  9.6  0.2  44.7  26.4  0.3  83.0  25200  1.25  28400  34.7  1540  119.7  93.24  27  11.6  0.21 
France  13.6  4.7  1.2  47.5  45.2  0.2  79.6  33270  2.19  33100  46.3  1501  83.1  81.95  13  14.7  0.44 
Croatia  18.3  2.8  1.4  33.1  27.0  0.8  88.0  12450  1.11  20300  30.2  922  75.2  98.43  37  2.7  0.13 
Italy  20.1  5.1  1.8  27.6  36.1  0.5  83.7  26910  1.45  29800  51.3  1850  84.4  88.20  19  9.4  0.24 
Cyprus  14.7  7.1  1.0  58.8  9.4  0.5  93.5  24530  0.63  27900  15.0  930  153.8  99.12  29  12.7  0.21 
Latvia  22.9  6.1  4.3  45.7  31.7  7.7  84.1  12510  0.64  21500  41.0  701  46.0  84.85  12  6.1  0.10 
Lithuania  20.6  3.2  1.4  57.8  12.0  8.7  102.3  14010  1.00  26000  49.4  1403  42.6  100.00  13  3.2  0.11 
Luxembourg  17.5  0.3  0.2  56.2  13.1  0.1  91.4  83640  1.19  81000  48.9  2278  94.2  0  27  11.2  1.05 
Hungary  12.3  4.0  1.0  33.4  12.9  2.7  78.7  13270  1.48  22800  35.9  1099  67.8  0  21  5.3  0.22 
Malta  17.1  2.6  0  38.1  10.0  0  57.4  21960  0.59  31100  8.90  1090  96.1  97.7  13  13.6  0.29 
Netherlands  13.2  8.2  0.2  51.4  34.2  0.0  94.0  41870  2.16  39900  56.9  2612  88.6  76.67  15  16.3  0.59 
Austria  13.3  4.1  0.3  42.4  31.3  0.1  85.0  38170  3.19  39400  58.2  1884  102.7  0  15  8.4  0.27 
Poland  15.4  2.6  4.2  46.6  23.5  1.6  88.6  13020  1.32  22700  34.1  2112  87.4  29.45  20  4.4  0.12 
Portugal  17.2  1.7  1.7  36.2  24.6  0.5  85.4  18630  1.40  24700  28.9  1316  118.9  95.63  21  6.7  0.16 
Romania  23.8  1.1  4.9  25.8  12.6  22.4  84.3  9110  0.48  21700  11.5  1115  46.8  77.55  23  9.6  0.10 
Slovenia  12.0  5.0  2.9  44.9  24.6  0.1  88.8  20700  2.04  27700  59.2  1479  94.4  95.24  38  8.0  0.16 
Slovakia  11.9  2.9  2.7  40.1  29.1  1.3  83.6  15860  0.83  21900  38.5  1579  59.2  0  30  5.6  0.12 
Finland  11.6  10.3  4.7  47.3  34.2  0.2  73.6  37230  2.79  34700  43.5  2569  81.4  63.64  13  6.4  0.42 
Sweden  17.1  4.5  1.4  52.5  37.5  0  69.2  43920  3.40  37000  46.6  2135  75.3  72.54  12  13.0  0.99 
United Kingdom  18.6  6.0  4.5  50.0  32.6  0  82.9  32910  1.76  32600  44.1  1877  61.6  66.08  9  24.2  0.70 

** Source: Eurostat (2021) 
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Table 12 
Normalized decision matrix.  

Country C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 
Cost Benefit Cost Benefit Benefit Cost Cost Benefit Benefit Benefit Benefit Cost Cost Benefit Benefit Cost Benefit 

Belgium  0.3431  0.2423  0.1161  0.6576  0.7402  0.0045  0.6548  0.3790  0.8253  0.3132  0.7924  0.3111  0.3606  0.9762  0.1667  0.4930  0.3368 
Bulgaria  0.9124  0.1907  0.0903  0.2030  0.2542  0.3348  0.9287  0.0000  0.1233  0.0000  0.3910  0.2659  0.1313  0.6703  0.9000  0.8140  0.0000 
Czechia  0.0000  0.2732  0.0323  0.2818  0.2458  0.0089  0.3920  0.1496  0.5000  0.1922  0.4221  0.0933  0.1996  0.0000  0.2000  0.2372  0.0316 
Denmark  0.1752  0.8866  0.1161  0.7152  0.5754  0.0134  0.2472  0.5583  0.8322  0.3721  0.7370  0.1191  0.2527  0.8762  0.0000  0.2233  0.6421 
Germany  0.3431  0.5412  0.0194  0.2939  0.7318  0.0000  0.7261  0.3776  0.9247  0.3256  1.0000  0.1300  0.2500  0.8665  0.2333  0.4837  0.5263 
Estonia  0.8467  0.2526  1.0000  0.6182  0.0000  0.1563  0.7439  0.1161  0.3870  0.1488  0.3789  1.0000  0.0665  0.5185  0.3333  0.2186  0.0316 
Ireland  0.2190  1.0000  0.1290  0.8970  0.4637  0.0045  0.5657  0.6944  0.1027  0.6775  0.4965  0.1010  0.6385  0.7174  0.1667  0.2837  0.2211 
Greece  0.5693  0.2423  0.5226  0.5242  0.0251  0.0089  0.5345  0.1421  0.2705  0.0651  0.2093  0.0862  0.4335  0.9577  0.6333  0.6605  0.0421 
Spain  0.7737  0.4794  0.0129  0.5727  0.4749  0.0134  0.5702  0.2391  0.2637  0.1845  0.4464  0.0931  0.6933  0.9324  0.6333  0.4140  0.1158 
France  0.2555  0.2268  0.0774  0.6576  1.0000  0.0089  0.4944  0.3441  0.5856  0.2574  0.6471  0.0888  0.3642  0.8195  0.1667  0.5581  0.3579 
Croatia  0.5985  0.1289  0.0903  0.2212  0.4916  0.0357  0.6815  0.0730  0.2158  0.0589  0.3685  0.0245  0.2932  0.9843  0.9667  0.0000  0.0316 
Italy  0.7299  0.2474  0.1161  0.0545  0.7458  0.0223  0.5857  0.2613  0.3322  0.2062  0.7336  0.1275  0.3759  0.8820  0.3667  0.3116  0.1474 
Cyprus  0.3358  0.3505  0.0645  1.0000  0.0000  0.0223  0.8040  0.2303  0.0514  0.1767  0.1055  0.0254  1.0000  0.9912  0.7000  0.4651  0.1158 
Latvia  0.9343  0.2990  0.2774  0.6030  0.6229  0.3438  0.5947  0.0738  0.0548  0.0775  0.5554  0.0000  0.0306  0.8485  0.1333  0.1581  0.0000 
Lithuania  0.7664  0.1495  0.0903  0.9697  0.0726  0.3884  1.0000  0.0934  0.1781  0.1473  0.7007  0.0779  0.0000  1.0000  0.1667  0.0233  0.0105 
Luxembourg  0.5401  0.0000  0.0129  0.9212  0.1034  0.0045  0.7572  1.0000  0.2432  1.0000  0.6920  0.1750  0.4640  0.0000  0.6333  0.3953  1.0000 
Hungary  0.1606  0.1907  0.0645  0.2303  0.0978  0.1205  0.4744  0.0837  0.3425  0.0977  0.4671  0.0442  0.2266  0.0000  0.4333  0.1209  0.1263 
Malta  0.5109  0.1186  0.0000  0.3727  0.0168  0.0000  0.0000  0.1969  0.0377  0.2264  0.0000  0.0432  0.4811  0.9770  0.1667  0.5070  0.2000 
Netherlands  0.2263  0.4072  0.0129  0.7758  0.6927  0.0000  0.8151  0.4561  0.5753  0.3628  0.8304  0.2121  0.4137  0.7667  0.2333  0.6326  0.5158 
Austria  0.2336  0.1959  0.0194  0.5030  0.6117  0.0045  0.6147  0.4079  0.9281  0.3550  0.8529  0.1313  0.5405  0.0000  0.2333  0.2651  0.1789 
Poland  0.3869  0.1186  0.2710  0.6303  0.3939  0.0714  0.6949  0.0805  0.2877  0.0961  0.4360  0.1566  0.4029  0.2945  0.4000  0.0791  0.0211 
Portugal  0.5182  0.0722  0.1097  0.3152  0.4246  0.0223  0.6236  0.1535  0.3151  0.1271  0.3460  0.0683  0.6862  0.9563  0.4333  0.1860  0.0632 
Romania  1.0000  0.0412  0.3161  0.0000  0.0894  1.0000  0.5991  0.0296  0.0000  0.0806  0.0450  0.0459  0.0378  0.7755  0.5000  0.3209  0.0000 
Slovenia  0.1387  0.2423  0.1871  0.5788  0.4246  0.0045  0.6993  0.1805  0.5342  0.1736  0.8702  0.0863  0.4658  0.9524  1.0000  0.2465  0.0632 
Slovakia  0.1314  0.1340  0.1742  0.4333  0.5503  0.0580  0.5835  0.1174  0.1199  0.0837  0.5121  0.0974  0.1493  0.0000  0.7333  0.1349  0.0211 
Finland  0.1095  0.5155  0.3032  0.6515  0.6927  0.0089  0.3608  0.3957  0.7911  0.2822  0.5986  0.2073  0.3489  0.6364  0.1667  0.1721  0.3368 
Sweden  0.5109  0.2165  0.0903  0.8091  0.7849  0.0000  0.2628  0.4828  1.0000  0.3178  0.6522  0.1592  0.2941  0.7254  0.1333  0.4791  0.9368 
United Kingdom  0.6204  0.2938  0.2903  0.7333  0.6480  0.0000  0.5679  0.3395  0.4384  0.2496  0.6090  0.1305  0.1709  0.6608  0.0333  1.0000  0.6316  
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6. Case study 

The case study evaluates 27 European Union (EU) countries and the 
United Kingdom according to 17 SDGs attributes adopted by the Agenda 
2030 for 2019. Stanujkic et al. (2020) used CoCoSo and the Shannon 
Entropy method to build a similar example for 27 EU countries in 
2015–2018. We illustrate how the ranking obtained follows from 
applying the weighting framework defined through our hybrid 
MADM-DEA model to the different attributes considered. The attributes 
have all been retrieved from the Eurostat database (Eurostat, 2021). 
Table 10 presents these attributes along with a brief technical descrip-
tion. The attributes have also been categorized in this table. 

The scores retrieved from each of the 28 EU countries per attribute 
are presented in Table 11. This table constitutes the decision matrix of 
the case study. We use Eq. (9) to normalize the decision matrix presented 
in Table 12. 

We then divide the 17 attributes into three categories: Social, Envi-
ronmental, and Economic. We asked several colleagues from our Eco-
nomics, Sociology, and Environmental Sciences departments to 
prioritize the criteria across important categories. The Delphi method 
has been used to aggregate the opinions of our expert colleagues and 
determine the priority assigned to each category in Table 13. This table 
shows how, based on the goals outlined in Agenda 2030, experts 
prioritized the attributes of the social category over those of the envi-
ronmental one and the latter’s attributes over those of the economic 
category. In each category, benefit attributes are considered desirable 
voters, while cost attributes are considered undesirable voters. 

Given the data presented in the normalized decision matrix and the 
categorization of the attributes provided in Table 13, we form a voting 
matrix similar to Table 1 and use model (6) to aggregate the votes and 
determine the score of each country applying Eq. (7). Finally, after 
interacting with the experts, the discrimination intensity functions were 
set to ε, and model (6) was solved for different ε values. The sensitivity of 
the results to the choice of ε value can be easily inferred from the 

Table 13 
Attributes categorization.  

First category 
(Society) 

Second category 
(Environment) 

Third category 
(Economy) 

Desirable Undesirable Desirable Undesirable Desirable Undesirable 

C2; C4; 
C5; 
C11; 
C17 

C1; C3; C6; 
C16 

C14; C15 C12; C13 C8; C9; 
C10 

C7  
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Fig. 3. Final score of the countries for different ε values.  
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evaluations presented in Fig. 3. The final ranking of the countries pre-
sented in Fig. 4 was determined based on εmax. Low-rank countries can 
consider high-rank (benchmark) countries to adjust their policies as a 
roadmap for progress. Moreover, the categories defined by the experts 
can be used as a priority guide on which to focus the implementation of 
the subsequent adjustments. As can be seen, the proposed MADM 
method, which has been designed based on a DEA model, was able to 
rank a problem with 28 units without delivering a tie. Since DEA eval-
uates units applying an optimistic policy, usually more than one unit 
reaches the ceiling of efficiency. This is particularly the case if the 
number of units is large. Therefore, achieving a complete ranking would 
require the specific use of ranking models. However, in this real-world 
problem, a full ranking was obtained by directly applying the pro-
posed method, which constitutes one of its most immediate advantages. 

7. Conclusion 

The selection of alternatives and their ranking are the primary goals 
of MADM. Most practicing managers prefer effective and efficient 
MADM methods that are simple and inclusive when considering expert 
opinions. Real-world MADM problems usually include both benefit and 
cost attributes. As a result, many MADM methods convert the cost at-
tributes into benefits through the normalization process performed 
before ranking the alternatives. 

We have presented a group voting method with unequal power levels 
among members that incorporates “undesirable voters.” The proposed 
method is straightforward to use. The benefit attributes are categorized 
as desirable voters, while the cost attributes are categorized as unde-
sirable voters. We have demonstrated the applicability and efficacy of 
the proposed method with a numerical example and a case study where 
we have applied our hybrid MADM-DEA model to rank a set of European 
countries based on their fulfillment of the 17 SDGs defined by the United 
Nations in 2015. 

From a strategic perspective, one of the proposed method’s main 
advantages is that DMs do not rely on the weights defined by the experts. 
The latter may have incentives to report strategically, and lower 
dependence on their subjective judgments significantly improves the 
standard MADM techniques. Finally, uncertainty considerations – 
common to the DEA literature – can be easily incorporated into the 
model, allowing for potential extensions of the current approach in fuzzy 
environments. 
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