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Abstract

Designing and developing sustainable circular supply chain networks for electric vehi-

cle (EV) lithium-ion battery recycling and production requires complex environmental

sustainability and economic viability assessment. EVs use a lot of data for battery

management and delivering optimum performance, and the Internet of Things (IoT)

plays a major role in managing this data. This study develops a bi-objective mixed-

integer linear programming model for designing a sustainable circular supply chain to

manage the manufacturing, remanufacturing, and distribution of EV lithium-ion batte-

ries under uncertainty using the IoT and big data. The proposed model simulta-

neously minimizes total costs and CO2 emissions and uses IoT to improve network

performance and create a traceable and secure environment. A fuzzy multi-objective

method solves the bi-objective optimization model under uncertainty, and a simula-

tion algorithm examines the effectiveness of the proposed model through simulated

problems.
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1 | INTRODUCTION

Circular economy (CE) is a concept that has recently emanated from decreasing the use of inputs when focused on industrial production

(Kirchherr et al., 2017; Stahel, 2016). The increasing popularity of the CE model dates back to the late 1970s when it is difficult to reach a consen-

sus on a single definition for CE due to its non-stop development and multidisciplinary status (Tushar et al., 2022). In this regard, two factors

centred upon CE are its multi-phased employment of energy and raw materials and its closed or circular flow of materials (Franklin-Johnson

et al., 2016; Tomi�c & Schneider, 2018). In other words, CE can be referred to as an economy that aims to decrease the use of materials, use of

energy, and environmental pollution while economic development is not adversely affected (Benachio et al., 2020; Castro et al., 2022). Although

CE is concerned about sustainability, major differences exist between CE and sustainability regarding goals, institutionalization process, origins,

responsibility perception, and motivations (Geissdoerfer et al., 2017).

When it comes to CE, one can easily refer to the “3 Rs” principle, which refers to “reduce,” “reuse,” and “recycle” the materials to minimize

the unessential inputs and the leakages (Tushar et al., 2022). Various approaches are used in a CE to obtain this objective. One can refer to the

design of products with multiple uses, the increase of product life cycles toward increased utilization, the reuse of wastes, and so forth (Gupta
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et al., 2022; Genc, 2021). CE models have become popular with policymakers, and several countries are adopting new rules and policies to

develop these models. For instance, it is possible to name the “Closed Substance Cycle and Waste Management Act” in Germany, “Basic Law for

Establishing a Recycling-Based Society” in Japan, and “CE Promotion Law of the People's Republic of China” in China (Lieder & Rashid, 2016; Su

et al., 2013).

The Electric Vehicle (EV) lithium-ion batteries industry is one industry in which CE can significantly help reduce costs and destructive envi-

ronmental effects (Yu et al., 2021). The past decade witnessed the vast development of electric vehicles, where their global stock also experi-

enced a 63% increase in 2017 (Hua et al., 2021). This figure reached 5 million in 2018. It has been estimated that these devices can cover from

11% to 28% of road transport needs worldwide by 2040 (Kapustin & Grushevenko, 2020). Because of their great power density and energy,

low self-discharge rate, high reliability, and long lifespan, spent lithium-ion batteries are largely used in such devices (Wen et al., 2020; Zhang

et al., 2022). They can travel 120,000 to 240,000-km distance during their lifetime, and these batteries can have an 8- to 10-year-old lifespan

(Ansari et al., 2021; Martinez-Laserna et al., 2018). Notably, the wasted batteries of the 5 million electric vehicles will have a total weight of

1.25 million tons at the end of the vehicles' lifetime because each battery weighs about 250 kg (Hua et al., 2021). Remanufacturing spent

lithium-ion batteries through the wasted batteries is being regarded as a desirable end-of-life option for the batteries of electric vehicles as

they can potentially decrease the environmental pollution arising from waste disposal and battery production (Xiong et al., 2020). In addition,

remanufacturing these batteries using spent batteries can control possible illogical price increases and prevent the disruption of battery mate-

rials supply, especially because the supply of these materials is greatly dependent on the import of cobalt and nickel from other countries (Rallo

et al., 2020).

This paper develops a novel bi-objective mixed-integer linear programming model (MILP) to structure a sustainable circular supply chain

(SCSC) network for managing EV lithium-ion batteries under uncertainty and a big data environment. It should be emphasized that the Internet of

Things (IoT) technology will be applied to increase transparency in the network, prevent fraud, and make the batteries traceable. The presented

model aims to minimize total network costs and CO2 emissions simultaneously. In general, the contributions of this research can be expressed as

follows:

• Formulating a novel MILP model to design a virtual SCSC network for managing the spent EV lithium-ion batteries;

• Applying a fuzzy multi-objective solution method for solving the presented bi-objective optimization model;

• Developing a data simulation approach with feasible solution spaces based on three dimensions of big data (i.e., volume, variety, and velocity);

• Validating the presented model and solution approach using 10 simulated test problems in different sizes.

The remainder of this paper is organized as follows. The relevant literature is investigated in Section 2. The proposed model and the multi-

objective solution method are presented in Sections 3 and 4, respectively. Sections 5 and 6 are devoted to case study and sensitivity analysis.

Comparative analysis and discussion are presented in Sections 7 and 8. Finally, the conclusion is presented in Section 9.

2 | LITERATURE REVIEW

A mathematical planning tool is a practical tool in supply chain network design. Literature review shows that mathematical models have been used

abundantly in the structuring of traditional supply chains (Farahani et al., 2014; Govindan et al., 2017; Hu et al., 2023), green/sustainable supply

chains (Ebrahim Qazvini et al., 2021; Joshi, 2022; Nasiri et al., 2023), closed-loop/circular supply chains (Govindan et al., 2020; Govindan

et al., 2023; Zhang et al., 2021), sustainable closed-loop/circular supply chains (Tavana et al., 2022; Zhang et al., 2023; Zhen et al., 2019), and vir-

tual supply chains (Prajapati, Chan, et al., 2022 and 2002b; Shambayati et al., 2022).

To design a green Closed-Loop Supply Chain (CLSC) network including reverse and forward flows, Mardan et al. (2019) suggested

a bi-objective MILP model and a benders decomposition algorithm to optimize operational and strategic decisions in the cable and wire

industry. The objective functions of their model are dedicated to economic and environmental issues and simultaneously minimize the

negative environmental effects and the total costs. Hajiaghaei-Keshteli and Fathollahi Fard (2019) developed a sustainable CLSC net-

work considering discounts via a mixed-integer non-linear programming (MINLP) model. They considered all three sides of sustainability

(i.e., social, environmental, and economic) in structuring the investigated network. They evaluated the efficiency of their proposed

model using data from the glass industry. Nasr et al. (2021) presented a hybrid framework based on a MILP model and multi-criteria

decision-making techniques for structuring a sustainable CLSC network considering circular supplier evaluation under uncertainty. They

employed a fuzzy goal programming (GP) approach for solving their presented multi-objective optimization model and used data from

the garment industry to validate it. Using resilience and sustainability strategies, Mehrjerdi and Shafiee (2021) configured a CLSC net-

work to reduce network risks and increase economic, environmental, and social efficiency. Their model minimizes environmental effects
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and total costs and maximizes job creation. They applied an augmented epsilon-constraint method for solving their multi-objective opti-

mization model.

Soleimani et al. (2022) developed a heuristic algorithm to solve a CLSC problem considering energy consumption and sustainability. They min-

imize energy consumption and costs and maximize job opportunities with the help of a multi-objective MILP model. Seydanlou et al. (2022)

designed a sustainable CLSC network to optimize strategic and operational decisions in the olive industry. They used meta-heuristic algorithms to

solve their proposed problem. Govindan et al. (2022) presented a bi-objective optimization model for healthcare waste management to transition

toward CE. They employed a stochastic scenario-based method to control uncertain parameters and an augmented epsilon-constraint method for

solving their presented bi-objective optimization model. Tavana et al. (2022) formulated a comprehensive model to form a sustainable CLSC net-

work by focusing on all three aspects of sustainability. In their model, the economic objective function minimizes total costs, the environmental

objective function minimizes CO2 emissions, and the social objective function maximizes job opportunities. They employed a fuzzy GP method to

solve their multi-objective MILP model.

Shambayati et al. (2022) proposed a virtual CLSC network for the first time using the concept of IoT and mathematical programming tools.

The aim of their model was profit maximization, and they utilized meta-heuristic algorithms to solve their problem. In this vein, Prajapati,

Jauhar, et al. (2022) structured a virtual CLSC network using an MINLP model. They used IoT devices and blockchain technology for this pur-

pose. In addition, Tavana et al. (2023) formulated an optimization model for configuring an SCSC network and developed a Lagrangian relaxa-

tion algorithm to solve problems of large sizes. They applied an artificial IoT to increase the security and performance of the network and

create a traceable environment. A MILP model to optimize a CLSC in the agricultural industry to minimize strategic and operational costs was

developed by Rajabi-Kafshgar et al. (2023). They used meta-heuristic algorithms to solve their presented problem. Govindan et al. (2023) pro-

posed a circular CLSC network for structuring an inventory-location-routing problem considering a carbon tax policy in the cable and wire

industry. Their MILP model minimizes total costs and lost sales simultaneously. They applied an augmented epsilon-constraint method to solve

their presented bi-objective optimization model. Goodarzian et al. (2023) structured a sustainable circular CLSC network with the help of a

multi-objective MILP model to increase sustainability in the citrus industry. They utilized the epsilon-constraint method for solving their tri-

objective model and developed meta-heuristic algorithms to solve their problem in large sizes. A bi-objective MINLP model for designing a

CLSC network in the mobile phone industry was formulated by Keshavarz-Ghorbani and Pasandideh (2023) to optimize strategic and opera-

tional decisions. Their model aims to create a trade-off between social benefit and profit. They used an epsilon-constraint method to solve their

bi-objective model.

Table 1 shows the similarities and differences between the papers presented in the CLSC/reverse supply chain network area and the current

paper to reveal the research gap. As seen in Table 1, so far, no research has focused on designing a CLSC/reverse supply chain network to opti-

mize EV lithium-ion batteries considering IoT technology in the big data environment. For this purpose, based on our best knowledge, in this

research, for the first time, a novel bi-objective MILP model for structuring a CLSC network to manage the production, distribution, and recycling

of EV lithium-ion batteries by considering the concepts of CE, IoT technology, capacity level, inventory management, facility location, and big data

are developed under uncertainty.

3 | PROPOSED MODEL

This section proposes a novel bi-objective MILP model to design a sustainable circular CLSC network to manage the manufacturing,

remanufacturing, and distribution of EV lithium-ion batteries. In the investigated network, the manufacturing centre transfers the batteries to the

distribution centres so that the distribution centres distribute the batteries between battery swap stations. At the battery swap station, spent bat-

teries are identified and delivered to collection centres. Then, the defective batteries are sent to the manufacturing centre. Defective batteries are

remanufactured in the manufacturing centre and enter the consumption cycle again. The investigated network is depicted in Figure 1. It should

be noted that the investigated CLSC network is configured based on the structure and activities of a large company that produces EV lithium-ion

batteries in the Middle East. Therefore, the assumptions considered for formulating the proposed model are real and taken from the studied net-

work structure. These assumptions are given below:

• The investigated network is multi-period and multi-product and includes both forward and reverse flows.

• One manufacturing centre is considered.

• Vehicles and centres are capacitated.

• The capacity level has been defined for collection and distribution centres.

• The model locates distribution and collection centres.

• Storage in distribution centres is allowed.

• IoT technology is used to create a traceable and safe environment.
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3.1 | Mathematical model

3.1.1 | Indices

b=B Index/set of batteries b� 1,2,…,Bf g
d=D Index/set of distribution centres d� 1,2,…,Df g
c=C Index/set of collection centres c� 1,2,…,Cf g
k=K Index/set of capacity levels for distribution centres k� 1,2,…,Kf g
k0=K0 Index/set of capacity levels for collection centres k0 � 1,2,…,K0f g
s=S Index/set of battery swap stations s� 1,2,…,Sf g
v=V Index/set of vehicles v� 1,2,…,Vf g
i=I Index/set of IoT technologies i� 1,2,…, If g
t=T Index/set of periods t� 1,2,…,Tf g

3.1.2 | Parameters

MNCST
bt

The cost of manufacturing one unit of type b battery at the manufacturing centre in period t

RMNCST
bt

The cost of remanufacturing one unit of type b battery at the manufacturing centre in period t

PDCCST
bdt

The cost of processing a unit of type b battery at distribution centre d in period t

HDCCST
bdt

The cost of holding one unit of type b battery at distribution centre d in period t

SDCCST
dk

The cost of establishing the distribution centre d with capacity level k

LDCCP
k

The lower bound of capacity level k for distribution centres

UDCCP
k

The upper bound of capacity level k for distribution centres

DBSbst The demand for battery swap station s for type b battery in period t

RBSbst Number of unusable type b battery transferred to collection centres by battery swap station s in period t

PCCCST
bct

The cost of processing one unit of type b battery at collection centre c in period t

(Continues)

Manufacturing center

Battery swap station

Distribution center

Collection
center

F IGURE 1 The investigated supply chain network for EV lithium-ion batteries.
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SCCCST
ck0

The cost of establishing the collection centre c with a capacity level k0

LCCCP
k0

The lower bound of capacity level k0 for collection centres

UCCCP
k0

The upper bound of capacity level k0 for collection centres

IoTMN
i

The cost of installing the type i IoT technology at the manufacturing centre

IoTDC
id

The cost of installing the type i IoT technology at the distribution centre d

IoTCC
ic

The cost of installing the type i IoT technology at the collection centre c

TGt The cost of purchasing one unit of RFID tags in period t

IoTEN
i

The amount of energy required to record, process, and send data of each battery by type i IoT technology

PEN Price per unit of energy consumed by IoT technologies

DISMD
d

The distance between the manufacturing centre and the distribution centre d

DISDBds The distance between the distribution centre d and the battery swap station s

DISBCsc The distance between the battery swap station s and the collection centre c

DISCMc The distance between the collection centre c and the manufacturing centre

RVHv Transportation cost per unit of distance by vehicle v

CPVHv The capacity of vehicle v

COVHv The amount of CO2 emitted per unit of distance by the vehicle v

COIoT The amount of CO2 emitted per unit of energy consumption

αb The volume of type b battery

βb Weight of type b battery

M A large number

3.1.3 | Variables

θDCdk Binary variable; 1 if distribution centre d is established with the capacity level k, 0 otherwise

θCCck0 Binary variable; 1 if collection centre k is established with the capacity level k0 , 0 otherwise

δMN
i

Binary variable; 1 if type i IoT technology is installed at the manufacturing centre, 0 otherwise

δDCid Binary variable; 1 if type i IoT technology is installed at the distribution centre d, 0 otherwise

δCCic Binary variable; 1 if type i IoT technology is installed at the collection centre c, 0 otherwise

μbt Integer variable; Number of the type b battery manufactured at the manufacturing centre in period t

XMD
bdt

Integer variable; Number of the type b battery transferred from the manufacturing centre to the distribution centre d in period t

XDB
bdst

Integer variable; Number of the type b battery transferred from the distribution centre d to the battery swap station s in period t

XBC
bsct

Integer variable; Number of the type b battery transferred from the battery swap station s to the collection centre c in period t

XCM
bct

Integer variable; Number of the type b battery transferred from the collection centre c to the manufacturing centre in period t

λbdt Integer variable; Inventor level for type b battery at the warehouse of distribution centre d in period t

YMD
vdt

Integer variable; Number of the type v vehicle required to transfer batteries from the manufacturing centre to the distribution centre d in

period t

YDB
vdst

Integer variable; Number of the type v vehicle required to transfer batteries from the distribution centre d to the battery swap station s in

period t

YBC
vsct

Integer variable; Number of the type v vehicle required to transfer batteries from the battery swap station s to the collection centre c in period

t

YCM
vct

Integer variable; Number of the type v vehicle required to transfer batteries from the collection centre c to the manufacturing centre in period

t

6 of 21 TAVANA ET AL.
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3.2 | Objective functions

MinZ1 ¼
X
b,t

MNCST
bt �μbtþ

X
b,c,t

RMNCST
bt �XCM

bct þ
X
b,d,t

PDCCST
bdt �XMD

bdtþ
X
b,d,t

HDCCST
bdt �λbdtþ

X
d,k

SDCCST
dk �θDCdk þ

X
b,s,c,t

PCCCST
bct �XBC

bsctþ
X
c,k0

SCCCST
ck0 �θCCck0 þ

X
i

IoTMN
i �δMN

i þ
X
i,d

IoTDC
id �δDCid þ

X
i,c

IoTCC
ic �δCCic þ

X
b,t

TGt�μbtþ

X
i

PEN� IoTEN
i �

X
b,d,t

XMD
bdt þ

X
b,d,s,t

XDB
bdstþ

X
b,s,c,t

XBC
bsctþ

X
b,c,t

XCM
bct

 !
þ

X
v,d,t

RVHv �DISMD
d �YMD

vdt þ
X
v,d,s,t

RVHv �DISDBds �YDB
vdstþ

X
v,s,c,t

RVHv �DISBCsc �YBC
vsctþ

X
v,c,t

RVHv �DISCMc �YCM
vct

ð1Þ

The first objective function deals with the minimization of total network costs. These costs include the costs of manufacturing and

remanufacturing the batteries in the manufacturing centre, the cost of processing the batteries in the distribution centres, the cost of holding the

batteries at the warehouses of the distribution centres, the cost of establishing the distribution centres with the variable capacity levels, the cost

of processing the defective batteries at the collection centres, the cost of establishing the collection centres with the variable capacity, the cost of

installing the IoT technology at the manufacturing, distribution, and collection centres, the cost of purchasing the RFID tags, the cost of energy

consumption by IoT technology, and the cost of transporting the batteries between echelons.

MinZ2 ¼
X
i

COIoT� IoTEN
i �

X
b,d,t

XMD
bdt þ

X
b,d,s,t

XDB
bdstþ

X
b,s,c,t

XBC
bsctþ

X
b,c,t

XCM
bct

 !
þ

X
v,d,t

COVHv�DISMD
d �YMD

vdt þ
X
v,d,s,t

COVHv �DISDBds �YDB
vdstþ

X
v,s,c,t

COVHv �DISBCsc �YBC
vsctþ

X
v,s,c,t

COVHv �DISCMc �YCM
vct

ð2Þ

The second objective function deals with the minimization of CO2 emissions resulting from energy consumption by IoT technology and

transportation.

s.t.

P
b
XMD
bdt �βb

CPVHv
≤YMD

vdt ≤

P
b
XMD
bdt �βb

CPVHv
þ1 8v,d,t ð3Þ

The number of the type v vehicle required to transfer batteries from the manufacturing centre to the distribution centres in each period is cal-

culated by constraint (3).

P
b
XDB
bdst�βb

CPVHv
≤YDB

vdst ≤

P
b
XDB
bdst�βb

CPVHv
þ1 8v,d,s,t ð4Þ

The number of the type v vehicle required to transfer batteries from the distribution centres to the battery swap stations in each period is cal-

culated by constraint (4).

P
b
XBC
bsct�βb

CPVHv
≤YBC

vsct ≤

P
b
XBC
bsct�βb

CPVHv
þ1 8v,s,c,t ð5Þ

Constraint (5) calculates the number of the type v vehicle required to transfer the defective batteries from the battery swap stations to the

collection centres in each period.

TAVANA ET AL. 7 of 21
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P
b
XCM
bct �βb

CPVHv
≤YCM

vct ≤

P
b
XCM
bct �βb

CPVHv
þ1 8v,c,t ð6Þ

Constraint (6) calculates the number of type v vehicles required to transfer the defective batteries from the collection centres to the

manufacturing centre in each period.

X
b

XMD
bdt �αbþM� 1�θDCdk

� �
≥ LDCCP

k 8d,k,t ð7Þ

X
b

XMD
bdt �αb ≤UDC

CP
k þM� 1�θDCdk

� � 8d,k,t ð8Þ

The appropriate capacity level for the established distribution centres is determined by constraints (7) and (8).

X
k

θDCdk ≤1 8d ð9Þ

We are allowed to use one capacity level for each established distribution centre. Also, we should not define the capacity level for distribution

centres that have not been established. This issue is considered in constraint (9).

X
b,s

XBC
bsct�αbþM� 1�θCCck0

� �
≥ LCCCP

k0 8c,k0,t ð10Þ

X
b,s

XBC
bsct�αb ≤UCC

CP
k0 þM� 1�θCCck0

� � 8c,k0,t ð11Þ

The appropriate capacity level for the established collection centres is determined by constraints (10) and (11).

X
k0

θCCck0 ≤1 8c ð12Þ

Similarly, we can use one capacity level for each established collection centre. Also, we should not define the capacity level for collection cen-

tres that have not been established. Constraint (12) guarantees this.

X
d

XMD
bdt ¼ μbt 8b,t¼1 ð13Þ

X
d

XMD
bdt ¼

X
c

XCM
bc t�1ð Þ þμbt 8b,t>1 ð14Þ

The number of batteries shipped from the manufacturing centre to the distribution centres in the first and next periods is shown in con-

straints (13) and (14), respectively.

λbdt ¼XMD
bdt �

X
s
XDB
bdst 8b,d,t¼1 ð15Þ

λbdt ¼ λbd t�1ð Þ þXMD
bdt �

X
s

XDB
bdst 8b,d,t>1 ð16Þ

The inventory level at the warehouses of the distribution centres for the first period and the next periods are calculated by constraints (15)

and (16), respectively.

8 of 21 TAVANA ET AL.
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X
d

XDB
bdst ≥DBSbst 8b,s,t ð17Þ

Satisfying the demand for battery swap stations is considered in constraint (17).

X
c
XBC
bsct ¼RBSbst 8b,s,t ð18Þ

The number of defective batteries transferred from battery swap stations to collection centres is determined by constraint (18).

X
s

XBC
bsct ¼XCM

bct 8b,c,t ð19Þ

Constraint (19) indicates the inventory balance at the collection centres.

X
i

δMN
i ¼1 ð20Þ

Constraint (20) states that exactly one type of IoT technology should be installed in the manufacturing centre.

X
i

δDCid ≤1 8d ð21Þ

X
i

δCCic ≤1 8c ð22Þ

In established centres, exactly one type of IoT technology should be installed. This condition for distribution and collection centres is repre-

sented in constraints (21) and (22), respectively.

δDCid ≤
X
k

θDCdk 8i,d ð23Þ

δCCic ≤
X
k0

θCCck0 8i,c ð24Þ

The condition for installing IoT technology in the centres is that the desired centre is established. Constraints (23) and (24) guarantee this con-

dition for distribution and collection centres, respectively.

X
b

XMD
bdt þ

X
b,s

XDB
bdst ≤M�

X
i

δDCid 8d,t ð25Þ

X
b,s

XBC
bsctþ

X
b

XCM
bct ≤M�

X
i

δCCic 8c,t ð26Þ

Based on the location problem conditions, the batteries are transferred between echelons when the centres are established, and IoT technol-

ogy is installed. This condition for distribution and collection centres is shown in constraints (25) and (26), respectively.

4 | THE MULTI-OBJECTIVE SOLUTION APPROACH

The literature review shows many methods for solving multi-objective decision-making problems. For example, when there are more than two

objective functions, the GP method performs better than other methods (Zandkarimkhani et al., 2020). In addition, we use the LP-metric method

proposed by Alinezhad et al. (2022) due to the difficulties in calculating the upper (lower) bound for the minimization (maximization) objective

functions. Recently, Torabi and Hassini (2008) have presented a fuzzy multi-objective solution method called TH, which has received much atten-

tion from researchers. Considering the weight for the objective functions, solving the problem under uncertainty, obtaining the set of Pareto solu-

tions, and drawing the Pareto frontier are among the unique features of this method, which is comprised of three steps:

TAVANA ET AL. 9 of 21
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• Step 1: Calculate the lower and upper bounds of the objective functions.

• Step 2: calculate the membership function of objective functions using Equation (27).

ξj xð Þ¼

1 Zj xð Þ>ZU
j

0 Zj xð Þ<ZL
j

ZU
j �Zj xð Þ
ZU
j �ZL

j

, ZL
j ≤Zj xð Þ≤ZU

j

8>>>>><
>>>>>:

ð27Þ

where ξj xð Þ represents the membership function of objective function j. Also, ZL
j and ZU

j show the lower and upper bounds of objective function j,

respectively.

• Step 3: Convert the multi-objective optimization model to a single-objective one using Equation (28).

Maxψ� γ0þ 1�ψð Þ�
X
j

ϖj�ξj

s:t:

γ0 ≤ ξj8j
SystemConstraints

ð28Þ

where γ0 and ψ show the minimum satisfaction for objective functions and their weight, respectively. Also, the membership function weight of

objective function j is shown by ϖj.

5 | CASE STUDY

In this section, we use expert knowledge and data from Lition Technology,1 a large manufacturer of EV lithium-ion batteries in the Middle East, to

validate the proposed model. This company currently manufactures about 0.9% of electric vehicle batteries globally, with a capacity of 8.5 Giga-

watt hours. For two reasons, it was not possible to use the precise data of the case study to validate the proposed model. The first and most

important reason is that, for security reasons, the company did not allow their detailed data to be published, and the second is that historical data

was not available for all parameters. For this purpose, with the help of experts and available historical data, a simulation algorithm was developed

to generate data. The simulation process is designed based on coefficients and approximations of real-world data. For a better understanding,

consider the demand parameter. To generate the data of this parameter, historical documents of the company were examined in a specific time

horizon, and the lower and upper bounds of the demand were determined in the investigated time horizon. Because we were not allowed to

report the precise values of the demand parameter, we multiplied the identified lower and upper bounds into a coefficient. Then, by reviewing

the literature, we found that researchers usually use uniform distribution functions to simulate parameters in supply chain network design models

(Babaeinesami et al., 2022; Nosrati-Abarghooee et al., 2023); For this reason, we also applied these functions to simulate the parameters. The

probability distribution functions used to simulate the data are shown in Table 2. One of the features of the proposed simulation algorithm is that

a feasible solution space is formed for each desired value of the indices. Also, the parameters applied in the probability distribution functions are

approximations of the real-world data, leading to the simulated data being close to the real-world data.

Ten test problems in different dimensions are generated using the proposed simulation algorithm, and the performance of the proposed

model is evaluated for these problems. The size of these test problems is presented in Table 3.

Consequently, the presented bi-objective model is transformed into a single-objective model, and the single-objective model is run for 10 test

problems in GAMS software. This process is described below:

• Step 1: In this step, each objective function's upper and lower bounds are calculated using the lexicographic method. To calculate the lower

bound of the first (second) objective function, we run the model for the first (second) objective function and ignore the second (first) objective

function. In this instance, the value obtained for the first (second) objective function is considered the lower bound of the first (second) objec-

tive function. To calculate the upper bound of the first (second) objective function, we run the model for the first (second) objective function

on the condition that the second (first) objective function is not greater than its lower bound. Table 4 shows the upper and lower bounds of

the objective functions.

• Step 2: After determining the lower and upper bounds of the objective functions of each problem, we calculate the membership functions with

the help of Equation (27). Two membership functions are calculated for each simulated problem, one for the first objective function and the

10 of 21 TAVANA ET AL.
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other for the second objective function (e.g., see the upper and lower bounds of the first objective function related to test problem 1 (TPR1) in

Table 4). These bounds are used to form the membership function for the first objective function (TPR1). For this purpose, we subtract Z1 from

the upper bound and divide the result by the difference between the upper and lower bounds. In the same way, we calculate the membership

functions for other objective functions of the simulated problems presented in Table 5.

TABLE 2 Data simulation algorithm using probabilistic distribution functions.

Indices/parameters Probabilistic distribution functions for data simulation

b,d,c,k,k0 ,s,v, i,t Optional values

DBSbst Round uniform 90,110ð Þð Þ
RBSbst Round Uniform 32,45ð Þð Þ
αb Uniform 0:35,0:5ð Þ
βb Uniform 200,300ð Þ
LDCCP

k ,LCCCP
k0

0

UDCCP
k

If

k¼1,

UDCCP
k ¼Round

P
b,s,t

DBSbst�αb

T

0
B@

1
CA;

else

UDCCP
k ¼Round 1:2�UDCCP

k�1

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

UCCCP
k0

If

k0 ¼1,

UCCCP
k0 ¼Round

P
b,s,t

RBSbst�αb

T

0
B@

1
CA;

else

UCCCP
k0 ¼Round 1:2�UCCCP

k0�1

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

CPVHv

If

v¼1,

CPVHv ¼3000

else

CPVHv ¼CPVHv�1þ500;

0
BBBBBB@

1
CCCCCCA

MNCST
bt

Round uniform 800,1100ð Þð Þ

RMNCST
bt

Round uniform 300,450ð Þð Þ

PDCCST
bdt ,PCC

CST
bct

Uniform 2,3ð Þ

HDCCST
bdt

Uniform 7,10ð Þ

SDCCST
dk

Round uniform 30000,36000ð Þð Þ

SCCCST
ck0

Round uniform 24000,28000ð Þð Þ

IoTMN
i , IoTDC

id , IoTCC
ic

Round uniform 8000,9000ð Þð Þ
TGt Uniform 2:5,3:5ð Þ
IoTEN

i
Uniform 0:03,0:05ð Þ

PEN 0:168

DISMD
d

Uniform 65,90ð Þ

DISDBds Uniform 8,15ð Þ

DISBCsc Uniform 25,40ð Þ

DISCMc Uniform 35,60ð Þ
RVHv Uniform 0:8,1:2ð Þ
COVHv Uniform 0:45,0:5ð Þ
COIoT 0:37
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• Step 3: This step deals with transforming the bi-objective model into a single-objective model by the membership functions presented in

Table 5 and Equation (28). For example, in the following, the single objective model for test problem 5 (TPR5) is given. By running the single-

objective model using the CPLEX solver in GAMS software, the optimal values of the decision variables and objective functions are determined

for each test problem. It should be noted that the value of the parameter ψ is considered to be 0.25; because Torabi and Hassini (2008) have

clearly stated that the value of this parameter should be smaller than 0.3, and in the literature, the value of this parameter is considered

TABLE 4 The upper and lower bounds of objective functions.

Test problem ZL
1 ZU

1 ZL
2 ZU

2

TPR1 642,700 667,363 3049 3101

TPR2 828,759 906,776 5708 5780

TPR3 2,551,976 2,759,502 24,089 24,932

TPR4 3,846,564 4,140,647 48,327 49,628

TPR5 6,388,476 6,679,367 102,653 103,163

TPR6 8,241,750 8,900,998 124,371 128,185

TPR7 9,414,517 10,151,028 170,947 173,265

TPR8 14,932,313 15,991,823 263,025 283,934

TPR9 16,522,047 17,956,184 319,441 320,041

TPR10 28,582,495 29,374,301 571,892 586,573

TABLE 3 Size of the test problems.

Test problem b d c k k0 s v i t

TPR1 1 2 2 1 1 3 1 1 2

TPR2 1 3 2 2 2 4 2 2 2

TPR3 2 3 3 2 2 5 2 2 3

TPR4 2 4 3 2 2 6 3 2 4

TPR5 3 4 4 3 2 7 3 3 4

TPR6 3 4 4 3 3 7 3 3 5

TPR7 3 5 4 3 3 8 4 4 5

TPR8 4 5 5 4 3 8 4 4 6

TPR9 4 6 5 4 4 9 4 4 6

TPR10 5 7 5 4 4 10 5 5 7

TABLE 5 The membership functions of the objective function for the test problems.

Test problem ξ1 ξ2

TPR1 667363�Z1
667363�642700

3101�Z2
3101�3049

TPR2 906776�Z1
906776�828759

5780�Z2
5780�5708

TPR3 2759502�Z1
2759502�2551976

24932�Z2
24932�24089

TPR4 4140647�Z1
4140647�3846564

49628�Z2
49628�48327

TPR5 6679367�Z1
6679367�6388476

103163�Z2
103163�102653

TPR6 8900998�Z1
8900998�8241750

128185�Z2
128185�124371

TPR7 10151028�Z1
10151028�9414517

173265�Z2
173265�170947

TPR8 15991823�Z1
15991823�14932313

283934�Z2
283934�263025

TPR9 17956184�Z1
17956184�16522047

320041�Z2
320041�319441

TPR10 29374301�Z1
29374301�28582495

586573�Z2
586573�571892
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between 0.2 and 0.3 (Dehshiri et al., 2022; Mohammadi et al., 2020). The values of ϖ1 and ϖ2 are also considered 0.6 and 0.4, respectively,

based on the experts' opinions. Of course, in the process of sensitivity analysis in the next section, the proposed model has been implemented

for different values of parameters ϖ1 and ϖ2 so that instead of one solution, a set of Pareto solutions is available to the experts. The optimal

value of objective functions for test problems is presented in Table 6. Also, Table 6 shows that increasing problem size increases the value of

both objective functions. Figure 2 illustrates the increasing trend of the objective functions as the problem size increases.

Max 0:25� γ0þ0:75� 0:6� ξ1þ0:4�ξ2ð Þ
s:t:

ξ1 ¼
6679367�Z1

6679367�6388476

ξ1 ¼
103163�Z2

103163�102653

γ0 ≤ ξ1

γ0 ≤ ξ2

Constraints 3ð Þto 26ð Þ

ð29Þ

In this study, the size of problems whose runtime in GAMS software is not more than 1500 s was investigated (see Table 6). The results pres-

ented in this table show that increasing the size of the problem has a direct effect on increasing the runtime. As the problem size increases, the

TABLE 6 The optimal value of objective functions for test problems.

Test problem Z�
1 Z�

2 Runtime (second)

TPR1 642,894 3069 3.05

TPR2 831,082 5749 15.73

TPR3 2,554,687 24,169 46.86

TPR4 3,862,629 48,527 94.53

TPR5 6,415,263 102,802 165.94

TPR6 8,287,276 125,077 288.16

TPR7 9,453,945 171,634 428.82

TPR8 15,071,193 264,312 862.10

TPR9 16,717,105 319,811 1174.25

TPR10 28,729,182 574,839 1483.89

F IGURE 2 Increasing trend of objective functions with increasing problem size.
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3 V's of big data (i.e., Velocity, Volume, and Variety) increase simultaneously, effectively increasing the runtime. Parameters include the cost of

manufacturing and remanufacturing batteries, the cost of processing batteries at the distribution and collection centres, the cost of holding batte-

ries at the warehouses of distribution centres, the cost of establishing centres, the demand for battery swap stations, etc., impacts on the velocity

of big data. The number of nine indices effective in the volume of big data, number of batteries, distribution and collection centres, capacity level

for the distribution and collection centres, battery swap stations, vehicles, IoT technologies, and periods are included in this model. These men-

tioned factors affect the variety of big data. Accordingly, with the increase of the various dimension, the velocity dimension also experiences an

enormous increase. In other words, the volume of data increases, and, thereby, big data are produced. As mentioned above, the volume of the

already produced data directly influences the runtime of this model.

6 | SENSITIVITY ANALYSIS

This study formulated a bi-objective optimization model to structure an SCSC network for managing the EV lithium-ion battery industry under

uncertainty and a big data environment. Its efficiency was evaluated using 10 simulated test problems. In this section, we will examine the results'

validity using the sensitivity analysis process of the objective functions' coefficients. When we increase the coefficient of the first (second) objec-

tive function, the coefficient of the second (first) objective function decreases. Considering that both objective functions are minimized, it is antic-

ipated that the value of an objective function whose coefficient has increased will not increase. The value of an objective function whose

coefficient has decreased will not decrease. Based on this, we define scenarios based on changing the coefficients of the objective functions and

evaluate the performance of the presented model and solution method for these scenarios. These scenarios and the optimal value of the first

and second objective functions for these scenarios are indicated in Table 7. It should be emphasized that test problem 5 (TPR5) was used to

implement the sensitivity analysis process. The behaviour of the objective functions for all scenarios is depicted in Figures 3 and 4, respectively.

Also, the Pareto frontier resulting from these scenarios is shown in Figure 5.

TABLE 7 The optimal value of objective functions for different scenarios.

Scenario ϖ1 ϖ2 Objective function 1 Objective function 2

SCNR1 0.35 0.65 6,637,282 102,658

SCNR2 0.4 0.6 6,598,137 102,680

SCNR3 0.45 0.55 6,548,711 102,712

SCNR4 0.5 0.5 6,483,295 102,741

SCNR5 0.55 0.45 6,438,416 102,783

SCNR6 (TPR5) 0.6 0.4 6,415,263 102,802

SCNR7 0.65 0.35 6,400,189 102,884

SCNR8 0.7 0.3 6,398,155 102,973

SCNR9 0.75 0.25 6,391,220 103,061

6637282
6598137

6548711

6483295

6438416
6415263

6400189

6398155

6391220

6250000

6300000

6350000

6400000

6450000

6500000

6550000

6600000

6650000

6700000

SCNR1 SCNR2 SCNR3 SCNR4 SCNR5 SCNR6 SCNR7 SCNR8 SCNR9

O
b

je
ct

iv
e 

fu
n

ct
io

n
 1

Scenario

F IGURE 3 The trend of the first objective function in the sensitivity analysis process.

14 of 21 TAVANA ET AL.

 14680394, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13395 by R

utgers U
niversity L

ibraries, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



As seen in Table 7 and Figures 3 and 4, by raising the coefficient of objective function 1 and reducing the coefficient of objective function

2 simultaneously, the optimal value of objective function 1 has decreased, and the optimal value of objective function 2 has increased, respec-

tively. The sensitivity analysis of the coefficients of the objective functions revealed that the behaviour of the proposed model is reasonable and

follows the expectations. Therefore, the results obtained from the proposed model are confirmed.

7 | COMPARATIVE ANALYSIS

This paper used a priori method to solve the proposed bi-objective optimization model. In the priori methods, decision makers' preferences are

considered as weights in the objective functions. Priori methods allow obtaining a set of Pareto solutions by changing the weights of the objective

functions. Another category of methods is the posteriori methods that do not require expert preferences and are used when the goal is to find a

set of Pareto efficient solutions without the presence of experts. The epsilon-constraint method is one of the most well-known posteriori

methods, which has received much attention from researchers. In this method, the objective function with the highest priority is considered the

main objective function of the model, and other objective functions are transferred to the set of constraints (Bouziaren & Aghezzaf, 2018). Issues

and features related to the epsilon-constraint method are presented in detail in the paper by Mavrotas (2009). In this section, we will solve the

proposed bi-objective model using the augmented epsilon-constraint method (AUGMECON) developed by Mavrotas (2009). Below is the process

of implementing this method on problem 5 (TPR5).

102658
102680

102712
102741

102783
102802

102884

102973

103061

102600

102650

102700

102750

102800

102850

102900

102950

103000

103050

103100

SCNR1 SCNR2 SCNR3 SCNR4 SCNR5 SCNR6 SCNR7 SCNR8 SCNR9

O
b

je
ct

iv
e 

fu
n

ct
io

n
 2

Scenario

F IGURE 4 The trend of the second objective function in the sensitivity analysis process.
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F IGURE 5 Pareto frontier resulted from the sensitivity analysis process.
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The first step to using AUGMECON is determining the upper and lower bounds of the objective functions and structuring the payoff table. A

lexicographic method is described in the first step of the case study section. Table 4 shows the payoff table. Based on AUGMECON presented in

Equation (30), one objective function is considered the main objective function, and the other objective function(s) are transferred to the con-

straint set.

Min Z1� κ� φ2

r2
þ…þφp

rp

� �� �

s:t:

Z2þφ2 ¼ eps2

..

.

Zjþφj ¼ epsj

..

.

Zpþφp ¼ epsp
φ2,…,φp ≥0

ð30Þ

where κ = 10�6,10�3
h i

; φj is the Slack variable for objective function j; rj = ZU
j �ZL

j ; epsj is the right-hand side of constrained objective function j.

Equation (31) is applied to calculate epsj:

epsj ¼ZL
j þ

rj
Ωj

�q 8q¼0,1,…,Ωj ð31Þ

Ωj is a parameter related to the number of grid points. For example, in a bi-objective model, if the decision maker wants to have m grid points,

s/he must set Ω2 equal to m�1. The proposed model presented in Equation (30) can be expanded using AUGMECON as follows:

Min Z1�κ� φ2

r2
þ…þφp

rp

� �� �

MinZ1 ¼
X
b,t

MNCST
bt �μbtþ

X
b,c,t

RMNCST
bt �XCM

bct þ
X
b,d,t

PDCCST
bdt �XMD

bdtþ
X
b,d,t

HDCCST
bdt �λbdtþ

X
d,k

SDCCST
dk �θDCdk þ

X
b,s,c,t

PCCCST
bct �XBC

bsctþ
X
c,k0

SCCCST
ck0 �θCCck0 þ

X
i

IoTMN
i �δMN

i þ
X
i,d

IoTDC
id �δDCid þ

X
i,c

IoTCC
ic �δCCic þ

X
b,t

TGt�μbtþ

X
i

PEN� IoTEN
i �

X
b,d,t

XMD
bdt þ

X
b,d,s,t

XDB
bdstþ

X
b,s,c,t

XBC
bsctþ

X
b,c,t

XCM
bct

 !
þ

X
v,d,t

RVHv �DISMD
d �YMD

vdt þ
X
v,d,s,t

RVHv �DISDBds �YDB
vdstþ

X
v,s,c,t

RVHv �DISBCsc �YBC
vsctþ

X
v,c,t

RVHv �DISCMc �YCM
vct � κ� φ2

103163�102653

ð32Þ

s.t.

X
i

COIoT� IoTEN
i �

X
b,d,t

XMD
bdt þ

X
b,d,s,t

XDB
bdstþ

X
b,s,c,t

XBC
bsctþ

X
b,c,t

XCM
bct

 !
þ

X
v,d,t

COVHv �DISMD
d �YMD

vdt þ
X
v,d,s,t

COVHv �DISDBds �YDB
vdstþ

X
v,s,c,t

COVHv �DISBCsc �YBC
vsctþ

X
v,s,c,t

COVHv �DISCMc �YCM
vct þφ2 ¼ eps2

Constraints 3ð Þ to 26ð Þ

ð33Þ

Nine scenarios (grid points) were considered in the sensitivity analysis section to draw the Pareto frontier. We consider nine grid points to

draw the Pareto frontier in this section. In this regard, eps2 for each grid point is calculated using Equation (31), which is shown in Table 8. The

optimal values of objective functions are calculated for each grid point by running the model in GAMS software using the CPLEX solver. Table 8

shows the optimal values of the objective functions for the nine grid points. The Pareto frontier obtained from these grid points is depicted in

Figure 6.
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A two-by-two comparison of the results obtained for the grid points in Table 8 reveals that all the solutions are efficient; because other grid

points do not dominate the solutions of any grid point. Now we will examine the performance of TH method compared to AUGMECON. By com-

paring the results obtained for TH method (see Table 7) and the results obtained for AUGMECON shown in Table 8, it can be understood that

both methods have good efficiency; because they have presented the same results in two grid points, and in other grid points, none of the solu-

tion set of TH method is dominated by the solution set of AUGMECON. In general, it can be concluded that both methods are sufficiently effi-

cient, with the difference that the TH method is used when it is possible to weigh the objective functions. If experts' preferences are not

important before running the model, AUGMECON is used.

8 | DISCUSSION

Providing solutions for decarbonization in the transportation sector is a targeted strategy to reduce greenhouse gas emissions (Hill et al., 2019).

The use of EVs is one of these strategies that greatly helps reduce greenhouse gas emissions and is considered a big step toward sustainability. It

is expected that in the coming years, due to the increasing pressure of environmental policies and the pull of customers, the demand for EVs will

increase exponentially, leading to an exponential increase in the demand for lithium-ion batteries (Jones et al., 2020). The demand for raw mate-

rials such as lithium and cobalt will increase, bringing concerns (Lander et al., 2021). Rapid consumption of resources and encountering a large

amount of lithium-ion batteries that have reached the end of their life are among these concerns (Harper et al., 2019). In other words, although

using EVs is a good strategy for reducing greenhouse gases, it brings the abovementioned problems. Now the question arises, how to reduce

waste batteries and resource consumption at the same time?

TABLE 8 The obtained results from AUGMECON.

Grid point eps2 Z�
1 Z�

2

G1 102653þ0� 510
8 ¼102653 6,679,367 102,653

G2 102653þ1� 510
8 ¼102716:75 6,548,711 102,712

G3 102653þ2� 510
8 ¼102780:5 6,468,190 102,769

G4 102653þ3� 510
8 ¼102844:25 6,408,211 102,825

G5 102653þ4� 510
8 ¼102908 6,400,189 102,884

G6 102653þ5� 510
8 ¼102971:75 6,399,172 102,964

G7 102653þ6� 510
8 ¼103035:5 6,394,901 103,014

G8 102653þ7� 510
8 ¼103099:25 6,389,971 103,098

G9 102653þ8� 510
8 ¼103163 6,388,476 103,163
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F IGURE 6 Pareto frontier obtained from AUGMECON.
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The most suitable solution is moving toward the CE and applying the recycling process. Because the number of retired batteries is relatively

low, the manufacturers do not have a great desire to recycle them; recycling costs are high, and their profit is low (Dunn et al., 2022). But the dis-

advantages of releasing these batteries into the environment are so great that the high cost of recycling cannot be a logical justification for not

recycling them. Governments also often provide incentives for consumers to collect as many lithium-ion batteries as possible and facilities for

manufacturers to recycle these batteries as much as possible. For example, buying retired batteries from consumers at an attractive price can be

one of the incentives for the maximum collection of lithium-ion batteries. Increasing consumers' environmental awareness regarding the harm of

disposed batteries to the health of living organisms and the environment can be another incentive.

Therefore, in this paper, a zero-waste supply chain network was configured with the help of CE concepts to manage the production, distribu-

tion, and recycling of EV lithium-ion batteries. The proposed model's first objective function considers the network's economic aspect and the

total strategic and operational costs are minimized simultaneously. The environmental aspect of the network is included in the second objective

function. This objective function minimizes CO2 emissions from transportation activities and applies IoT technology. Two multi-objective solution

approaches, including the TH method and AUGMECON, were applied to solve the proposed bi-objective MILP model. Both proposed approaches

provide an upper and lower bound for the simulated problems and a set of Pareto-efficient solutions to create a trade-off between the two objec-

tive functions.

9 | CONCLUSION

The main purpose of this research is to design a circular zero-waste supply chain for managing spent EV lithium-ion batteries. To this end, a virtual

SCSC was structured using mathematical programming tools and with the help of IoT and big data concepts considering reverse and forward

flows in the EV lithium-ion batteries industry. The proposed model includes two objective functions. The first objective function minimizes the

sum of the strategic and operational costs. The second objective function deals with minimizing CO2 emissions caused by energy consumption by

IoT technology and transportation. We used the TH method to transform the presented bi-objective model into a single-objective model. Due to

the limited access to data, a simulation algorithm was presented with the help of some historical data and expert knowledge of an EV lithium-ion

batteries manufacturing company in the Middle East using probability distribution functions. The proposed simulation algorithm is designed so

that we always encounter a feasible solution space for each desired value of the indices. Ten test problems were simulated to examine the pro-

posed model performance in GAMS software. Finally, the correctness of the results was confirmed using the sensitivity analyses on the coeffi-

cients of the objective functions.

In this paper, a novel MILP model was formulated to design a zero-waste CLSC network in the EV lithium-ion batteries industry. The pro-

posed model can solve small and medium-sized problems in a logical time using GAMS software and achieve global optimal solutions. But it is

unable to solve large-size problems. For this purpose, it is suggested that future studies focus on developing heuristic or meta-heuristic algorithms

to solve this problem in large sizes. Non-dominated sorted genetic algorithm II (NSGA II) and multi-objective particle swarm optimization

(MOPSO) are among the most widely used and well-known algorithms that are suggested to be used to solve this problem.
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