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A Credibility and Strategic Behavior Approach in
Hesitant Multiple Criteria Decision-Making With

Application to Sustainable Transportation
Francisco J. Santos-Arteaga , Debora Di Caprio , Madjid Tavana , and Emilio Cerdá Tena

Abstract—Multiple criteria decision-making (MCDM) methods
do not account for the potentially strategic evaluations of experts.
Once the ranking is delivered, decision makers (DMs) select the first
alternative without questioning the credibility of the evaluations
received from the experts. We formalize the selection problem of a
DM who must choose from a set of alternatives according to both
their characteristics and the credibility of the reports received. That
is, we transform an MCDM setting into a game-theoretical scenario.
We build our analysis on a recent extension of hesitant fuzzy
numbers incorporated within the formal structure of technique
for order of preference by similarity to ideal solution. We define
the restrictions that must be imposed regarding the credibility of
the evaluations and the capacity of experts to form coalitions and
manipulate rankings based on their subjective preferences. This
feature constitutes a considerable drawback in real-life scenarios,
mainly when dealing with environmental and sustainable strate-
gic problems. In this regard, sustainable transportation problems
incorporate both technical variables and subjective assessments
whose values can be strategically reported by experts. We extend
a real-life study case accounting for the evaluations of several
experts to demonstrate the importance of strategic incentives for
the rankings obtained when implementing MCDM techniques.
We numerically illustrate the interactions between the experts’
reporting strategies and the formal tools available for the DMs to
counteract potential manipulations of the final ranking.

Index Terms—Credibility, hesitant fuzzy numbers (HFNs),
strategic behavior, sustainable transportation, technique for order
of preference by similarity to ideal solution (TOPSIS).
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I. INTRODUCTION

ONE of the main problems faced by the literature on mul-
tiple criteria decision-making (MCDM) methods is that

rankings are definitive and do not account for the uncertainty
inherent to the potentially strategic evaluations of the experts.
The lack of strategic considerations constitutes an intrinsic as-
sumption that remains undiscussed in the literature. Once the
ranking is delivered, Decision makers (DMs) should select the
first alternative without questioning the validity of the evalua-
tions and concluding the applicability and contribution of the
corresponding model. These techniques do not consider the
strategic interactions derived from the quality or credibility of
the evaluations provided by the experts. This, however, consti-
tutes a considerable problem in real-life environments.

MCDM models allow DMs to deal with imprecise informa-
tion and uncertainty regarding the characteristics of the alterna-
tives. However, a certainty constraint is implicitly imposed on
this uncertainty; that is, all the evaluations received by the DM
are assumed to be entirely credible. In other words, DMs account
for the uncertainty inherent to the evaluations provided by the
experts, while completely trusting them to report truthfully. We
formalize the selection problem of a DM who must choose from
a set of alternatives according to both their characteristics and
the credibility of the reports received. That is, we transform an
MCDM setting into a game-theoretical scenario.

Sustainable transportation problems incorporate both tech-
nical variables and subjective assessments whose values can
be strategically reported by experts. This credibility problem,
together with the capacity of experts to form coalitions and
manipulate rankings based on their subjective preferences, mo-
tivates the development of the current research. Aggregation
operators such as the maximize agreement heuristic could be
used to generate some basic consensus among rankings. Even
in this case, the credibility of the evaluations reported by each
expert must be explicitly incorporated into the analysis, given
the potential manipulability of the corresponding rankings.

We build our framework of analysis on a recent extension
of hesitant fuzzy numbers (HFNs), particularly well-suited to
introduce credibility considerations in experts’ evaluations. We
incorporate these HFNs within a technique for order of pref-
erence by similarity to ideal solution (TOPSIS) setting, whose
malleability allows for direct implementation of HFNs within
its formal structure. Both these features allow for introducing
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strategic interactions into TOPSIS when selecting among sev-
eral uncertain alternatives evaluated with different degrees of
credibility.

We analyze both formally and numerically the restrictions that
must be imposed regarding the credibility of the evaluation pro-
cess and the number of expert opinions that may be considered.
The implementation of the credibility scores assigned to the ex-
perts within an MCDM setting such as TOPSIS will be described
and discussed. The capacity of experts to interact and form
coalitions to alter the ranking obtained will also be analyzed.
All in all, the incorporation of strategic and game-theoretical
elements into an MCDM setting allows for a substantial number
of extensions into a completely unstudied area of research.

The article proceeds as follows. Section II reviews the lit-
erature on fuzzy MCDM and sustainable transportation. Sec-
tion III summarizes the main contribution of the current article.
Section IV introduces basic definitions and notations regard-
ing HFNs. Section V incorporates credibility via HFNs into
TOPSIS. Section VI analyzes a real-life MCDM study case
enhanced to incorporate credibility considerations via HFNs.
Finally, Section VII concludes and suggests potential extensions.

II. LITERATURE REVIEW

There is a substantial amount of literature on the different
MCDM techniques commonly applied to deal with real-life
problems, such as the analytical hierarchy process (AHP), the
linear programming technique for multidimensional analysis
of preference, VlseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR), and TOPSIS. These models have also been
extended to deal with uncertain environments via fuzzy, interval,
and probabilistic measures [2], [4], [11], [23], [24], [31], [46].

The formalization of uncertainty plays an increasingly promi-
nent role in group decision-making scenarios dealing with mul-
tiple decision criteria. Pamučar et al. [32] exploited the interval-
type knowledge inherent to data to introduce rough interval
numbers within MCDM scenarios. Fan et al. [15] dealt with
a similar group evaluation scenario, using intuitionistic fuzzy
rough numbers to aggregate the information available. Pamučar
et al. [33] focused on eliminating the subjectivity arising from
the definition of fuzzy set (FS) borders via interval-valued
fuzzy-rough numbers. A similar intuition applies to [30], who
determined the weight assigned to the criteria in VIKOR through
interval-valued intuitionistic hesitant fuzzy entropy.

TOPSIS remains widely applied as a reference MCDM tech-
nique when dealing with environmental and sustainable trans-
portation problems. For instance, Awasthi et al. [7] applied this
technique to evaluate three mobility projects in Luxemburg.
Huang et al. [20] assessed the performance of Chengdu’s subway
system, while Lambas et al. [26] compared different public
transportation systems in Spain and Italy. Shen et al. [40] applied
TOPSIS to study the development of green traffic scenarios in
Zhoushan and [3] to select locations for a consolidation facility
in Melbourne.

Information uncertainty has also been incorporated into TOP-
SIS [34]. Samaie et al. [38] applied fuzzy TOPSIS to evaluate
the penetration of electric vehicles in Teheran. Hajduk [18]

implemented the entropy weight method to compute the weight
of each criterion in TOPSIS and rank transport performance in
several smart cities. Zhang et al. [51] applied the same formal
enhancement to evaluate the different types of impacts of the
transportation networks in several large cities of the Beijing–
Tianjin–Hebei region.

A recent and complete review of the main MCDM methods
applied in the literature on sustainable transportation is pro-
vided by [8]. The authors conclude that the techniques applied
more frequently are AHP and TOPSIS, their fuzzy extensions,
and those of the preference ranking organization method for
enrichment evaluations (PROMETHEE). Moreover, the formal
malleability of TOPSIS allows for complementarities with other
techniques and the generation of hybrid MCDM models. For
instance, Sobhani et al. [41] applied a hybrid AHP–TOPSIS
model to evaluate the competitiveness and sustainability of un-
conventional transport modes in Dhaka. Liu et al. [29] integrated
the failure modes and effects analysis with TOPSIS to assess and
rank the risk of different failure modes.

A. Strategic Incentives and Subjective Evaluations

One of the main qualities of the MCDM models applied
to study sustainable transportation problems is the significant
number of criteria considered by the experts and the absence of
strategic reporting. This feature remains unaccounted for when
defining the characteristics of the experts. The lack of strate-
gic incentives determining the subsequent reports constitutes a
significant drawback of these models, particularly in uncertain
environments. Fuzzy variables do not describe the strategic
quality of the reports received or the experts’ characteristics. In
addition, several features may define the credibility of an expert,
ranging from his area of expertise to the existence of personal
strategic interests.

The use of fake experts represents one of the main commu-
nication strategies among climate skeptics [39]. As a result, the
substantial amount of misinformation regarding environmental
and climate change questions constitutes an important problem
nowadays [21], [45]. Other than a few exceptions [13], the strate-
gic interactions that may be defined among information sources
are not incorporated into the analyses, which generally focus
on the uncertainty inherent to the perception and evaluations of
experts within fuzzy environments.

It is important to differentiate between the strategic reports
provided by the experts and the uncertainty inherent in their
evaluations. The latter has been widely analyzed in the literature
using fuzzy techniques [6], [19], [47]. The former remains
unstudied, even though warnings regarding the manipulability
of MCDM models when considering strategic reporting and
asymmetric information between experts and DMs have already
been issued [14]. The game-theoretical literature has consis-
tently focused on real-life environments dealing with sustainable
production structures [1], [10]. However, these strategic inter-
actions have never been formalized within MCDM settings.

The resulting complexities and lack of formal instruments
may be responsible for this analytical void. However, recent and
well documented study cases, such as that of Madrid Central
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[37], [42], highlight both the difference of opinions among
experts as well as their strategic quality. These features require
extending the framework of analysis of MCDM models beyond
their current limits. Sustainable transportation problems, dealing
with multiple environmental indicators and policy criteria, are
highly strategic and require formal analyses that account for
these features and analyze the potential consequences.

III. CONTRIBUTION

MCDM techniques are designed to select among alternatives
composed of several and often conflicting criteria. A standard
constraint of these models is the assumption that the value of
the characteristics composing the alternatives is known with
complete certainty. A considerable variety of fuzzy tools has
been defined to deal with the different types of uncertainty faced
when applying these techniques. These tools range from type-1
and type-2 FSs [50] to intuitionistic fuzzy sets (IFSs) [5], and
hesitant FSs (HFSs) [44], all of which have been widely analyzed
in the literature.

One of the most recent developments is given by HFSs where
a finite set of hesitant fuzzy elements (HFEs) defined within [0,
1] is used to describe the membership degree of the hesitation
expressed by DMs. Hybrid models composed of FSs, IFSs, and
HFSs and different variants of the latter HFSs have been recently
developed and implemented in the literature [17], [25], [27].

HFNs [35], [36] constitute a novel extension of HFSs where
type-1 fuzzy numbers give the HFEs. The membership degrees
defined within the reference interval provided by the type-1
fuzzy numbers allow for infinitely many potential interpretations
of uncertainty. Keikha [22] weakens this constraint by defining
subjective qualitative assessments contained in [0, 1].

The basic structure of the HFNs introduced by [22] is given
by 〈a, {γ1, γ2, . . . , γn}〉. The number is composed by two main
elements, a positive real value, a ∈ R+, and an HFE defined by a
set of hesitation degrees, γi ∈ [0, 1]. This type of HFN combines
subjective qualitative beliefs together with standard quantitative
evaluations [16]. Therefore, it allows for the formalization of the
interactions between the evaluations received and the credibility
assigned to the experts performing the evaluations.

The capacity of these HFNs to operate with and combine cred-
ibility scores among experts makes them particularly suitable to
be implemented within MCDM settings. Consider a DM who
must rank several projects based on the evaluations received
from a given expert, whose main subjective motivations and
preferences are partially known, leading the DM to assign a
credibility score to his evaluations. The credibility assigned to
the expert must interact with the crisp evaluation provided when
defining the corresponding MCDM problem.

For instance, experts may evaluate the implementation quality
of two projects conditioned by private interests, subjective per-
ceptions, and different degrees of familiarity with the character-
istics and objectives of the projects. The credibility assigned by
the DM to these subjective features of the expert is represented
through HFEs, such as {0.3, 0.75, 0.8}. Note that the uncertainty
of the system is given by the credibility assigned to the expert,
not the evaluations provided by the latter. We will present

several numerical comparisons to highlight the importance of
credibility and its strategic implications when compared to crisp
and standard fuzzy evaluation scenarios.

We build on the study case analyzed by [6], who were among
the first scholars to incorporate the evaluations of several experts
within an uncertain setting. The authors formalized these eval-
uations as triangular fuzzy numbers (TFNs) and added them
up within a fuzzy TOPSIS environment to rank different sus-
tainable transportation alternatives. The main characteristics of
these experts and their potential strategic motivation were not
considered in the analysis. We extend their analysis to illustrate
the importance of strategic incentives for the rankings obtained
when applying MCDM techniques.

IV. HESITANT FUZZY NUMBERS

The initial evaluations provided by the experts regarding
the characteristics of each alternative consist of crisp val-
ues conditioned by their credibility. Consider a DM who re-
ceives an evaluation ah

ij from an expert h = 1, 2, . . . , k re-
garding the jth characteristics of the ith alternative. We will
assume that the DM describes the credibility assigned to the
hth expert, h = 1, 2, . . . , k, through different values in [0, 1]
summarized via h(ah

ij) = {γh1, γh2, . . . , γhl}. The values con-
tained in h(ah

ij) refer to the set of different features determin-
ing the credibility of the hth expert regarding the evaluation
of the jth characteristics of the ith alternative. The evaluation of
the alternatives provided by each expert are described through
HFNs 〈ah

ij ;h(a
h
ij)〉, endowed with an associated credibility

given by h(aij) = h(a1
ij) ∪ h(a2

ij) ∪ . . . ∪ h(ak
ij).

A. Definitions and Notations

HFNs provide a flexible and consistent technique to measure
and aggregate credibility and deal with uncertainty, endowing
DMs with the capacity to weight the potentially strategic eval-
uations assigned by each expert to the characteristic of a given
alternative. In this regard, the score of an HFN constitutes one
of its main characteristics, allowing DMs to compare and order
HFNs based on both their real and hesitant parts.

Keikha [22] applies the power average (PA) operator defined
by [48] and [49] to compute the score assigned to a given HFN
defining the characteristics of the corresponding alternatives.
The PA operator is designed to foster the support of its argu-
ments for each other through the aggregation process, promoting
consistency in terms of lower distances and avoiding dispersion.
In particular, this tool reflects the consistency of a given eval-
uation through a support degree based on the proximity of the
credibility scores assigned to the expert.

Let a1, a2, . . . , an be n positive real numbers. The support
degree Supp(ai, aj) of ai from aj satisfies the following condi-
tions:

1) Supp(ai, aj) = Supp(aj , ai).
2) Supp(ai, aj) ∈ [0, 1].
3) If |x − y| < |ai − aj |, then, Supp(ai, aj) <

Supp(x, y).
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Definition 1: The PA of a1, a2, . . . , an, denoted by
P A(a1, a2, . . . , an), is a mapping: Rn → R, defined as

P A(a1, a2, . . . , an) =

�n
i=1(1 + T (ai))ai�n
i=1(1 + T (ai))

where T (ai) =
�n

j=1
j �=i

Supp(ai, aj).

Definition 2 [5]: Let X be a universal set. The set Ã =
{(x, mÃ(x))|x ∈ X} is called an FS of X , with mÃ : X →
[0, 1] representing the membership function, such that ∀x ∈ X,
mÃ(x) describes the degree of membership of x in Ã.

B. Hesitant Fuzzy Sets and HFNs

HFSs generalize FSs by allowing each member to be endowed
with several membership degrees [43]. Let X be a fixed set.
For every x ∈ X , the HFE h(x) describes the membership
degrees of x to E as a finite set of values in [0, 1]. The en-
suing HFS E is defined as E = {< x, h(x) > |x ∈ X}, with
h(x) = {γ1, γ2, · · · , γn} [17].

Definition 3: Let � be a positive real number. The main
arithmetic operations that can be defined on a collection of HFEs,
hj(j = 1, 2, . . . , n), are given by

1) h�
j = {(hσ(t)

j )�|t = 1, 2, . . . , l} ,

2) �hj = {1 − (1 − h
σ(t)
j )

�|t = 1, 2, . . . , l} ,

3) h1 ⊕ h2 = {h
σ(t)
1 + h

σ(t)
2 − h

σ(t)
1 h

σ(t)
2 |t = 1, 2, . . . , l} ,

4) h1 ⊗ h2 = {h
σ(t)
1 h

σ(t)
2 |t = 1, 2, . . . , l} ,

5) ⊕n
j=1hj = {1 − Πn

j=1(1 − h
σ(t)
j )|t = 1, 2, . . . , l} ,

6) ⊗n
j=1hj = {Πn

j=1h
σ(t)
j |t = 1, 2, . . . , l},

where h
σ(t)
j represents the tth smallest value in hj .

Several variants of the definition of HFSs have been intro-
duced in the literature, consisting mainly of HFEs that range
from interval-valued elements [28] to fuzzy numbers [12], [36].
We base our approach on the HFNs introduced by [22], whose
HFSs consider values defined on R. More precisely, an HFN
〈a;h(a)〉 is composed by a real value, a, and a finite set of val-
ues in [0, 1], h(a) = {γ1, γ2, . . . , γk}, describing the different
membership degrees.

Our interpretation of the HFEs composing a given HFN
focuses on the credibility assigned by the DM to the real value
describing the evaluations provided by the experts. HFEs range
from zero, indicating a total lack of credibility, to a completely
credible report, which is assigned a value of one. As a refer-
ence benchmark, a default value of ½ would correspond to an
uncertain environment where DMs lack any information about
the credibility of the experts.

Definition 4: Let X be a reference set. An HFN, ÃH =
〈a, h(a)〉, in R consists of a ∈ Rand a finite set of values in [0, 1],
namely, the HFE h(a), describing the membership degrees of
a ∈ X .

Definition 5: Let ÃH = 〈a, h(a)〉 and B̃H = 〈b, h(b)〉 be
two HFNs, and � > 0, then the following conditions hold:

1) ÃH ⊕ B̃H = 〈a + b, h(a) ∪ h(b)〉.
2) �ÃH = 〈�a, h(a)〉.

3) (ÃH)
�
= 〈a�, h(a)〉.

4) ÃH ⊗ B̃H = 〈a.b, h(a) ∩ h(b)〉 , if h(a) ∩ h(b) = ∅,
then h(a) ∩ h(b) =

�

γi∈h(a),
γj∈h(b)

min{γi, γj}.

The score function, Score(ÃH), and variance, V ar(ÃH),
of an HFN, ÃH = 〈a, h(a)〉, with membership degrees h(a) =
{γ1, γ2, . . . , γn}, with γi ∈ [0, 1], are defined as follows:

Score(ÃH) = a × P A(γ1, γ2, . . . , γn)

= a ×
�n

j=1(1 + T (γj))γj�n
j=1(1 + T (γj))

(1)

where

T (γj) =

n�

k = 1, k �= j

Supp(γj , γk),

Supp(γj , γk) = 1 − |γj − γk| (2)

V ar(ÃH) = a

�
1

n − 1

�n

i=1,
i�=j

(γj − γi)
2. (3)

C. Subtracting and Dividing HFNs

The arithmetic operations defined in the current section are
based on the relationship existing between HFSs and IFSs [22],
[43].

Definition 6: Let ÃH = 〈a, h(a)〉 and B̃H = 〈b, h(b)〉 be
HFNs with the same cardinality |h(a)| = |h(b)|. Let γa

(j)
and

γb
(j)

be the jth higher value of h(a) and h(b), respectively.
We have the unnumbered equation shown at the bottom of the

next page, where γ =

�
����

���	

γa
(j)

−γb
(j)

1−γb
(j)

if γa
(j)

> γb
(j)

γb
(j)

−γa
(j)

1−γa
(j)

if γa
(j)

< γb
(j)

γa
(j)

if γa
(j)

= γb
(j)

; the second

unnumbered equation shown at the bottom of the next page, if

a, b �= 0, where γ =

�
�

	

γa
(j)

γb
(j)

if γa
(j)

≤ γb
(j)

and γb
(j)

�= 0

1 otherwise
.

Example: Let ÃH
1 = 〈5; {0.3, 0.5, 0.7}〉 and ÃH

2 =
〈2; {0.2, 0.4, 0.6}〉 be two HFNs. The following results
are directly derived from the application of the operations
described through the current section:

ÃH
1 ⊕ ÃH

2 = 〈7; {0.44, 0.7, 0.88}〉,
ÃH

1 ⊗ ÃH
2 = 〈10; {0.06, 0.2, 0.42}〉,

ÃH
1 � ÃH

2 = 〈3; {0.125, .0.166, 0.25}〉, and
ÃH

1 � ÃH
2 = 〈2.5; {1, 1, 1}〉.

Definition 7: Let a ∈ R+ and B̃H = 〈b, h(b)〉 be a HFN. We
have that

1) a + B̃H = B̃H + a = 〈a + b, h(b)〉;
2) a − B̃H =�

�

	

〈a − b, h(b)〉 if a > Score(B̃H)&a > b,

〈b − a, h(b)〉 if a > Score(B̃H)&a < b,

−〈|a − b|, h(b)〉 if a < Score(B̃H),

B̃H − a =
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�
����

���	

−〈a − b, h(b)〉 if a > Score



B̃H
�
&a > b,

−〈b − a, h(b)〉 if a > Score



B̃H
�
&a < b,

〈|b − a|, h(b)〉 if a < Score



B̃H
�

,

3) a.B̃H = B̃H .a = 〈a.b, h(b)〉;

4) a � B̃H =

�
����

���	

〈a/b, h(b)〉 if a > Score(B̃H)&a > b,

〈b/a, h(b)〉 if a > Score(B̃H)&a < b,

〈b/a, h(b)〉 if a < Score(B̃H)&a > b,

〈a/b, h(b)〉 if a < Score(B̃H)&a < b,

B̃H � a =

�
����

���	

〈b/a, h(b)〉 if a > Score(B̃H)&a > b,

〈a/b, h(b)〉 if a > Score(B̃H)&a < b,

〈a/b, h(b)〉 if a < Score(B̃H)&a > b,

〈b/a, h(b)〉 if a < Score(B̃H)&a < b,

,

with b �= 0. Two important remarks follow regarding the a �
B̃H and B̃H � a operations. Note how the case defined for
a < Score(B̃H)&a > b, delivering 〈b/a, h(b)〉 and 〈a/b, h(b)〉,
respectively, has been included for completeness and cannot
arise within the current framework. The intuition behind this
statement relates to the fact that whenever a > b we cannot have
a < Score(B̃H) since

P A(γ1, γ2, . . . , γn) =
�n

j=1(1+T (γj))γj�n
j=1(1+T (γj))

≤ 1 for γj ∈ [0, 1],

j = 1, . . . , n. That is, the way uncertainty has been intro-
duced through the HFEs implies that Score(B̃H) ≤ b, with
Score(B̃H) = b only with fully credible reports, i.e., γj = 1,
j = 1, . . . , n.

Consider now the importance of credibility and its effect on
the evaluations provided by the experts. Whenever the credibility
of the evaluations is sufficiently low, leading to the case a >
Score(B̃H)&a < b, the pattern of evaluation is reversed. This
feature is particularly relevant when averaging the evaluations
received, leading to a decrease in the real part of the correspond-
ing HFN compared to other alternatives. In this regard, dealing

with the fact that TOPSIS allows for the existence of positive
and negative criteria requires additional modifications that will
be introduced in the next section.

V. TOPSIS AND CREDIBILITY

We start by describing the basics of TOPSIS before extending
its main structure to incorporate credibility and regret. As an
MCDM technique, TOPSIS is used to rank a series of alternatives
according to several criteria through the evaluations received
from one or more experts. TOPSIS computes two ideal refer-
ence points per criterion, positive and negative, and calculates
the relative distance between the characteristics defining each
alternative and both values. The subsequent ranking delivered
by this technique reflects the relative importance assigned to
each alternative by the experts. The main steps defining the
implementation of TOPSIS follow.

The m alternatives evaluated are denoted by A1, A2, . . . , Am,
while the n criteria applied to perform the evaluations are given
by C1, C2, . . . , Cn. The performance evaluation of alternative
Ai, i = 1, . . . , m, with respect to criterion, Cj , j = 1, . . . , n,
is denoted by xij and summarized through a decision matrix
defined as follows:

W = [w1, w2, . . . , wn]

The terms wj , j = 1, . . . , n, represent the importance as-
signed by the DM or the experts to each criterion j. Given the

ÃH � B̃H =

�
�������������

������������	

−〈b − a,
�

γa
(j)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
< Score



B̃H

�
& a < b,

〈b − a,
�

γa
(j)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
> Score



B̃H

�
& a < b,

〈a − b,
�

γa
(i)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
> Score



B̃H

�
& a > b,

−〈a − b,
�

γa
(i)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
< Score



B̃H

�
& a > b;

ÃH � B̃H =

�
�������������

������������	

〈a/b,
�

γa
(j)

∈h(a),γa
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
< Score



B̃H

�
& a < b,

〈b/a,
�

γa
(j)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
> Score



B̃H

�
& a < b,

〈a/b,
�

γa
(j)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
> Score



B̃H

�
& a > b,

〈b/a,
�

γa
(j)

∈h(a),γb
(j)

∈h(b)
{γ}〉 if Score



ÃH

�
< Score



B̃H

�
& a > b;

Authorized licensed use limited to: Rutgers University. Downloaded on February 17,2023 at 07:37:02 UTC from IEEE Xplore.  Restrictions apply. 



SANTOS-ARTEAGA et al.: CREDIBILITY AND STRATEGIC BEHAVIOR APPROACH IN HESITANT MULTIPLE CRITERIA DECISION-MAKING 465

values provided in the decision matrix and the fact that criteria
can be either positive or negative, the set of alternatives is ranked
as follows.

Step 1: The decision matrix is normalized to allow for the cri-
teria to be directly compared. The evaluations received
by the different alternatives are normalized via

rij =
xij��

i x2
ij

, i = 1, . . . , m, j = 1, . . . , n. (4)

Step 2: The weights describing the relative importance of each
criterion are used to generate the weighted normalized
decision matrix by multiplying each column of the
decision matrix by the corresponding weight

vij = wjrij , j = 1, . . . , n. (5)

Step 3: The criteria used to evaluate the alternatives may be
positive (representing a beneficial quality) or negative
(representing a cost). The ideal positive (best), v+

i ,
and negative (worst), v−

i , values are identified for each
criterion. The vectors summarizing the ideal values
obtained are defined as follows:

A+ =


ν+
1 , . . . , ν+

n

�
(6)

with

v+
i = maxi {(vij) | j ∈ positive criterion} (7)

v+
i = mini {(vij) | j ∈ negative criterion} (8)

when considering the best potential values, and

A− =


ν−
1 , . . . , ν−

n

�
(9)

where

v−
i = mini {(vij) | j ∈ positive criterion} (10)

v−
i = maxi {(vij) | j ∈ negative criterion} (11)

when dealing with the worst potential values.
Step 4: The distance between the evaluation assigned to each

alternative and the positive and negative ideal values
is computed as follows:

d+
i =

�

�
n�

j=1



ν+
j − νij

�2
�

�
1/2

, i = 1, . . . , m (12)

d−
i =

�

�
n�

j=1



ν−
j − νij

�2
�

�
1/2

, i = 1, . . . , m. (13)

Step 5: Given the d+
i and d−

i values computed for each Ai,
the alternatives are ranked according to their relative
proximity to the ideal solution

Ri =
d−
i

d+
i + d−

i

i = 1, . . . , m. (14)

Ri describes the relative distance between alternative i and
the negative ideal solution, with higher values corresponding to
those alternatives farther from the potentially worst one. As a

result, a value of Ri = 1 represents the best possible score while
a value of Ri = 0 corresponds to the worst one.

A. Incorporating HFNs Into TOPSIS

The introduction of HFNs within a TOPSIS environment
is not immediate or straightforward. Indeed, HFNs must be
adapted to the main computational requirements of TOPSIS
before the resulting technique can be applied.

Consider the score function, Score(ÃH), of an HFN, ÃH =
〈a, h(a)〉, with membership degrees h(a) = {γ1, γ2, . . . , γn}
and γi ∈ [0, 1]. To simplify the presentation, assume that each
expert is assigned a unique credibility score. This simplifi-
cation implies that when the DM receives an evaluation, the
corresponding score is given by Score(ÃH

h ) = 〈ah, h(ah)〉 =
ah × γh, determined by the credibility assigned by the DM to
each expert h. Appendix AI describes the behavior of the score
function when several credibility degrees are assigned to each
expert.

Assume that each alternative is evaluated by h = 1, . . . , n +
1 experts. Then, the sum of all their evaluations, together
with their corresponding credibility, is given by ⊕n+1

h=1ÃH
h =

〈�n+1
h=1 ah,

n+1�

h=1

h(ah)〉. Note that this operation must be per-

formed for each characteristic of each alternative per decision
criterion. Without loss of generality, assume that there are two
types of experts, denoted by h = 1, 2. More precisely, assume
that there is one Type-1 expert and n Type-2 experts. The latter
are identical and share both evaluations and credibility.

Consider the different evaluations provided by each type of
expert, namely a1 and a2. Define the average of the evaluations
presented as the value assigned by the DM to the character-

istic of an alternative under a given criterion, ⊕n+1
h=1

ÃH
h

n+1 =

〈�n+1
h=1

ah

n+1 ,
n+1�

h=1

h(ah)〉. We assume that
�n+1

h=1 ah >n + 1 and

�n+1
h=1 ah ×

n+1�

h=1

h(ah) > n + 1, to define a standard average

reference setting per set of evaluations.
Given the definition of score presented in (1) and (2) and

considering the evaluations provided by different experts, we
have that

Score

�

⊕n+1
h=1

ÃH
h

n + 1

�

=

n+1�

h=1

ah

n + 1
×�⊕n+1

h=1γh

�
=

a1 + na2

n + 1

× �
1 − (1 − γ1) × Πn+1

h=2(1 − γh)
�

(15)

which, given the fact that the n Type-2 experts are identical,
simplifies to

Score

�

⊕n+1
h=1

ÃH
h

n + 1

�

=
a1 + na2

n + 1
×[1−(1−γ1)×(1−γ2)

n] .

(16)

Note that lim
n→∞



Score



⊕n+1

h=1
ÃH

h
n+1

��
= a2, which elimi-

nates the effect from the evaluation provided by the Type-1
expert, a1. This result will become essential when describing
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Fig. 1. Multiple experts with identical preferences and score modifications.

the manipulation possibilities inherent to the credibility scores
of experts.

Fig. 1 represents (16) and the consequences derived from
the introduction of multiple experts with identical preferences.
The evaluations provided by the Type-1 and Type-2 experts are
given by a1 = 10 and a2 = 1, respectively. The credibility of
both experts varies within the [0, 1] domain. Fig. 1 illustrates
how the preferences of the Type-2 experts can be imposed by
adding multiple experts with the same evaluations independently
of their credibility.

The score decreases in the credibility of both experts, while
its highest potential value decreases in the number of Type-2
experts added to the analysis. Note how low credibility values
can be compensated by including additional experts, leading
their aggregate credibility to converge to a value of one. Fig. 1
illustrates this latter effect as the score function with ten Type-
2 experts remains above that with a unique Type-2 expert for
sufficiently low credibility values.

Clearly, the score function should be adapted to be fully
implementable within TOPSIS, since we must consider the
existence of negative criteria and the effect of credibility on
the resulting scores, which could be incorporated as follows:

Score(ÃH)
−
= a × P A([1 − γ1], [1 − γ2], . . . , [1 − γn])

= a ×
�n

j=1(1 + T ([1 − γj ]))[1 − γj ]�n
j=1(1 + T ([1 − γj ]))

(17)

where

T ([1 − γj ]) =

n�

k=1,k �=j

Supp([1 − γj ], [1 − γk]),

Supp([1 − γj ], [1 − γk]) = 1 − |(1 − γj) − (1 − γk)|
= 1 − |γk − γj | (18)

for an HFN, ÃH = 〈a, h(a)〉, with membership degrees h(a) =
{γ1, γ2, . . . , γn} and γi ∈ [0, 1]. The main difference with re-
spect to the score of a positive criterion is determined by the
fact that when dealing with a negative criterion an increase
in credibility should decrease the score. That is, since lower
values are preferred to higher ones, the higher the credibility
of the expert the lower the score value assigned to the negative
criterion.

However, as it can be intuitively inferred from (17), credibility
degrees close to a value of one would lead to scores close to zero,
underestimating the importance of the corresponding criteria.
Appendix AII explains in detail the modifications required to
preserve the cost nature of the criteria while preventing the bias
just described.

Definition 8: Let ÃH
1 and ÃH

2 be two HFNs. Then

1) ÃH
1 ≺ ÃH

2



ÃH

1 � ÃH
2

�
if

Score



ÃH
1

�
<Score



ÃH

2

�

Score



ÃH

1

�
>Score



ÃH

2

��
.

2) ÃH
1 ≺ ÃH

2 (ÃH
1 � ÃH

2 ) if
Score(ÃH

1 ) = Score(ÃH
2 )&

V ar(ÃH
1 ) > V ar(ÃH

2 ) (V ar(ÃH
1 ) < V ar(ÃH

2 )).
An important remark regarding the preference relationship

between HFNs follows. Consider two HFNs, ÃH
1 and ÃH

2 , with
identical scores and variances. This fact alone does not allow
to conclude that ÃH

1 = ÃH
2 . Validating this equality requires

comparing the corresponding real parts and the maximum and
minimum values of their membership sections. The sequential
comparison process proceeds as follows: a1 > a2 ⇔ ÃH

1 �
ÃH

2 . If a1 = a2, the membership elements will determine the
preferences according to their highest values. Let γi(j) be the
jth largest value of h(ai). The preferred HFN has the higher
γi(j) value. However, if γ1(j) = γ2(j), the γi(j−1) values must
be compared, and so on.

The above process defines a complete preference order among
HFNs, allowing for the incorporation of the resulting values
in the final ranking generated by any MCDM technique, such
as TOPSIS. At the same time, the scores trigger a series of
potential strategic scenarios that allow for the introduction of
expert coalitions designed to impose their evaluations across
decision criteria and alternatives over those of credible experts.

B. Dealing With Manipulation

We illustrate how the continuity of the score function allows
for coalitions of experts to impose their preferred alternative in-
dependently of their credibility. This quality of the score function
is desirable when credible experts can discard the evaluations
of noncredible ones. However, this feature also works in the
opposite sense with a sufficiently large number of noncredible
experts being able to discard the evaluations of credible ones.
Thus, a basic credibility limit must be imposed on the evaluations
used to rank the alternatives.

Proposition 1: There exists a sufficiently large coalition of
experts whose preferred alternative can be imposed indepen-
dently of their reputation.

Proof: Consider the framework defined by two types of
experts. Assume that the reputation of the first type is much
higher than that of the second, that is, γ1 >> γ2. Assume that
there are l Type-1 experts, who provide an evaluation of a1, and
n + 1 − l Type-2 experts, providing an evaluation of a2. Given
the definition of the score and considering both evaluations, we
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have that

Score

�

⊕n+1
h=1

ÃH
h

n + 1

�

=
la1 + (n + 1 − l)a2

n + 1

×
�
1 − (1 − γ1)

l × (1 − γ2)
n+1−l

�
. (19)

Fix the number of Type-1 experts and increase that of Type-

2. Clearly, lim
n→∞



⊕n+1

h=1
ÃH

h
n+1

�
= a2, eliminating the evaluation

of a1. The result generalizes immediately to multiple types of
experts and dimensions of the HFEs.

This result relates to the concept of core in economics and
game theory but is applied to an MCDM setting. The DM
must therefore define a minimum credibility requirement on
the evaluations used to generate the ranking. For instance, a
credibility threshold could be imposed per set of evaluations of
each characteristic

hσ(t) ≥ γ̂σ(t) (20)

where hσ(t) = ⊕k
h=1h

σ(t)
h = {1 − Πk

h=1(1 − h
σ(t)
h )|t =

1, 2, . . . , l}, implying that ⊕l
t=1hσ(t) ≥ ⊕l

t=1γ̂σ(t), where
h = 1, 2, . . . , k, is the number of experts, t = 1, 2, . . . , l, the
set of credibility features per expert, and γ̂σ(t) the threshold per
credibility feature when evaluating the characteristics of each
alternative. Alternatively, the DM could also impose h

σ(t)
h ≥ γ̂,

for each feature t = 1, 2, . . . , l, and expert h = 1, 2, . . . , k, or
⊕l

t=1h
σ(t)
h ≥ γ̂, with γ̂ referring to the minimum credibility per

expert considered by the DM.
Credibility requirements must therefore be imposed on each

evaluation of every characteristic per alternative being ranked.
Otherwise, the results obtained would lack sufficient reliability.
However, a minimum credibility requirement does not suffice
to prevent manipulation, requiring an additional limit on the
number of experts selected.

Corollary 1: There exists a coalition of experts satisfying
the minimum credibility requirements imposed by the DM,
i.e., ⊕k

h=1h
σ(t)
h ≥ γ̂σ(t), ⊕l

t=1h
σ(t)
h ≥ γ̂, or h

σ(t)
h ≥ γ̂, with

t = 1, 2, . . . , l and h = 1, 2, . . . , k, whose preferred alternative
can be imposed whenever a sufficiently large number of experts
forms the coalition.

The DM must therefore limit both the loss in reputation
derived from the group of experts selected and their number,
i.e., k < k̂, with k̂ representing the maximum number of experts
consulted by the DM. Both types of parameters, γ̂σ(t) or γ̂ and
k̂, must be subjectively defined to prevent manipulation to a
reasonable extent defined by the DM.

The intuition on which these results are based follows from
the description of the score function, which, after substituting
(2) into (1), reads as follows:

Score(ÃH) =

a ×
�n

j=1

�
1 +

�n

k = 1, k �= j
1 − |γj − γk|

�
γj

�n
j=1

�
1 +

�n

k = 1, k �= j
1 − |γj − γk|

� . (21)

Intuitively, the score function is designed to punish those
experts displaying a lower reputation. That is, consider an expert
whose reputation across several subjective characteristics is
given by h(a) = {γ1, γ2, . . . , γn}. Equation (21) illustrates how
the weight assigned to each credibility score is determined by
the relative distance between the credibility scores assigned to
the expert

∂

�
1 +

�n

k = 1, k �= j
1 − |γj − γk|

�

∂ (|γj − γk|) < 0. (22)

Thus, similarly credible evaluations will lead to higher
weights within the weighted average defined in (21). At the same
time, the relative credibility of the expert determines the value

of the score obtained via ∂(Score(ÃH))
∂γj

> 0.
That is, credible experts rated consistently will display higher

weights within the score function, validating their evaluations
relative to less credible experts. A similar intuition applies to
the addition of several HFNs describing experts’ evaluations.
However, considering a large number of experts could lead to
credibility problems because of Equation (23) shown at the
bottom of next page.

In a nutshell, a sufficiently large number of experts would
lead to a totally credible evaluation independently of their repu-
tation since lim

n→∞ ⊕n+1
h=1γh = lim

n→∞{1 − Πn+1
h=1(1 − γh)} = 1 for

any value of γh. This drawback must be accounted for when
incorporating multiple experts into the analysis.

Note that the DM is responsible for selecting the experts—and
their number—based on their credibility. On the other hand,
standard MCDM models assume that the evaluations provided
by the experts are either completely truthful or, if some uncer-
tainty exists, it is not due to the strategic reporting of the experts.
Uncertainty is inherent to the evaluations and formalized via
fuzzy numbers. In this case, selecting the fuzzy numbers and
their membership functions constitutes an entirely subjective
task assigned to the DM.

The formal requirements imposed on DMs within the current
setting are less demanding than those imposed within standard
fuzzy MCDM environments. Moreover, they account for the
known fact that experts’ evaluations may be strategically biased,
particularly in complex scenarios dealing with heterogeneous
variables, as is the case with sustainable transportation systems.

C. Credibility Through HFNs

One of the main qualities of HFNs is their malleability, which
allows them to perform the whole set of algebraic operations
required to implement TOPSIS. We abuse notation and denote by
xh
ij the performance evaluation of alternative Ai, i = 1, . . . , m,

with respect to criterion, Cj , j = 1, . . . , n. Evaluations are pro-
vided by experts, h = 1, . . . , k, who are also assigned degrees
of credibility through the different dimensions composing the
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corresponding HFEs. That is, the DM retrieves the following
evaluation matrix from each expert:

W =
��

wh
1 , h(wh

1 )
�

,
�
wh

2 , h(wh
2 )
�

, . . . ,
�
wh

n, h(wh
n)
��

.

Adding the evaluations of the experts per criterion and the
corresponding weights gives place to the following matrix, on
which TOPSIS can be implemented:

W =
�⊕k

h=1

�
wh

1 , h(wh
1 )
�

, ⊕k
h=1

�
wh

2 , h(wh
2 )
�

, . . . ,

⊕k
h=1

�
wh

n, h(wh
n)
��

.

Step 1: The decision matrix is normalized to allow the criteria
to be directly compared. The evaluations received by
the different alternatives are normalized via

rij =
⊕k

h=1

�
xh
ij , h(xh

ij)
�

�
⊕
i


⊕k
h=1

�
xh
ij , h(xh

ij)
��2

,

i = 1, . . . , m, j = 1, . . . , n. (24)

Step 2: The weights describing the relative importance of each
criterion are used to generate the weighted normalized
decision matrix by multiplying each column of the
decision matrix by the corresponding weight

vij = ⊕k
h=1

�
wh

j , h(wh
j )
� ⊗ rij , j = 1, . . . , n.

(25)
Step 3: The criteria used to evaluate the alternatives may be

positive (representing a beneficial quality) or negative
(representing a cost). The ideal positive (best), v+

i and
negative (worst), v−

i , values are identified for each
criterion. The vectors summarizing the ideal values

obtained are defined as follows:

A+ =


ν+
1 , . . . , ν+

n

�
(26)

with

v+
i = maxi {score(vij) | j ∈ positive criterion} (27)

v+
i = mini {score(vij) | j ∈ negative criterion} (28)

when considering the best potential values, and

A− =


ν−
1 , . . . , ν−

n

�
(29)

where

v−
i = mini {score(vij) | j ∈ positive criterion} (30)

v−
i = maxi {score(vij) | j ∈ negative criterion} (31)

when dealing with the worst potential values.
Step 4: The distance between the evaluation assigned to each

alternative and the positive and negative ideal values
is computed as follows:

d+
i =

�
⊕n

j=1



ν+
j � νij

�2�1/2
, i = 1, . . . , m (32)

d−
i =

�
⊕n

j=1



ν−
j � νij

�2�1/2
, i = 1, . . . , m. (33)

Step 5: Given the d+
i and d−

i values computed for each Ai, the
final ranking will be based on the relative proximity
of each alternative to the ideal solution

Ri = d−
i � 


d+
i ⊕ d−

i

�
, i = 1, . . . , m. (34)

Step 6: The alternatives are ranked according to the scores
of the different proximity variables, score(Ri), i =
1, 2, . . . , m. Let Ri and Rj be two HFNs describing
the relative distance of alternatives i and j from the
negative ideal one, respectively. The subsequent rank-
ing is obtained as follows:

1) Ri ≺ Rj (Ri � Rj) if

Score(Ri) < Score(Rj) (Score(Ri) > Score(Rj)).

2) Ri ≺ Rj (Ri � Rj) if

Score(Ri) = Score(Rj) &
V ar(Ri) > V ar(Rj) (V ar(Ri) < V ar(Rj)).

In case the scores and variances are identical, we proceed
through the corresponding HFEs implementing the comparison
process described in Definition 8. The resulting ranking will
be complete and strict, with indifference arising among those
alternatives with identical Ri HFNs, i = 1, 2, . . . , m.

We conclude by illustrating how the malleability of HFNs
allows us to consider further strategic scenarios. For instance,

lim
n→∞

�

���

�n
j=1

�
1 +

�n

k = 1, k �= j
1 − | ⊕n+1

h=1 γhj − ⊕n+1
h=1γhk|

�
⊕n+1

h=1 γhj

�n
j=1

�
1 +

�n

k = 1, k �= j
1 − | ⊕n+1

h=1 γhj − ⊕n+1
h=1γhk|

�

�

��� = 1. (23)
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assume that there are d types of DMs assigning different cred-
ibility scores to the experts. We must therefore account for
the evaluations of different experts, h = 1, 2, . . . , k , being
assigned degrees of credibility along different dimensions by
several DMs, p = 1, 2, . . . , d. That is, each DM defines different
evaluation matrices based on the credibility assigned to the
corresponding experts

W =
��

wh
1 , h(wh

1 )
�p

,
�
wh

2 , h(wh
2 )
�p

, . . . ,
�
wh

n, h(wh
n)
�p�

.

Adding the credibility scores across DMs and the expert
evaluations across characteristics, as well as the corresponding
weights, gives place to the following evaluation matrix, on which
TOPSIS can be implemented

We can now proceed with the different steps composing TOP-
SIS, such as, for instance, the normalization of the evaluation
matrix via

rij =
⊕k

h=1 ⊕d
p=1

�
xh
11, h(xh

11)
�p

�
⊕
i


⊕k
h=1 ⊕d

p=1

�
xh
11, h(xh

11)
�p�2

, i = 1, . . . , m,

j = 1, . . . , n. (35)

Furthermore, DMs could also be assigned different degrees
of credibility. That is, DMs could allocate their credibility
scores to the experts strategically, based on personal affini-
ties or subjective interests. Pushing the limits of the analysis
further, we could formalize the credibility of DMs when as-
signing scores to the evaluations provided by the experts, xhp

ij ,
through

 
1, h(xhp

ij )
!

⊗ �
xh
ij , h(xh

ij)
�p

. (36)

Fig. 2. Evaluation and ranking processes with and without credibility consid-
erations.

These strategic extensions foster the transformation of
MCDM frameworks into game-theoretical scenarios where dif-
ferent coalitions may be introduced and analyzed based on the
credibility of both experts and DMs.

VI. CASE STUDY

We use a real-life case study to illustrate the main implica-
tions derived from the inclusion of credibility when analyzing
experts’ evaluations and ranking the set of alternatives using
an MCDM technique such as TOPSIS. The flexibility of the
HFNs introduced by [22] allows for the inclusion of credibility
and strategic considerations through other MCDM techniques.
However, as we will illustrate through the current case study,
the implementation is not immediate, and the characteristics of
the HFNs must be carefully incorporated into the structure of
the corresponding MCDM technique to preserve consistency
through the analysis.

We build on the case analyzed by [6], which was one of the
first studies to incorporate the evaluations of several experts
within an uncertain MCDM setting. The case study presented
by these authors focuses on the development of a sustainable
transportation system within a city based on a previous project
implemented in La Rochelle, France. The authors consider three
potential alternatives, Carsharing (A1), Ridesharing (A2), and
Park-n-ride (A3), involving the use of either individual or shared
cars or their substitution with public transportation alternatives.
Their main contribution consists in incorporating the linguistic
opinions of three experts within an uncertain TOPSIS environ-
ment formalized via TFNs.

Fig. 2 presents a flowchart highlighting the main differences
between the model of [6] and the current one in terms of the
credibility considerations that must be implemented through the
different steps of the ranking process. In particular, the authors
assume the ad hoc existence of a committee composed of three
experts, D1, D2, and D3, consulted to help select the most
sustainable transportation system to be implemented in the city.
There is no information about the committee members, who are
assumed identical in terms of their subjective characteristics.
This is a common shortcoming of any model incorporating mul-
tiple opinions absent credibility considerations. The inclusion
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TABLE I
RANKING VALUES ACROSS CREDIBILITY SCENARIOS

of fuzzy evaluations accounts for the imprecision inherent in
the opinions of the experts. However, this is not the only source
of uncertainty. When presenting their evaluations, the strategic
incentives of experts constitute an essential part of any group
decision process.

All tables and figures referring directly to the study case
presented by [6] have been relegated to an online appendix
section. The results derived from the introduction of credibil-
ity considerations within [6] have all been illustrated in the
article. In this regard, the set of 24 cost and benefit criteria
considered through the evaluation process is described in Table
AI. The authors assume that the committee members provide
linguistic assessments, based on those presented in Table AII,
to rate both the criteria and the three alternatives. The linguistic
evaluations assigned to the criteria are described in the first set
of columns within Table AIII, while those assigned to the alter-
natives are presented in Table AIV. Note how the subjectivity
inherent to many of the evaluations is evident from the basic
description of the criteria, even when strategic considerations are
absent.

Awasthi et al. [6] added up all the evaluations received and
solved the resulting TOPSIS model based on TFNs. The results
obtained by these authors are presented in the second row within
Table I. This classification, namely, A2 � A1 � A3, will be
used as a benchmark relative to which the effect of credibility
modifications will be analyzed.

A. Implementation

The introduction of HFNs within the TOPSIS environment
analyzed by [6] requires defuzzifying the evaluations of the
experts. To this end, we apply the graded mean integration
representation (GMIR) method [9]. Let w̄ = (l, m, u) be a TFN
corresponding to the linguistic assessments that define the im-
portance of the criteria and alternatives described in Tables AIII
and AIV, respectively. The GMIR of the fuzzy weight w̄ is
defined as follows:

R (w̄) =
l + 4m + u

6
. (37)

We apply this defuzzification technique to the linguistic eval-
uations provided by the experts and reported in the paper of
[6]. The results are presented within the second set of columns

in Table AIII—when considering the weights—and in Table
AV—when accounting for the evaluations of the alternatives. To
simplify the presentation, we assign a unique credibility score to
each expert, which allows illustrate the results that follow from a
complete modification of the credibility assigned to the different
experts. That is, the HFEs are composed of a unique element
describing the credibility assigned to the evaluation provided by
the corresponding expert.

The main contribution of the current article consists in the
formalization of the uncertainty derived from the incentives of
experts to report strategically and the mechanisms available
to compensate for the resulting outcomes within an MCDM
setting. In this regard, the case study illustrates the main
modifications that must be implemented to incorporate the
effect of credibility on the ranking obtained fully. Intuitively,
the presentation provided in the previous section illustrates
the general cumulative effect of credibility within a TOPSIS
setting.

That is, credibility only plays an explicit role in deter-
mining the ranking within the final step of the TOPSIS pro-
cess, after the d+

i and d−
i values have been computed and

the Ri values are compared across alternatives i = 1, . . . , m.
The implementation described does not consider the spe-
cific effect of the credibility scores at each step of the pro-
cess, which conditions the evaluations of the alternatives, the
weights of the criteria, and the relative distances from the ideal
solutions.

This simplification becomes a problem when considering
many criteria, as is generally the case when analyzing real-life
environments since the values of the HFEs composing d+

i and
d−
i would converge toward one, eliminating any credibility effect

from the analysis. The credibility scores accumulated through
the different steps must be added across experts, alternatives,
weights, and criteria, leading to the general cumulative credibil-
ity assigned through TOPSIS. A sufficiently large number of any
of these variables implies that the value of the final credibility
score would be equal to one independently of the values assigned
throughout the process. In particular,

Corollary 2: A sufficiently large number of criteria would
lead to an aggregate credibility of one.

The proof follows directly from the limit values described
in Corollary 1. Intuitively, when computing Ri , we have
that h1 ⊕ h2 = h

σ(t)
1 + h

σ(t)
2 − h

σ(t)
1 h

σ(t)
2 > h

σ(t)
1 = h1, since

h
σ(t)
2 > h

σ(t)
1 h

σ(t)
2 , with h

σ(t)
1 < 1. Thus, a sufficiently large

number of criteria implies that the HFEs defining the final Ri

will be equal to one. The resulting scores will be identical to their
respective real parts, avoiding any credibility consideration from
the ranking whenever its effect is considered only in the final step
of the TOPSIS process.

Therefore, we must account for the effect of the credibility
scores at each step of the process, which differs from the cumu-
lative credibility determining the evaluation of alternatives at the
very last step. HFNs allow to consider multiple credibility di-
mensions per expert and implement the resulting effects through
the different TOPSIS stages. We describe them explicitly within
the following steps.
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Step 1: We multiply the initial evaluations of the alternatives
by the credibility assigned to the corresponding ex-
perts per alternative and criterion so that the latter de-
termines the weighted value of each entry composing
the decision matrix. The normalization of the decision
matrix is therefore based on the following equation:

rij =

 �k
h=1 xh

ijγ
h
ij , ⊕k

h=1γh
ij

!

�
⊕
i


 �k
h=1 xh

ijγ
h
ij , ⊕k

h=1γh
ij

!�2
,

i = 1, . . . , m,

j = 1, . . . , n;
(38)

The HFN 〈�k
h=1 xh

ijγ
h
ij , ⊕k

h=1γh
ij〉 incorporates two differ-

ent effects, namely, the general credibility per criterion and
alternative, ⊕k

h=1γh
ij , and the weighted evaluation

�k
h=1 xh

ijγ
h
ij

accounting for the effect that the credibility of each ex-
pert has on the corresponding evaluations per criterion and
alternative.

Note that the credibility scores and weighted evaluations
must be adjusted when dealing with cost criteria. Appendix
AII illustrates in detail the implementation of the corresponding
adjustments through the different steps of TOPSIS.

Step 2: A similar intuition applies to the weights assigned by
the experts and their corresponding credibility scores,
both of which determine the weighted value of each
normalized evaluation at both local and cumulative
levels as follows:

vij=

"
k�

h=1

wh
j γwh

j , ⊕k
h=1γwh

j

#

⊗ rij , j=1, . . . , n.

(39)

As in the previous step, the HFNs defining the weights are
composed of the local weighted credibility assigned to the
evaluation of the weights by the experts,

�k
h=1 wh

j γwh
j , and

the general credibility that will be directly carried into the next
step of the process, ⊕k

h=1γwh
j .

Steps 3 and 4: The cumulative credibility of the experts
when reaching the third step is given
by [(⊕k

h=1γh
ij) � (⊕m

i=1 ⊕k
h=1 γh

ij)] ⊗
(⊕k

h=1γwh
j ), per alternative, i = 1, . . . , m,

and criterion, j = 1, . . . , n. These
HFE values enter locally into the
third and fourth steps of TOPSIS as
we multiply the normalized weighted
evaluation of each alternative per criterion,

[
�k

h=1 xh
ijγ

h
ij��

i (
�k

h=1 xh
ijγ

h
ij)

2 ]
�k

h=1 wh
j γwh

j , by the

cumulative weighted credibility in order to
obtain the reference minimum and maximum
score values—as well as the scores of
each alternative per criterion—so that we can
compute the corresponding relative distances.

Note that, when considering a unique credibility value per
expert, the difference between the real parts of two HFNs is

equivalent to the difference between their scores

d+
i =

�

��������

⊕n
j=1

$

%%%%%%&

"

score
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j

�
,

�

�
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⊗
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�
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�
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⊗
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�
#

)

******+
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��������

1/2

,

i = 1, . . . , m (40)
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��������
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,
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Step 5: The cumulative value of the HFEs composing the Ri

HFNs follows from adding the differences between
the ν+

j , ν−
j , and νij HFNs across criteria per alterna-

tive i = 1, . . . , m, leading to

⊕n
j=1

$

%%&

’’
⊕k
h=1γh

ij

��
⊕m
i=1 ⊕k
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)

**+.

(42)
Equation (42) defines the cumulative credibility assigned to

each d+
i variable, with a similar expression corresponding to the

d−
i one. Note that the HFEs assigned to the d+

i and d−
i variables

define the general credibility of the system and determine the
final ranking through the scores of the Ri variables. Clearly,
a large enough number of criteria implies that the cumulative
credibility of each d+

i and d−
i variable will converge to one.

All in all, the implementation of HFNs within TOPSIS re-
quires distinguishing between the credibility scores assigned per
expert, criterion, weight, and alternative, and the aggregate ones
accumulated through the different steps of the ranking process.
If not considered before the final step, the cumulative credibility
scores may converge to one for all the alternatives, eliminating
any credibility effect from the ranking obtained.

B. Analysis of the Results

We now illustrate the ranking scenarios that arise when the
credibility scores are introduced—and modified—through the
different steps of TOPSIS. We start by deriving the rankings that
follow from the individual preferences of each expert. Table I
illustrates the rankings obtained when each expert is assigned
a credibility of one, highlighting the biases inherent to their
individual preferences. Clearly, the ranking preferred by the
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TABLE II
VARIATIONS IN THE DISTRIBUTION OF CREDIBILITY AMONG EXPERTS

first expert is given by A3 � A1 � A2, while the second and
third experts prefer A2 � A1 � A3, coinciding with the ranking
derived from the analysis performed by [6]. These rankings
provide a reference benchmark to analyze the effects derived
from relative modifications in the credibility of each expert. The
rankings are illustrated in Fig. A1, where the differences in the
intensity of preferences among experts can be observed.

Table I also presents the rankings derived from the implemen-
tation framework described in Section V-C, where credibility
scores are only considered when ranking the Ri HFNs. Note how
assigning a credibility score of either one or ½ to all the experts
results in the same ranking. Clearly, aggregating 24 criteria
in the final steps of TOPSIS leads to a cumulative credibility
sufficiently close to one. For comparison purposes, we have
described the case where a credibility of ½ is assigned to all
the experts but applied through the whole ranking process.

This last case will be used as the benchmark reference when
evaluating changes in the relative credibility assigned to the
experts, a set of scenarios analyzed in Table II. We have shaded
the relevant results within this table, indicating changes in
the rankings caused by the relative credibility assigned to the
different experts. Note how when the first expert is assigned
a higher credibility relative to the other two, his preferred
ranking is consistently implemented A3 � A1 � A2. However,
as his credibility decreases below that of the other experts, the
A2 � A1 � A3 ranking arises as the preferred one.

This intuition is validated when modifying the credibility of
the other experts. The second requires a substantial increase in

Fig. 3. Ranking variations caused by changes in the distribution of credibility
among experts.

Fig. 4. Ranking variations when strategically adding a fourth expert to the
analysis.

credibility to be able to impose his preferred ranking, A2 �
A1 � A3 , while the third expert is unable to modify the initial
ranking and impose his preferred one.

Fig. 3 summarizes the set of rankings generated as the relative
credibility of the different experts is modified. Given its strategic
importance, the addition of experts with different preferences
and credibility scores constitutes one of the main extensions of
the model. We analyze the resulting strategic framework in the
following section.

C. Sensitivity Analysis

Table AVI describes the rankings obtained when adding a
fourth expert to the analysis whose preferences coincide with
those of another expert. This extension allows us to analyze the
strategic effects derived from the introduction of experts who
may form potential coalitions to modify the rankings according
to their subjective preferences.

The benchmark scenario is given by the case where all experts
are endowed with a credibility of ½. The initial set of modifica-
tions introduces a fourth expert with the same preferences and
evaluations as the first one. We define a progressive increment
of his individual credibility and that of the first expert. As can be
inferred from the initial set of rows described in Table AVI, the
ranking preferred by the first expert, A3 � A1 � A2, is imposed
through the different scenarios considered. The addition to the
analysis of an expert with the same evaluations and credibility as
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the first one validates the initial ranking obtained. This tendency
is clearly preserved as the credibility assigned to these experts
increases.

On the other hand, when the fourth expert displays the same
preferences and evaluations as the third one, we observe a
progressive increment in the score of the second alternative as
the credibility of the fourth expert increases. This pattern does
not suffice to place the second alternative above the first one in
the ranking. However, as illustrated in Fig. A2, it provides a clear
and intuitive description of how the preferences of the experts
determine the ranking obtained as their credibility is modified.

Fig. 4 summarizes the consequences of adding a fourth expert
with the same preferences and evaluations as the first and third
one, respectively. All experts have been assigned equal credibil-
ity of ½, and both scenarios are compared to the benchmark case
with three experts. The ability to impose the ranking preferred
by the first expert clearly contrasts with the inability to impose
that of the third one. Appendix AIII describes the ranking mod-
ifications that arise when experts alter their evaluation reports
strategically.

VII. CONCLUSION

We have analyzed the main consequences derived from im-
plementing a strategic evaluation framework within a standard
MCDM technique such as TOPSIS, highlighting the capacity
of experts to manipulate the rankings delivered. We have also
formalized the requirements imposed on DMs to contain the
manipulation inherent to the subsequent decision process. DMs
must assign a credibility score to each expert and define a
minimum credibility value determined by the scores assigned
and the number of experts considered. Both these require-
ments are novel to the current strategic MCDM environment,
which has been applied to analyze a sustainable transporta-
tion problem involving significant environmental and pecuniary
costs.

Among the potential extensions, it could be assumed that the
evaluations provided by the experts consist of fuzzy numbers.
In this case, standard operations could be defined on the fuzzy
part of the corresponding HFNs, with the credibility assessments
interacting in the same way as described in the current article.

The structure of HFNs combines the quantitative evaluations
received with the credibility assigned to the expert performing
the evaluations. The malleability of this type of HFNs allows
for their applicability within other standard MCDM techniques
such as, for instance, VIKOR or PROMETHEE, as well as dif-
ferent research areas—other than sustainable transportation—
involving strategic reports.
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