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Abstract. Supply chain performance evaluation problems are complex problems with multiple criteria and multi-layered internal
linking activities. Data Envelopment Analysis (DEA) has been used to evaluate the relative performance of organizational units
called Decision Making Units (DMUs). However, the conventional DEA models cannot take into account the complex nature
of supply chains with internal linking activities. Although network DEA models are used to address this drawback, most of
them use Farrell radial measures of efficiency and ignore input slacks and/or output slacks and are not suitable for measuring
efficiencies when inputs and outputs may change non-proportionally. In response, network DEA models using Slacks-Based
Measures (SBMs) of efficiency are used when inputs and outputs are non-radial. Furthermore, crisp input and output data are
fundamentally indispensable in a conventional DEA evaluation process. However, the input and output data in real-world problems
are often imprecise or ambiguous. Fuzzy DEA models are used to address the impreciseness and ambiguity associated with the
input and output data. Finally, conventional supply chain performance evaluation models primarily consider forward logistics
dealing with the flow of products from manufacturing to customers. We propose a new Network SBM (NSBM) model in the
fuzzy environment. The proposed fuzzy NSBM model considers non-radial measures of efficiency in a unified framework for
evaluating performance of supply chain networks with forward and reverse logistics. A case study is presented to demonstrate
the applicability of the proposed fuzzy NSBM model and exhibit the efficacy of the procedures in evaluating the performance of
a supply chain in the semiconductor industry.

Keywords: Data envelopment analysis, network slacks-based measure, supply chain, reverse logistics

1. Introduction

Competition in the manufacturing environment has
shifted from individual firms to supply chains and only
a firm with an agile and versatile supply chain can sus-
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tain an effective competitive edge [4, 20, 22, 25, 33].
Recently, Data Envelopment Analysis (DEA) has been
extended to examine the efficiency of supply chain oper-
ations. DEA, originated from the work of Charnes et al.
[5], is a linear programming, nonparametric method
used to measure the relative efficiency of peer Deci-
sion Making Units (DMUs) with multiple inputs and
outputs. Supply chain performance evaluation covers
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a wide range of problems from evaluating the per-
formance of independent organizations among supply
chains to evaluating the performance of a whole supply
chain system [36]. Several researchers have studied the
performance of the independent organizations in supply
chains in the past such as purchasing performance eval-
uation [11], distribution centers performance evaluation
[27] and vendor performance evaluation [31]. How-
ever, these independent organizations among supply
chains have their own objectives and these objectives
are often conflicting. Consequently, there is a need for
a comprehensive performance evaluation framework to
integrate and evaluate the performance of these inde-
pendent organizations simultaneously.

In conventional DEA, the production process is
treated as a black box and what goes on inside the box
is typically ignored because the inputs and outputs are
the focus of inquiry. However, some production sys-
tems such as supply chains have a network structure
where the production by one member of the supply
chain results in an intermediate output that is an input
to another member in the supply chain. In these cases,
managers are likely to glean more information from
individual organizations (supply chain members) effi-
ciency measures than from the efficiency measures in
the whole supply chain. Kleinsorge [17], Weber and
Desai [34], Azoulay-Schwartz et al. [2] and Kumar et al.
[18] have applied DEA to evaluate the performance of
different organizations among the supply chain.

In addition, uncertainty is common in real-world
problems such as fuzziness, randomness and roughness.
In spite of that, a great deal of the supply chain perfor-
mance evaluation models have assumed deterministic
input and output parameters in the supply chain [1, 3,
14, 15, 24, 26]. However, real-world problems are sub-
ject to uncertainty, and some factors such as supplies,
demands, expenses and revenues are often not deter-
ministic. Therefore, we must consider the supply chain
performance evaluation problem under uncertainty.

Measuring supply chain performance has become a
difficult and challenging task because of the need to
deal with the multiple performance measures related to
the supply chain members and to effectively integrate
and coordinate their performance. Several authors have
abandoned the “black box” perspective and taken into
account an internal structure in the DEA models to mea-
sure the efficiency of supply chain networks [6–10, 12,
13, 16, 19, 21, 28, 29, 32, 38].

Although these studies have made great strides in
evaluating network structures, most of them: (1) do
not consider impreciseness and ambiguity in the input

and output data; (2) use Farrell radial measures of effi-
ciency and ignore input slacks and/or output slacks that
can arise when measuring efficiency in piecewise linear
technologies; and (3) do not consider reverse logistics in
more sophisticated supply chain networks. In this study
we propose a fuzzy Network Slacks-Based Measures
(NSBM) model for evaluating supply chain networks
with imprecise data and reverse logistics.

The remainder of this paper is organized as follows.
In Section 2, we present a review of the relevant litera-
ture in DEA and supply chain management. In Section
3, we present the mathematical details of the proposed
fuzzy NSBM model. In Section 4, we present a case
study for performance evaluation in the semiconductor
industry. In Section 5, we present our conclusions and
future research directions.

2. Literature review

The traditional supply chains were driven by manu-
facturers who managed and controlled the pace at which
products were manufactured and delivered to customers
[30]. Generally, the efficiency in traditional supply
chains was measured by taking the ratio of revenue
over the total supply chain operational costs [23]. How-
ever, in recent years, the rise of multiple performance
measures has rendered the efficiency measurement task
difficult and challenging [37]. DEA has been widely
used for performance measurement in supply chains.
Wong and Wong [35] have discussed the motivation
of using DEA as a supply chain performance measure-
ment tool by giving ample evidences, literature supports
and reasons on the suitability of DEA as a performance
measurement tool in supply chain management.

Färe and Grosskopf [12] developed a network activ-
ity analysis model that explicitly recognized that some
inputs are produced and consumed within the pro-
duction technology. Their model consisted of two
production units that were interconnected in a network
to form a production technology. Lewis and Sexton [19]
argued that DEA models treat the DMU as a “black
box” and it is difficult, if not impossible, to provide
individual DMU managers with specific information
regarding the sources of inefficiency within a DMU.
They showed how to use DEA to look inside the DMU
and reveal greater insight as to the sources of orga-
nizational inefficiency. Their model applied to DMUs
that consisted of a network of individual organizations,
some of which consume resources produced by other
individual organizations and some of which produce
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resources consumed by other individual organizations.
Golany et al. [13] developed an efficiency measurement
framework for systems composed of two subsystems
arranged in series that simultaneously computed the
efficiency of the aggregate system and each subsystem.
Their approach expanded the technology sets of each
subsystem by allowing each to acquire resources from
the other in exchange for delivery of the appropriate
(intermediate or final) product, and to form composites
from both subsystems.

Tone and Tsutsui [32] argued that one of the draw-
backs of the conventional DEA models is the neglect
of intermediate products or linking activities. After
pointing out the needs for including the intermediate
products in DEA models, they proposed a Slacks-
Based Measure (SBM) model that could deal with
intermediate products. Using this model they evaluated
divisional efficiencies along with the overall efficiency
of the DMUs. Cook et al. [10] argued that in spite of
the fact that many real-world problems are character-
ized by multiple individual organizations (e.g., supply
chains and many manufacturing processes), the tradi-
tional DEA literature on serial processes has tended
to concentrate on closed systems. They examined the
more general problem of a network structure with multi-
ple individual organizations where some outputs from
a given individual organization may leave the system
while others become inputs to another individual orga-
nization in the system. They represented the overall
efficiency of such a structure as an additive weighted
average of the efficiencies of the individual organiza-
tions that make up the network structure.

Kao [16] argued that traditional studies in DEA view
systems as a whole when measuring the efficiency and
ignore the operation of individual organizations within
a system. He built a relational network DEA model
and took into account the interrelationship of the indi-
vidual organizations within the system, to measure the
efficiency of the system and those of the individual
organizations at the same time. Cook et al. [9] con-
sidered the DMUs in two-stage or network processes.
They studied those processes in which all the outputs
from the first stage are the only inputs to the second
stage and categorized them as using either Stackelberg
(leader-follower), or cooperative game concepts.

Liang et al. [21] identified the existence of mul-
tiple measures that characterized the performance of
supply chain members and the existence of conflicts
between the members of the supply chain with respect
to specific measures as two hurdles in measuring the
performance of a supply chain and its members. They

argued that conventional DEA cannot directly mea-
sure the performance of supply chain and its members
because of the existence of the intermediate measures
connecting the supply chain members. They developed
several DEA-based approaches for characterizing and
measuring supply chain efficiency when intermediate
measures are incorporated into the performance evalu-
ation. Chen et al. [7] investigated the efficiency game
between two supply chain members (i.e., supplier and
manufacturer). They showed that numerous Nash equi-
libriums efficiency plans exists for the supplier and
the manufacturer with respect to their efficiency func-
tions. The proposed a bargaining model to analyze the
supplier and manufacturer’s decision process and to
determine the best efficiency plan strategy. They also
studied DEA efficiency for supply chain operations for
the central control and the decentralized control cases.

Yang et al. [38] defined two types of supply chain
production possibility sets, which were proved to be
equivalent to each other. Based upon the production
possibility set, a supply chain performance measure-
ment model is proposed to appraise the overall technical
efficiency of supply chains. The major advantage of
their model lies in the fact that it could help to find
out the most efficient production possibilities in supply
chains, by replacing or improving inefficient individual
organizations (supply chain members). The proposed
model also directly identified the benchmarking units
for inefficient supply chains to improve their perfor-
mance. Chen and Yan [6] developed an alternative
network DEA model that embodied the internal struc-
ture for supply chain performance evaluation. They
introduced three different network DEA models under
the concept of centralized, decentralized and mixed
organization mechanisms. Efficiency analysis includ-
ing the relationship between supply chain and divisions,
and the relationship among the three different organi-
zation mechanisms were discussed. In the next section
we propose a fuzzy NSBM that considers non-radial
measures of efficiency in a unified framework for eval-
uating the performance of supply chain networks with
forward and reverse logistics.

3. Preliminary definitions

3.1. Fuzzy network SBM (NSBM)

In this section, the following NSBM model proposed
by Tone and Tsutsui [32] is revised in the presence of
fuzzy data and reverse logistics within a supply chain:
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where xh
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rj are the ith (i = 1, . . . mh ) input and
the rth (r = 1, . . . ,sh ) output, respectively; which cor-
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i is the amount of slacks slack
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Let us consider the overall supply chain structure
depicted in Fig. 1 to develop the fuzzy version of Model
(1).

As shown in Fig. 1, the inputs and outputs related to
each division are fuzzy. Furthermore, a reverse logistics
is considered in addition to the forward logistics. The
forward logistics is shown by a continuous line while
the reverse logistics is shown by a dotted line. Consid-
ering the fuzzy input and output data and the forward
and reverse logistics in Fig. 1, Model (1) can be further
developed as follows:
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Fig. 1. The supply chain’s overall structure including fuzzy data and the reverse logistics.

corresponds to the ith input and is represented by the

triangular fuzzy number
(
sh−L

i , sh−M

i , sh−U

i

)
. The con-

straints (2-3) and (2-4) show the intermediate measures
exiting Division 1 and entering Division 2, respectively.
The constraints (2-5) and (2-6) represent the intermedi-
ate measures exiting Division k and entering Division
k, respectively. The constraints (2-7) and (2-8) depict
the intermediate measures exiting the hth division and
entering the other divisions and then the hth division
(h = 1, . . . ,k). It is obvious that constraints (2-7) and (2-
8) show the state of k > 2. In the case of k = 2, constraints
(2-3) and (2-4) are equivalent to constraints (2-5) and
(2-6).

In the above model, constraints (2-1) and (2-2)
are in fuzzy form. To solve the model, all fuzzy
constraints should be changed into crisp form. To
defuzzify Model (2), the fuzzy arithmetic opera-
tions are used on the fuzzy data. Consider the
following fuzzy arithmatic operations for the two
fuzzy triangular numbers ã = (aL, aM, aU

)
and b̃ =(
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)
:

Addition : ã + b̃ = (aL + bL, aM + bM, aU + bU
)

Subtraction : ã − b̃ = (aL − bU, aM − bM, aU − bL
)

Multiplication : ã.b̃ = (aL.bL, aM.bM, aU.bU
)

Division : ã/b̃ = (aL/bU, aM + bM, aU/bL
)

Equality : ã= b̃ if aL =bL and aM = bM and aU = bU

Inequality : aM > bM → ã ≥ b̃

The objective function of Model (2) can be written
as follows:
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Using the fuzzy subtraction and multiplication arith-
metic, Objective Function (4) can be expressed as
follows:
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F(h,h−1)∑
f(h,h−1)=1

z
(h,h−1)
f(h,h−1)j

λh−1
j

+
n∑

j=1

F(h,h+1)∑
f(h,h+1)=1

z
(h,h+1)
f(h,h+1)j

λh+1
j , h=2, . . . , k−1 (17-9)
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n∑
j=1

F(h−1,h)∑
f(h−1,h)=1

z
(h−1,h)
f(h−1,h)j

λh
j +

n∑
j=1

F(h+1,h)∑
f(h+1,h)=1

z
(h+1,h)
f(h+1,h)j

λh
j

=
n∑

j=1

F(h−1,h)∑
f(h−1,h)=1

z
(h−1,h)
f(h−1,h)j

λh−1
j

+
n∑

j=1

F(h+1,h)∑
f(h+1,h)=1

z
(h+1,h)
f(h+1,h)j

λh+1
j , h = 2, . . . , k − 1

(17-10)

λh
j ≥ 0, sh−U

i ≥ 0.

Model (17) is a fuzzy NSBM and the value of ρL∗
o

can be acquired by solving the fuzzy NSBM model. To
obtain ρM∗

o and ρU∗
o , Equations (7) and (8) are substi-

tuted in the objective function of Model (17) which is
then solved with the same constraints.

A DMU is fuzzy NSBM efficient, if its efficiency
score equals to 1:

ρ̃∗
o =

(
ρL∗

o , ρM∗
o , ρU∗

o

)
= 1, (18)

The divisions’ efficiency score is ρ̃h
o =(

ρhL∗
o , ρhM∗

o , ρhU∗
o

)
, which can be obtained from

the following relations:

ρhL∗
o = 1 − 1

mh

mh∑
i=1

sh−U∗
i

xhL∗
io

, (19)

ρhM∗
o = 1 − 1

mh

mh∑
i=1

sh−M∗
i

xhM∗
io

, (20)

ρhU∗
o = 1 − 1

mh

mh∑
i=1

sh−L∗
i

xhU∗
io

, (21)

A division is efficient if its efficiency score equals to
1:

ρ̃h∗
o =

(
ρhL∗

o , ρhM∗
o , ρhU∗

o

)
= 1 (22)

A DMU becomes efficient if all the divisions for that
DMU are efficient. A suitable method is needed next to
rank all the DMUs

(
i.e., ρ̃∗

j =
(
ρL∗

j , ρM∗
j ρU∗

j

))
.

Efficiency score’s ranking via truth function

In this subsection, the truth function (Zimmermann,
1996) is used to rank the obtained efficiency scores(
ρ̃∗

j

)
. Suppose:

ρ̃∗
i =

(
ρL∗

i , ρM∗
i , ρU∗

i

)
and ρ̃∗

j =
(
ρL∗

j , ρM∗
j , ρU∗

j

)
are the efficiency scores for the ith and the jth DMU,

respectively. In this case, the truth function value of
ρ̃∗

i ≥ ρ̃∗
j can be expressed as follows:

T
(
ρ̃*

i ≥ ρ̃*
j

)

= sup

{
min

(
µ∗

ρ̃*
i

(x) , µ∗
ρ̃*

j

(y)

)
, (x ≥ y)

}
(23)

This can be stated as follows:

tij = T
(
ρ̃∗

i ≥ ρ̃∗
j

)
=⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ρM∗
i ≥ ρM∗

j

0 if ρU∗
i ≤ ρL∗

j

ρL∗
j

−ρU∗
i

(ρM∗
i

−ρU∗
i

)−(ρM∗
j

−ρL∗
j

)
otherwise

(24)

Using tij , the truth matrix can be represented as fol-
lows:

ρ̃∗
1 · · · ρ̃∗

j · · · ρ̃∗
n

Tn×n = [tij]n×n
=

ρ̃*
1
...

ρ̃*
i

...

ρ̃*
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · tj1 · · · t1n

...
. . .

...
...

ti1 · · · 1
...

. . .

tn1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following equation is then used to rank the
DMUs:

t̄i =
∑n

j=1 tij

n
,

According to Equation (25), the DMU with a larger
t̄i has a higher ranking.

4. Case study

In this section, we present a case study to demonstrate
the applicability of the proposed method in the semicon-
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Fig. 2. The semiconductor industry supply chain.

Fig. 3. Fuzzy efficiency scores obtained from the fuzzy NSBM model.

ductor industry. The semiconductor industry is a rapidly
growing cornerstone industry. However, it is also a very
harsh business due to complicated production and dis-
tribution processes with multi-layered internal linking
activities among suppliers, manufacturers, distributors,
and customers. The model presented in section 3 was
used to help Semicon Technologies1, a large manu-
facturer of semiconductor equipment, memory chips,
microprocessors and microcontrollers located in Jersey
City. With the increased complexity of the production
and distribution processes, there is a compelling trend to
streamline the production and distribution processes at
Semicon Technologies with 10 supply chains (DMUs)
with forward and reverse logistics. Semicon’s supply
chain is depicted in Fig. 2.

The input factors for the supplier component of
the suply chain are: on-time delivery, location, and
price (x1

1j, x
1
2j, andx̃1

3j), respectively. The input fac-
tors for the manufacturer component of the supply
chain are the number of stoppages, the number of
laborors and setup time of the lines (x̃2

1j, x̃2
2j, and x̃2

3j),
respectively. The output factors of the manufacturer

1Some of the names and data presented in this study are changed
to protect the anonymity of the company.

component are the flexibility and equipment technology
level (ỹ2

1j and ỹ2
2j). The cost per dollar revenue and on-

time delivery (x3
1j and x3

2j) are the inputs and the sales

average and service level (ỹ3
1j and ỹ3

2j) are the ouput
variables for the distributor component in the supply
chain. The number of order cancellations (x4

1j) is the

input and the performance history (ỹ4
1j) is the output

for the customer component in the system. In addition
to these input and output factors, there are several inter-
mediate measures between different components in the
supply chain. In this study, the product flow is con-
sidered a forward logistics while the information on
demand forecast is considered as a reverse logistics.
The product flow represents the actual amount of prod-
ucts delivered between different components and the
demand forecast reflects the amount of product needed
by each component in the supply chain. The following
definitions are provided for the variables used in the
proposed model:

Supplier factors:

x1
1j On-time delivery: The standard deviation of the

delivery times (days).
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x1
2j Location: The geographical distance to the man-

ufacturers (kilometers).
x̃1

3j Price: The price compared with the other suppli-
ers (a fuzzy variable between 0–5).

Manufacturer factors

x̃2
1j Number of stoppages: The number of interrup-

tion in production (fuzzy value).

x2
2j Number of laborers.

x2
3j Setup time: The setup time of the production

facility (hours).
ỹ2

1j Flexibility: The flexibility to change production
plan (a fuzzy variable between 0–5).

ỹ2
2j Equipment technology level: The produc-

tion capabilities (a fuzzy variable between
0–5).

Table 1
The input and output data for the components

Division 1: Suppliers (Importance Weight = 0.3)

DMU x1
1j

x1
2j

x̃1
1j

1 2 250 (4.1, 4.3, 4.6)
2 0.7 180 (2.8, 3.9, 4.9)
3 4.5 390 (4, 5, 5)
4 1.1 330 (2.4, 2.7, 3.1)
5 1.1 100 (3.3, 5.4)
6 2.5 200 (1, 1.7, 2.4)
7 3.9 14 (2.2, 2.8, 3.5)
8 4.8 300 (2.8, 3, 3.2)
9 1 250 (2.7, 3.7, 4.7)
10 2.8 150 (2.8, 3.8, 4.8)

Division 2: Manufacturers (Importance Weights = 0.2)
DMU x̃2

1j
x̃2

2j
x̃2

3j
ỹ2

1j
ỹ2

2j

1 (14, 17, 20) 23 23 (2.3, 3, 3.7) (0.9, 1.1, 1.3)
2 (8, 11, 14) 35 14.5 (3.5, 4.1, 4.8) (4.3, 5, 5)
3 (10, 14, 18) 39 25.6 (2.4, 3, 3 6) (4, 5, 5)
4 (23, 25, 27) 29 15.2 (3, 4, 5) (1.8, 2.8, 3.8)
5 (15, 20, 25) 44 28 (2.3, 3.3, 4.3) (2.9, 3.9, 4.9)
6 (4, 7, 10) 99 8 (3.1, 4, 5) (1.4, 2.4, 3.4)
7 (13, 17, 21) 16 14.2 (3.1, 4, 5) (0.9, 1.9, 2.9)
8 (35, 42, 49) 36 16.8 (4, 4.3, 4.7) (2.9, 3.5, 4.2)
9 (8, 12, 16) 29 .3 (0.2, 0.4, 0.6) (2.3, 3.3, 7)
10 (7, 12, 17) 67 5.3 (1.1, 2, 3) (2.3, 3.2, 4.1)

Division 3: Distributors (Importance Weight = 0.3)
DMU x3

1j
x3

2j
ỹ3

1j
ỹ3

2j

1 0.3 5.2 (200, 210, 220) (97, 98, 99)
2 0.18 4.3 (341, 371, 391) (97.3, 98.3, 99.3)
3 0.35 5.5 (433, 450, 467) (99.5, 99.6, 99.7)
4 0.28 0.9 (127, 145, 163) (98, 98.3, 98.6)
5 0.29 6.2 (4200, 4300, 4500) (99.1, 99.3, 99.5)
6 0.27 0.5 (800, 850, 900) (96.5, 97, 97.5)
7 0.34 2.3 (6500, 7200, 7900) (98.5, 99, 99.5)
8 0.37 4.2 (143, 151, 159) (98, 98.5, 99)
9 0.41 6.7 (650, 740, 830) (99.1, 99.2, 99.3)
10 0.19 2.1 (580, 630, 680) (98.8, 99, 99.2)

Division 4: Customers (Importance Welght = 0.2)
DMU x4

1j
ỹ4

1j

1 0.1 (97.5, 98, 98.5)
2 0.6 (95, 96, 97)
3 1.1 (99, 99, 100)
4 0.5 (97, 97.4, 97.8)
5 1.3 (94, 95, 96)
6 0.1 (91.3, 92, 92.7)
7 0.8 (93.3, 94, 94 7)
8 0.1 (99, 99.5, 100)
9 0.4 (96.4, 97.7, 98.8)
10 0.1 (97, 98, 99)
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Table 2
The intermediate measures of the supply chain components

DMU Product flow Demand forecast
(Forward logistics) (Reverse logistics)

z
(1,2)
1(1,2)j

z
(2,3)
1(2,3)j

z
(3,4)
1(3,4)j

z
(4,3)
1(4,3)j

z
(3,2)
1(3,2)j

z
(2,1)
1(2,1)j

1 450 83 18 39 89 570
2 70 15 11 18 9.5 92
3 50 32 4 9 38 62
4 74 6 0.4 2.3 7.1 89
5 310 340 340 210 80 278
6 8.4 0.6 0.9 4 0.2 9.2
7 610 55 72 75 46 550
8 135 24 55 70 21 152
9 32 18 35 5 20 38
10 1450 350 155 130 320 1300

Table 3
The efficiency scores of the supply chains using the fuzzy NSBM model

DMU Product flow Demand forecast
(Forward logistics) (Reverse logistics)

z
(1,2)
1(1,2)j

z
(2,3)
1(2,3)j

z
(3,4)
1(3,4)j

z
(4,3)
1(4,3)j

z
(3,2)
1(3,2)j

z
(2,1)
1(2,1)j

1 450 83 18 39 89 570
2 70 15 11 18 9.5 92
3 50 32 4 9 38 62
4 74 6 0.4 2.3 7.1 89
5 310 340 340 210 80 278
6 8.4 0.6 0.9 4 0.2 9.2
7 610 55 72 75 46 550
8 135 24 55 70 21 152
9 32 18 35 5 20 38
10 1450 350 155 130 320 1300

Distributer factors

x3
1j Cost per dollar revenue: The distribution cost per

dollar of revenue.
x3

2j On-time delivery: The standard deviation of the
delivery time (days).

ỹ3
1j Sales average: The distributer’s sales amount

(fuzzy value).
ỹ3

2j Service level: The level of service provided to
customers (fuzzy value).

Customer factors:

x4
1j Order cancellations: the percentage of customers

cancelling their orders.
ỹ4

1j Performance history: The percentage of fulfilled
orders (a fuzzy value).

Intermediate measures:

z
(h,h+1)
1(h,h+1)j

Product flow: The forward logistics trans-
ferred from the hth division to h + 1st
division (h = 1, 2, 3)

z
(h+1,h)
1(h+1,h)j

Demand forecast: The reverse logistics
transferred from the h + 1st to the hth com-
ponent (h = 1, 2, 3).

The data related to the ten supply chains considered
in this study are shown in Tables 1 and 2.

Table 1 shows the input and output data for the four
divisions along with the importance weight of each divi-
sion judged by the decision makers. Table 2 presents the
intermediate product flow and the demand forecast mea-
sures for each supply chain considered as a DEMU. We
then ran Model (17) and found the efficiency scores for
each division and DMU presented in Fig. 3 and Table 3.

As shown in Fig. 3, DMU 10 with the efficiency score
of 1 is the best supply chain in the system. As mentioned
earlier, if a DMU is efficient in a division, all the DMUs
in that division are also efficient. According to Table 3,
the efficiency score of DMU 10 is equal to 1 in all
divisions. In other words, the four divisions (i.e., sup-
pliers, manufacturers, distributers, and customers) in
DMU 1 perform better than the remaining nine DMUs
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Table 4
The truth matrix for the achieved fuzzy efficiency scores

DMU 1 2 3 4 5 6 7 8 9 10 t̄j Rank

1 1.000 0.000 1.000 1.000 1.000 0.039 0.000 0.327 1.000 0.000 0.537 5
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.900 2
3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 10
4 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.400 7
5 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 0.040 0.000 0.204 9
6 0.007 0.000 1.000 1.000 1.000 1.000 0.000 0.031 1.00 0.000 0.504 6
7 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.800 3
8 1.000 0.000 1 000 1.000 1.000 1.000 0.000 1.000 1.000 0.000 0.700 4
9 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.300 8
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1

in the system. Figure 3 shows that Supply Chains 2 and
7 are ranked second and third, respectively in the sys-
tem. However, the overall performance of the remaining
seven supply chains is not very clear. For example, the
efficiency scores of Supply Chains 1, 6, and 8 are so
close that it becomes extremey difficult to compare
them. Therefore, we use Equation (24) and calculate
the t̄j values for all supply chains and construct the
truth matrix shown in Table 4.

As shown in this table, Supply Chains 10, 2, and 7 are
ranked first, second, and third, respectively. The ineffi-
cient supply chains are the remaining Supply Chains 8,
1, and 6 which are ranked 4th, 5th, and 6th, respectively.
Finally, Supply Chain 3 is the most inefficient supply
chain in the system.

5. Conclusions and future research directions

The process of transforming raw materials into final
products and delivering those products to customers,
known as supply chain management, is becoming
increasingly complex. Supply chain performance eval-
uation problems cover a wide range from evaluating
the performance of independent organizations in supply
chains to evaluating the performance of a whole supply
chain system. It has become increasingly obvious that
improvements in the individual supply chain organiza-
tions does not lead to improvement of the supply chain
as a whole.

Several researchers have studied the performance
of the independent organizations in supply chains in
the past such as purchasing performance evaluation,
distribution centers performance evaluation and ven-
dor performance evaluation, among others. However,
these independent organizations among supply chains
have their own objectives and these objectives are often
conflicting. Therefore, there is a need for a comprehen-
sive performance evaluation framework to integrate and

evaluate the performance of these independent organi-
zations simultaneously.

Several authors have abandoned the “black box” per-
spective and taken into account the internal structure
in the DEA models to measure the efficiency of sup-
ply chain networks. Although these studies have made
great strides in evaluating network structures, most of
them: (1) do not consider impreciseness and ambigu-
ity in the input and output data; (2) use Farrell radial
measures of efficiency and ignore input slacks and/or
output slacks that can arise when measuring efficiency
in piecewise linear technologies; and (3) do not consider
reverse logistics in more sophisticated supply chain net-
works. In this study we proposed a fuzzy NSBM model
for evaluating supply chain networks with imprecise
data and reverse logistics. A case study was presented
to demonstrate the applicability of the proposed fuzzy
NSBM model and exhibit the efficacy of the procedures
in evaluating the performance of a supply chain in the
semiconductor industry.

The supply chain performance evaluation problem
is subject to many sources of uncertainty besides fuzzy
uncertainty studied in this paper. In a practical decision-
making process, we could face random uncertainty and
rough uncertain environment. The problem considered
in this study is at the initial stage of investigation. Fur-
ther research can be done by applying the proposed
model in random and rough uncertain environments.

References

[1] A. Amirteimoori, G.R. Jahanshahloo and S. Kordrostami,
Ranking of decision making units in data envelopment anal-
ysis: A distance based approach, Applied Mathematics and
Computation 171(1) (2005), 122–135.

[2] R. Azoulay-Schwartz, S. Kraus and J. Wilkenfeld, Exploita-
tion vs. exploration: Choosing a supplier in an environment
of incomplete information, Decision Support Systems 38(1)
(2004), 1–18.



804 E. Momeni et al. / A new fuzzy network slacks-based DEA model

[3] F. Cebi and D. Bayraktar, An integrated approach for supplier
selection, Logistics Information Management 16(6) (2003),
395–400.

[4] F.T.S. Chan, H.J. Qi, H.K. Chan, H.C.W. Lau and R.W.L. Ip,
A conceptual model of performance measurement for supply
chains, Management Decision 41 (2003), 635–642.

[5] A. Charnes, W. Cooper and E. Rhodes, Measuring the
efficiency of decision making units, European Journal of Oper-
ational Research 2(6) (1978), 429–444.

[6] C. Chen and H. Yan, Network DEA model for supply chain
performance evaluation, European Journal of Operational
Research 213(1) (2011), 147–155.

[7] Y. Chen, L. Liang and F. Yang, A DEA game model approach to
supply chain efficiency, Annals of Operations Research 145(1)
(2006), 5–13.

[8] C.R. Chiu, K.H. Lu, S.S. Tsang and Y.-F. Chen, Decomposition
of meta-frontier inefficiency in the two-stage network direc-
tional distance function with quasi-fixed inputs, International
Transactions in Operational Research 20(4) (2013), 595–611.

[9] W.D. Cook, L. Liang and J. Zhu, Measuring Performance of
two-stage network structures by DEA: A review and future
perspective, Omega 38 (2010), 423–430.

[10] W.D. Cook, J. Zhu, G. Bi and F. Yang, Network DEA: Additive
efficiency decomposition, European Journal of Operational
Research 207(2) (2010), 1122–1129.

[11] L. Easton, D.J. Murphy and J.N. Pearson, Purchasing perfor-
mance evaluation: With data envelopment analysis, European
Journal of Purchasing and Supply Management 8 (2002),
123–134.
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