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A variety of point-based heuristics and metaheuristics have been developed to approximate the
global optimum of univariate functions. However, these Point-Based Search (PBS) algorithms
often converge to local optima and fail to detect all extrema due to limited domain exploration.
This study proposes an Area-Based Search (ABS) algorithm that systematically partitions the
domain into uniformly spaced subintervals and evaluates the area under the curve in each
segment. Subintervals with significantly larger or smaller areas than their neighbors are likely to
contain local maxima or minima, respectively. We validate this idea on multimodal test functions
using a Monte Carlo simulation framework with 1,000 trials. Across all noise levels in a standard
benchmark function, ABS consistently detects all 16 local and global extrema. Intuitively,
coverage measures the fraction of true extrema that an algorithm successfully recovers within a
prescribed positional tolerance. Compared to Genetic Algorithms (GA), ABS achieves up to 37%
higher detection accuracy under noise, with an average coverage improvement of 4.75% across
all test cases. Additionally, ABS exhibited a 30.41% lower position error and a 36.89% lower
value error than GA. The deterministic nature of ABS, with only one tunable resolution param-
eter, supports its use in noisy environments requiring full-spectrum extrema detection.

1. Introduction

A univariate function f(x) maps each input x to a unique output y. When f(x) takes a value that is larger (or smaller) than those of its
immediate neighbors, the point is a local maximum (or minimum). The highest (or lowest) value over the entire domain is called the
global maximum (or minimum). In calculus, exact local extrema correspond to points where the derivative f'(x) is zero or undefined,
and a sign change in f'(x) typically indicates the presence of an extremum.

However, analytically finding the roots of f'(x) can be complex and computationally demanding, especially for nonlinear or non-
differentiable functions. Many studies employ heuristic or approximate algorithms to detect optima and overcome this. A classic
example is binary search, which iteratively evaluates the midpoint of a given interval to determine whether it is a local extremum. If
not, the method uses comparisons with neighboring points to guide the search direction based on whether the values increase or
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decrease. While effective for simple or unimodal functions, such approaches struggle with more complex functions and wide intervals.
Consequently, various metaheuristic algorithms have been proposed to enhance search performance, particularly in cases involving
multiple extrema. Some studies have specifically addressed multivariate optimization. For instance, Peccini et al. [1] proposed
enumeration procedures for the global design of distillation columns, while Moriwaki et al. [2] investigated hybrid membrane
distillation structures. Zhou et al. [3] developed a multi-objective differential evolution algorithm using neighborhood-based strategies
for Pareto optimization. Oh and Lee [4] introduced a prediction—correction mechanism for the global optimization of multi-objective
functions. Liu et al. [5] proposed a Chebyshev metamodel based on global optimality conditions for point set registration.

1.1. Metaheuristics and the challenge of extrema detection

Metaheuristics are widely used to solve complex optimization problems and are commonly grouped into three broad families:
evolutionary, physics-based, and swarm-intelligence algorithms. Evolutionary algorithms are inspired by biological evolution, with
the genetic algorithm [6]being one of the most well-known. Other algorithms in this class include differential evolution [7], evolu-
tionary programming [8], evolution strategies [9], and the biogeography-based optimizer [10]. Physics-based metaheuristics draw
inspiration from physical laws, such as gravitational force [11,12], or astronomical events like the Big Bang and Big Crunch [13],
galaxy-based search [14], and black hole optimization [15]. Additional examples include small-world optimization [16], central force
optimization [17], charged system search [18], artificial chemical reactions [19], and ray-based methods [20]. Swarm intelligence
algorithms, the third major category, simulate collective behaviors observed in animals and insects. Some mimic the behavior of
insects such as honey bees [21], ants [22], wasps [23], fireflies [24], and fruit flies [25]. Others emulate animals, such as monkeys
[26], cuckoos [27], dolphins [28], birds [29], krill [30], gray wolves [31], and whales [32]. Nadimi-Shahraki et al. [33], for example,
reviewed various applications of the Grey Wolf Optimizer in the context of the Internet of Things. Given the diverse strengths and
limitations of these techniques, various hybridization strategies have been developed [34,35].

Despite the diversity mentioned above, most metaheuristics share a key limitation: they are Point-Based Search (PBS) methods that
iteratively update candidate solutions from a set of discrete initial points. While effective in locating global optima, these approaches
often miss local extrema, limiting their usefulness in tasks requiring full-spectrum detection, such as robustness analysis and decision
modeling. To address this, we propose a novel Area-Based Search (ABS) algorithm. Unlike PBS methods, ABS partitions the input
domain into equal subintervals and calculates the area under the curve for each. Subintervals with larger or smaller areas than their
neighbors are flagged as candidates for maxima or minima. This integral-based approach reduces the influence of noise and captures
structure missed by point evaluations. Notably, while area calculation techniques have already proven effective in multi-criteria
decision-making [36], their potential for identifying local and global extrema remains largely unexplored. ABS bridges this gap by
leveraging integral-based evaluations to provide a smoother signal that naturally filters out noise, enabling robust detection of both
local and global extrema. The ABS method is benchmarked against classical PBS and Genetic Algorithms (GA) using extensive nu-
merical simulations across multiple test functions, noise levels, and resolution settings. Performance metrics include detection
coverage, position accuracy, and value error.

Most existing extrema-detection methods—including optimization-based strategies and common derivative- or filtering-based
pipelines—operate on discrete samples and typically emphasize a single global optimum or a small subset of dominant peaks. In
contrast, ABS evaluates integral information over subintervals, providing a complementary framework that is explicitly designed to
detect all local and global extrema in a structured and noise-robust manner.

1.2. Research objectives

The overarching objective of this research is to overcome the limitations inherent in conventional point-based and metaheuristic
optimization techniques, particularly their inability to detect all local and global extrema of univariate functions reliably. Toward this
goal, the study aims to:

e Formulate and implement a novel deterministic algorithm—ABS—designed to systematically identify all extrema within a pre-
defined univariate domain through integral-based analysis.

e Conduct a comprehensive performance evaluation of ABS compared to classical Point-Based Search (PBS) techniques and Genetic
Algorithms (GA) under a range of experimental conditions, including varying Gaussian noise and resolution levels.

o Assess the proposed method in terms of detection accuracy, noise resilience, computational efficiency, and reproducibility, thereby
establishing ABS as a practical and robust alternative for full-spectrum extrema detection in noisy environments.

Overall, ABS differs from prior point-based and metaheuristic approaches by relying on subinterval integrals rather than discrete
samples and by explicitly targeting the complete set of local and global extrema, not solely the global optimum.

The remainder of this paper is structured as follows. Section 2 elaborates on the conceptual foundation and methodology un-
derlying the ABS algorithm. Section 3 presents the detailed ABS algorithms for detecting local and global optima and enhances these
algorithms by incorporating point-based refinement methods, resulting in hybrid ABS-PBS algorithms. It also illustrates the practical
implementation of these algorithms with worked examples. Section 4 provides a comprehensive MATLAB-based numerical analysis,
benchmarking ABS against a simple PBS and Genetic Algorithms (GA) using Monte Carlo simulations across noise levels and resolution
settings. Section 5 discusses the theoretical and practical implications of the findings. Section 6 explores potential directions for future
research, and Section 7 concludes the paper, summarizing the key insights and limitations of the current work.
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2. The ABS approach for finding the global extrema

This section introduces the ABS approach for finding the global maximum (or minimum) of an integrable univariate function f(x)
on an interval I = [ag,an]. We first split the interval into n equal-width subintervals [ax_1,ax], thatis, [, = [ag,a1],]2 = [a1,a2],-, ], =
[@n-1,an], so that I = I; Ul U --- UI,. For each subinterval, we compute the area under f(x). The subinterval with the largest (or
smallest) area is the most likely to contain the global maximum (or minimum).

The underlying intuition is simple. As we move toward a maximum, f(x) typically increases. It then decreases as we move away.
Hence, the sum of function values around the global maximum tends to be larger than the corresponding sums in other regions. In a
continuous setting, this sum is represented by the area under f(x). Therefore, the subinterval containing the global maximum should
have a larger area than any other subinterval.

Unlike many existing approaches, ABS does not choose a single representative point in each subinterval and evaluate f(x) only
there. Instead, it considers all points in each subinterval and aggregates their function values. In the continuous case, this aggregation
corresponds to the area under f(x), which we compute by a definite integral. We calculate this area separately for every subinterval.
The largest area indicates the subinterval that is most likely to contain the global maximum. The smallest area indicates the subinterval
that is most likely to contain the global minimum. Fig. 1 shows the ABS approach for searching for global extrema.

In Fig. 1, the functiony = f(x) is evaluated over the interval [ag,as], which is partitioned into five equal-width subintervals [a;_1,ak].
For each subinterval, S; denotes the area under f(x). In panel (a), the subinterval with the largest area S; is likely to contain the global
maximum Ymay; in panel (b), the subinterval with the smallest area S is likely to contain the global minimum yp;y.

From a mathematical point of view, the link between area and extrema can be explained as follows. Assume that f is continuous on
[a0, @,] and has a global maximum at x*. In a small neighbourhood around x”, the values of f(x) are larger than at points farther away. If
we partition [ag, a,] into equal subintervals of width d and choose d sufficiently small, then the subinterval that contains x* will collect
higher function values and therefore have a larger integral than any subinterval that lies entirely in regions where f is lower. A
subinterval with a locally maximal area Sy is thus a natural candidate for containing the global maximum. The same reasoning applies
to minima by considering —f(x) instead of f(x).

Proposition 1. ((Local area dominance near a maximum,).) Let f be continuous on [ay, an] and consider three consecutive subintervals
L = [ax 2,0 1), Ik = [ar_1, @], and L1 = [ax, ax,1] of equal width d. Suppose that there exists a point x* € I such that

e f is nondecreasing on [ax_;,x"] and nonincreasing on [x",ax], and
o f(x) <f(x") forall x € [ 1 UL UL;.

Then x" is a local maximum of f in I,_; UL U Iy, 1, and the corresponding subinterval I satisfies

Sk > Sk-1,Sk > Skt

where §; = [, f(x)dx is the area under f over the subinterval ;.

Proof (sketch).

By the second assumption, f(x") is the largest value of f on Iy_; UI UIi,1; hence x” is a local maximum on this union. The first
assumption implies that the values of f in I; are at least as large, in aggregate, as the values in the neighbouring subintervals. Because
the subintervals have the same width d, integrating over each of them preserves this dominance: the integral over I, S, cannot be
smaller than the integral over Iy ; or over Ii,;. Thus Sy > Sx_1 and Sk > Sx.1. The same reasoning applies to local minima by
considering —f instead of f. []

Example 1. This example illustrates the ABS approach. Consider two functions, fi (x) = 5x —x? and f»(x) = x*> —5x +7. On the interval I =

y =1(x) y = f(x)

A A

Ymax \ /

SZ Si3 S 4 Yumin

St Ss S;

—> X 1

) a; A as ay as Q)

1(2) 1(b)

a3 ay as

Fig. 1. Illustration of the ABS approach for finding global extrema.
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[0,5], the point x = 2.5 is the global maximum of fi(x) and the global minimum of f2(x). Fig. 2(a) and (b) show their behavior. When x
increases from O to 2.5, the value of fi (x) increases and the value of f(x) decreases. When x increases from 2.5 to 5, f1(x) decreases and f2(x)
increases. Therefore, the sum of f1(x) values near x = 2.5 should be larger than the sums near any other point. The sum of f5(x) values near x =
2.5 should be smaller than the sums near any other point.

We now split the interval I = [0, 5] into five equal-width subintervals: I = [0,1], I, = [1,2],I5 = [2,3],I4 = [3,4],and s = [4,5].
The sum of f; (x) (or f2(x)) values over a continuous subinterval equals the area under f; (x) (or f2(x)) on that subinterval. We expect the
area under fi (x) (or f(x)) for Is = [2, 3] to be larger (or smaller) than the areas for the other subintervals because I3 contains the global
maximum (or minimum) atx = 2.5. This is indeed the case. The areas under f; (x) over I, Iz, I5,14, and Is are 2.17,5.17,6.17,5.17, and
2.17, respectively. The areas under f,(x) over the same subintervals are 4.83, 1.83, 0.83, 1.83, and 4.83, respectively.

Fig. 3(a) and (b) highlight the largest and smallest areas for I3, which contains the global maximum of f; (x) and the global minimum
of fo(x).

Note 1. The area under a univariate function f(x) over an interval [a, b] is

S= / ' F(x)dx.

This integral represents the total area under the curve f(x) on [a,b] and can be viewed as the sum of f(x) over all points in the
continuous domain.

Note 2. The ABS approach identifies subintervals that are most likely to contain a local maximum or minimum by comparing their
areas with those of neighboring subintervals. Once such a promising subinterval is found, a point-based search (PBS) method, such as a
refined binary search, can be applied within that interval to locate the local extremum more precisely.

Before going into details of our new approach, we summarize the notation in Table 1.

3. Methodology: The ABS algorithms for finding the local and global extrema
3.1. The ABS algorithm for searching local maxima

Building on the idea in Section 2, Section 3.1 describes ABS procedures for detecting local maxima and minima. Section 3.2
combines ABS with a PBS-based binary search. In Section 3.1, we develop an ABS algorithm to search for local maxima of a univariate
function f(x). For each subinterval Iy = [ax_1,ax], let Sx denote again the area under f(x) on I, and let xj' be the candidate maximum
in this subinterval. Consider three consecutive subintervals I;_1, Iy, and Iy, ; with areas Sx_1, S, and Sy, respectively. If Sx > Sx_; and
Sk > Sk11, then I is likely to contain a local maximum. The following algorithm formalizes this idea.

Algorithm 1. An ABS algorithm to search for local maxima.

BEGIN

Step 1. Consider y = f(x) a univariate function, and I = [ao, a,], a given interval. Split this interval into n equal-width subintervals asI; = [ap,ai1],I> = [a1,a2], ...,
and I, = [an_1,a,], where @y = @, +dand d = u.

Step 2. Define two virtual subintervals as Iy and I,;1, where Sy = Sp11 = —oo.

Step 3. Calculate the following integrals:
Sc = Jor f)dx  k=1,2,-n
where, Sy is the area under f(x) for I, = [ax_1,ax]. This step calculates the area under f(x) for each subinterval separately.

Step 4. Letk = 1.
(continued on next page)

7 6.00 6.25 6.00 8 7.00 7.00
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2 5 1.75 1.75
1.00 1.00
1 . 0.75
0.00 0.00 I I I
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Fig. 2. Behavior of function values f(x) near a maximum and a minimum.
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3(a). Largest area 3(b). Smallest area

Fig. 3. Subinterval with the largest and smallest area containing the global extrema.

Table 1
Summary of notation.
Symbol Description
f(x) Univariate function under analysis
lag, an) Search interval for extrema
n Number of subintervals (ABS resolution)
lax-1,ax] The k-th subinterval of [ao, a,]
d Width of each subinterval,d = (a, — ap)/n
Sk Area under f(x) over [ax_1,ax]
X1 Location of the j-th local maximum
x}"i" Location of the j-th local minimum

(continued)

Step 5. Consider the subinterval Iy = [ax_1, ak].
A1 + ax

If Sg > Sk_1 and Sy > Sk.1, then calculate the value of X" approximately as X' ~ 3

Else, go to Step 6.
End If

Step 6. Letk =k + 1

If k < n, then go to Step 5

Else, print all maximum points found by the algorithm, denoted by x7"**. The largest value for f(x{™*), k = 1, -, n, is the leading candidate for the global maximum,
while others are the local maxima.

End If

END

Algorithm 1 splits the interval into n subintervals I, I, ---, I, and compares the area under f(x) in each subinterval with the areas in its
immediate neighbours to search for local maxima. However, the first subinterval I; has no predecessor, and the last subinterval I,, has
no successor, so a direct comparison is not defined for them. To address this, we introduce two virtual subintervals I, (before I;) and
I+ (after I,) and assign their areas as Sp = Sp11 = —o0.

Since the detection of local minima is fully analogous to the detection of local maxima, we do not present a separate algorithm for
minima. In practice, local minima can be found by applying the same procedure to —f(x) (or, equivalently, by reversing the inequality
conditions in Algorithm 1). To avoid redundancy, we therefore describe only the algorithm for local maxima; the corresponding
minima-detection variant follows directly.

3.2. A combination of ABS and PBS algorithms

In Algorithm 1, we assume that the area under f(x) for Iy = [ax_1, ax] is larger than for its neighbouring subintervals. In this case, I
is likely to contain a local maximum. In Step 5, the approximate location of this point is taken as s = (ax_; + ax)/2. If the subinterval
width d is small, this midpoint is close to the true optimal value; otherwise, the difference can be significant. To obtain a more accurate
estimate of x™™ (and analogously x7" for minima), Step 5 can be replaced by a point-based search within I;.. In Algorithm 2, we modify
Algorithm 1 accordingly and use a binary search within the selected subinterval to refine the estimate of xJ'**, as illustrated in Fig. 4.
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Fig. 4(a) and (b) show a hybrid algorithm that integrates binary search as a PBS component into the ABS framework. The procedure
is identical to Algorithm 1 (and its minima-based analogue), except that it uses binary search within each selected subinterval to locate
the local maximum (or minimum) more precisely. Other PBS methods could be used in place of binary search. Because this algorithm
searches for all local maxima (or minima), the largest value of f(x) among the detected maxima (or the smallest among the minima) is
the leading candidate for the global maximum (or minimum).

Consider f(x), a function, and the given
interval I = [ao,a,]

|

Consider f(x), a function, and the given
interval I = [ag,a,]

v

Determine n, calculate d = (a, — a,)/n, then
form n subintervals as
I=lax_yar_1+d], k=1,2,.,n

Determine n, calculate d = (a, — a,)/n, then
form n subintervals as
Ik=lax_yax_1+d], k=1,2,.,n

-

LetSo=S,4+1=—
v

Calculate Sx(k=1, 2, .., n) as
Si=[q fxdx

v
Letk=1

Find x}'** as the maximum in I

= [ax — 1,a] using Binary
search

v

> —

| k=k+1

No

max
Xj

Show all printed

Fig. 4(a). Algorithm 2

.

Let So =S, 4+1=+®
v

Calculate Sp(k=1,2, ..,n) as
Sk=[4 fodx

v

Letk=1

Find x}"'" as the minimum in I
= [ay _ 1,ax] using Binary
search

v

k:k+1 4

No

min

Show all printed x;

h 4
‘ END ’

Fig. 4(b). Algorithm 3

Fig. 4. Finding the local extrema by combining the ABS and PBS algorithms.
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3.3. Preliminary numerical evaluation

This study utilizes synthetic benchmark functions commonly used in optimization literature. The main test function includes a
multimodal function defined on the interval [-500, 500], rewritten to highlight 16 local and global extrema. The function is discretized
into subintervals of widths 10 and 100, resulting in 100 and 10 subintervals, respectively. Example 2 represents one of the univariate
functions Mirjalili et al. [31] used to find its global minimum in a given interval. This example illustrates how our approach finds all
sixteen local and global extrema in that interval.

Example 2. Consider the univariate function f(x) = —x - sin,/|x| and the given interval | — 500, 500]. In contrast to existing algorithms that
search for only the global optimum, the ABS algorithms (Algorithms 1-4) search for all local and global extrema. To search for all extrema of
f(x), we first rewrite this function as:

_ J —x-sinv/—x x € [—500,0]
foo) = {—x~sin\/3_c x € [0,500]

Then, we consider the width of subintervals equal to d = 10. Therefore, the number of subintervals equals n = 100, shown as [ =
[ax-1,ax] = [ax-1,a-1+d),k = 1,---,100. The area under f(x) for subinterval k, denoted by S, is calculated as:

'k
/a —x - siny/—x dx x € [—500,0]
Sk — ak;l
/ﬂ —x - siny/x dx x € [0,500]
k-1
Many websites, such as https://www.symbolab.com/solver, calculate definite integrals easily. Table 2 shows one hundred sub-
intervals and their corresponding areas under f(x).

Table 2 shows that the areas under f(x) for subintervals 8, 30, 44, 50, 53, 63, 81, and 100 are larger than their neighbors; each
probably contains a local maximum. This table also shows that the areas under f(x) for subintervals 1, 20, 38, 48, 51, 57, 71, and 93 are
smaller than their neighbors; each probably contains a local minimum. Note that we defined two virtual subintervals k =0 and k =101
whose characteristics for Algorithm 2 are Sg = S1;1 = f(xg®) = f(xJ¥X) = —oo, and their characteristics for Algorithm 3 are Sy =
Si1 =f (x[)"i") = f(xn) = + oo. The local maxima (minima) are obtained more exactly by searching these subintervals using PBS
algorithms. Table 3 gives sixteen local extrema of f(x) extracted from Algorithms 2 and 3.

Table 3 shows that the maximum (minimum) value, among all local maxima (minima), is 418.98 (—418.98) obtained for x =
—420.97 (x = 420.97); therefore, this point is the only candidate for the global maximum (minimum).

Example 3. This example is the same as Example 2, i.e., the problem is to find all local maxima (minima) for f(x) = —x - sin./|x| in the
interval | — 500, 500] using the ABS algorithms. The only difference is that this example considers the width of subintervals equal to d = 100
instead of 10. Therefore, the number of subintervals equals n = 10, shown as Iy = [ax_1,ax] = [ax_1,ax_1 +100],k = 1, ---,10. Table 3 shows

Table 2

Subintervals of width 10 units and their corresponding areas.
k Subinterval Sk k Subinterval Sk k Subinterval Sk k Subinterval Sk
1 [-500, —490] —1259 26 [-250, —240] 133 51 [0, 10] —24 76 [250, 260] 657
2 [-490, —480] —154 27 [-240, —230] 862 52 [10, 20] 929 77 [260, 270] 1428
3 [-480, —470] 925 28 [-230, —220] 1455 53 [20, 30] 228 78 [270, 280] 2104
4 [-470, —460] 1921 29 [-220, —210] 1850 54 [30, 40] 117 79 [280, 290] 2620
5 [-460, —450] 2784 30 [-210, —200] 2006 55 [40, 50] —-186 80 [290, 300] 2924
6 [-450, —440] 3466 31 [-200, —190] 1911 56 [50, 60] —491 81 [300, 310] 2987
7 [-440, —430] 3932 32 [-190, —180] 1583 57 [60, 70] —625 82 [310, 320] 2799
8 [-430, —420] 4159 33 [-180, —170] 1072 58 [70, 80] -509 83 [320, 330] 2371
9 [-420, —410] 4135 34 [-170, —160] 454 59 [80, 901] —168 84 [330, 340] 1734
10 [-410, —400] 3865 35 [-160, —150] -176 60 [90, 100] 300 85 [340, 350] 934
11 [-400, —390] 3368 36 [-150, —140] -719 61 [100, 110] 764 86 [350, 360] 27
12 [-390, —380] 2679 37 [-140, —130] —1086 62 [110, 120] 1099 87 [360, 370] -921
13 [-380, —370] 1844 38 [-130, —120] —-1218 63 [120, 130] 1218 88 [370, 380] —1844
14 [-370, —360] 921 39 [-120, —110] —1099 64 [130, 140] 1086 89 [380, 390] —2679
15 [-360, —350] -27 40 [-110, —100] —764 65 [140, 150] 719 920 [390, 400] —3368
16 [-350, —340] —934 41 [-100, —90] -300 66 [150, 160] 176 91 [400, 410] —3865
17 [-340, —330] —-1734 42 [-90, —80] 168 67 [160, 170] —454 92 [410, 420] —4135
18 [-330, —320] —2371 43 [-80, —70] 509 68 [170, 180] -1072 93 [420, 430] —4159
19 [-320, —310] —2799 44 [-70, —60] 625 69 [180, 190] —1583 94 [430, 440] —3932
20 [-310, —300] —2987 45 [-60, —50] 491 70 [190, 200] —-1911 95 [440, 450] —3466
21 [-300, —290] —2924 46 [-50, —40] 186 71 [200, 210] —2006 96 [450, 460] —2784
22 [-290, —280] —2620 47 [-40, —30] -117 72 [210, 220] —1850 97 [460, 470] -1921
23 [-280, —270] —2104 48 [-30, —20] —228 73 [220, 230] —1455 98 [470, 480] —-925
24 [-270, —260] —1428 49 [-20, —10] —-99 74 [230, 240] —862 99 [480, 490] 154
25 [-260, —250] —657 50 [-10, 0] 24 75 [240, 250] -133 100 [490, 500] 1259
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Table 3

Local extrema of the multimodal function f(x) obtained by Algorithms 2 and 3.
The local maxima The local minima
k Subinterval Sk X £ (xinax) k Subinterval Sk xgi'l f(xz“'")
8 [-430, —420] 4159 —420.97 418.98 1 [-500, —490] —1259 —500 —180.59
30 [-210, —200] 2006 —203.81 201.84 20 [-310, —300] —2987 —302.52 —300.54
44 [-70, —60] 625 —65.55 63.64 38 [-130, —120] —-1218 —124.83 —122.88
50 [-10, 0] 24 —5.24 3.94 48 [-30, —20] —228 —25.88 —24.08
53 [20, 30] 228 25.87 24.08 51 [0, 10] —24 5.24 -3.95
63 [120, 130] 1218 124.83 122.88 57 [60, 70] —625 65.55 —63.64
81 [300, 310] 2987 302.52 300.54 71 [200, 210] —2006 203.81 —201.84
100 [490, 500] 1259 500 180.59 93 [420, 430] —4159 420.97 —418.98

ten subintervals and their corresponding areas under f(x).

Table 4 shows that the areas under f(x) for subintervals 1, 5, and 8 are larger than their neighbors, and the areas under f(x) for
subintervals 3, 6, and 10 are smaller than their neighbors. Therefore, the ABS algorithms can find only six local extrema. Example 2
showed that there are sixteen extrema for f(x) in the interval [ — 500, 500], as shown in Fig. 5.

Because the width of subintervals equals 100, which is very wide for this example, each subinterval may contain more than one
maximum (minimum). See Fig. 6.

Fig. 6 reveals that the function f(x) exhibits two local minima and one local maximum within the subinterval [0, 100]. In contrast,
Table 4 accounts for only a single local minimum in this region. This discrepancy highlights a key limitation of the ABS algorithm:
when subintervals are too wide, the method may fail to capture all local extrema. This observation underscores the importance of
resolution in extrema detection—a factor that is systematically explored in the following MATLAB-based analysis.

4. Matlab-based numerical analysis
4.1. Methodology and parameter configurations

We developed a comprehensive benchmarking framework in MATLAB to conduct a rigorous numerical comparison between the
proposed ABS method and two established approaches: uniform grid sampling as a simple Point-Based Search (PBS) and Genetic
Algorithms (GA). The evaluation focuses on the robustness of each method across varying noise levels and resolution settings. In all
experiments, we concentrate on identifying local and global maxima, as outlined in Algorithm 1. While many tasks today are addressed
using large language models (LLMs), these models were not considered as baselines here, as univariate extrema detection falls outside
their intended domain. LLMs are not designed for deterministic numerical optimization or the analysis of continuous function
structures. A Monte Carlo simulation framework was employed with 1,000 repetitions per configuration to ensure statistical
robustness.

We select three smooth, multimodal test functions, each defined on the interval [—5,5]. These functions represent diverse chal-
lenges in frequency and peak structure:

e fi(x) = sin(5x) - e 0¥

o fo(x) = cos(3x) - e 02

e f3(x) = sin(2x) + 0.5 - cos(4x)These cases provide a representative range of structural complexity for evaluating the optimization
behavior of ABS, PBS, and GA. To simulate real-world measurement imperfections, we add Gaussian white noise to the function values.
The noisy function is computed as:

f;[oisy(x) :ﬁ(x) +o0-€6~ w¢,~(07 1)

where .77(0,1) denotes the standard normal distribution, and ¢ controls the noise level. Increasing ¢ leads to greater distortion in the
function’s peaks and valleys, mimicking uncertainty in practical scenarios. We test across five noise levels: ¢ € {0,0.01,0.05,0.1,0.2},
ranging from noise-free to highly perturbed settings. This aspect is critical for assessing the robustness of all three methods under
uncertainty.

Table 4
Subintervals of width 100 units and their corresponding areas
k Subinterval Sk k Subinterval Sk
1 [-500, —400] 23,773 6 [0, 100] —1258
2 [-400, —300] —2040 7 [100, 200] 42
3 [-300, —200] —3427 8 [200, 300] 3427
4 [-200, —100] —42 9 [300, 400] 2040
5 [-100, 0] 1258 10 [400, 500] —23773
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Fig. 5. The sixteen local extrema of the multimodal function f(x) over the interval [-500, 500].
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Fig. 6. Zoomed view of the local extrema of f(x) on the subinterval [0, 100].

ABS and PBS share the goal of detecting local maxima, but they differ in how they explore the domain. In ABS, the input domain is
divided into n € {50, 100,200, 500,1000} subintervals. Within each interval, we compute the area under the curve using the trape-
zoidal rule. A second-order analysis of the resulting area sequence is used to detect local maxima. In PBS, the function is sampled at
m € {50,100, 200,500,1000} evenly spaced points, and local maxima are identified by sign changes in the discrete derivative. In both
methods, resolution reflects the granularity with which the domain [—5,5] is scanned:

e For PBS, it corresponds to the number of sampling points m. Higher m improve sensitivity to closely spaced or narrow maxima.
e For ABS, resolution equals the number of intervals n. Finer segmentation enhances sensitivity to local extrema and offers robustness
by integrating noisy data within segments.

Higher resolution improves fidelity at the cost of increased computational complexity, while lower resolution may lead to missed or
imprecise peak detection. To quantify local maxima detection performance, we employ a coverage metric defined as:

number of detected maxima within tolerance
number of true maxima

coverage —

Detection is considered successful if the absolute difference between the detected and true positions satisfies:

|xdetected - xtme| <0.1.
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This tolerance ensures that minor numerical deviations do not penalize otherwise accurate detections. We implement a simple
Genetic Algorithm (GA) to extend the analysis to global optimization. A set of core hyperparameters defines the GA test scenarios:

e Population sizes: {10, 30, 50}
e Generations: {30, 50}

e Crossover rates: {0.3, 0.7}

e Mutation rates: {0.05, 0.1}

e Mutation strengths: {0.05, 0.1}

We conduct a comprehensive parameter sweep and perform extensive Monte Carlo simulations for all three approaches: ABS, PBS,
and GA. Each configuration is repeated independently over a large number of trials (default: 1,000). This ensures analytical robustness
and captures performance variability due to noise. It also accounts for algorithmic stochasticity, which is particularly relevant for the
GA. For each configuration (function, noise level, and resolution), we performed 1,000 Monte Carlo trials. In each trial, an independent
realization of the additive Gaussian noise was generated and added to the function values. For GA, the initial population was also
reinitialized in every trial. Thus, all reported statistics are based on independent noise realizations and independent runs of the sto-
chastic algorithm. To provide a consistent baseline for comparing ABS and GA, the ABS resolution is fixed at 300 subintervals, rep-
resenting a balanced mid-range granularity. For each evaluated setting, we compute the average coverage values (for ABS and PBS), as
well as the mean position errors (in terms of the x-coordinates) and value errors (in terms of the corresponding f(x)-values) for ABS and
GA. This repeated and controlled evaluation facilitates a rigorous and fair comparison of the accuracy and resilience of each method
across different levels of noise and uncertainty.

4.2. Results and discussion

The MATLAB experiments provide both visual and numerical insights into the comparative performance of the evaluated methods
under varying levels of noise and resolution, as detailed in the preceding section. For each of the three benchmark functions, 3D surface
plots illustrate the coverage behavior of ABS and PBS across a grid of resolution and noise combinations. These plots report the mean
coverage ratios computed over 1,000 Monte Carlo repetitions, offering a statistically robust depiction of performance. Figs. 7-9
summarize these results.

ABS consistently outperforms PBS for two of the three benchmark functions (Figs. 7 and 8), achieving higher coverage across all
resolution and noise combinations. This indicates greater robustness in detecting local optima, especially under noise. For the third
function, f3(x) = sin(2x) + 0.5 - cos(4x), the picture is more nuanced: at low noise and moderate to coarse resolutions, PBS performs
slightly better, but as noise increases, ABS regains the advantage and yields higher coverage at low to mid resolutions. At a resolution of

ABS vs PBS Coverage: sin(5x)"exp(-0.1x2)
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Fig. 7. Average Coverage of ABS vs. PBS forfi (x).
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ABS vs PBS Coverage: cos(3x)"exp(-0.2x2)
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Fig. 8. Average Coverage of ABS vs. PBS forf(x).
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Fig. 9. Average Coverage of ABS vs. PBS forfs(x).
500, both methods perform almost identically across all noise levels, with mean coverage approaching 1.

In addition to the mean coverage surfaces in Figs. 7-9, we computed the standard deviation of coverage across Monte Carlo trials
for each resolution-noise pair. For ABS, the standard deviations range from 0 (noise-free) to approximately 0.075; for PBS, they range

11
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from 0 to approximately 0.18. Thus, PBS exhibits higher variability than ABS in several settings, while ABS remains relatively stable
across independent noise realizations. These values indicate that the differences observed in the mean coverage plots are not artifacts
of a few unstable runs. Overall, ABS maintains high coverage even under significant noise, whereas PBS behaves more erratically,
especially at low resolutions and higher noise levels, reflecting its sensitivity to noisy pointwise samples.

To assess the accuracy of ABS and GA in detecting the global maximum of each function, we recorded the mean position errors
(based on the x-coordinates) and value errors (based on the corresponding f(x)-values) for both methods. For GA, these metrics were
tracked across all 48 tested parameter constellations as the noise level increased. A numerical summary of the comparison between
ABS and GA is given in Table 5. For each test function and noise level, the table reports the number of GA parameter configurations that
achieve a lower mean position error than ABS (“better than ABS”) and the number that perform worse (“worse than ABS”). These
counts were obtained from a post-analysis of the simulation data: for each of the 48 GA configurations, the position error was averaged
over 1,000 Monte Carlo trials per noise level and test function. ABS outperformed most GA configurations at every noise level, often all
of them, as reflected in the “worse than ABS” column. Only at the highest noise level (¢ = 0.2) did some GA configurations show
improved performance, with up to 12 configurations outperforming ABS for one function. For ABS, the average position and value
errors remained consistently low across all noise levels, reflecting its stability and deterministic nature. GA only slightly outperformed
ABS in a few specific parameter constellations under high-noise conditions and exhibited significantly greater variability, particularly
as the noise level increased.

Detailed line plots of the position and value errors for all GA configurations and ABS are provided in Appendix A (Figs. A1-A3) for
completeness.

Key numerical performance metrics:

ABS achieved 100 % detection coverage across 1,000 trials in the noise-free setting. The first two benchmark functions exceeded 80
% coverage at resolutions of 100 or higher, while the third function achieved comparable performance even at a resolution of 50. At
resolutions above 500, ABS consistently reached near-perfect coverage across all noise levels.

On average, ABS outperformed PBS with a 4.75 % improvement in detection coverage, reaching a maximum gain of 37.56 % in the
most challenging test case.

Across all noise levels and test functions, ABS reduced position error by 30.41 % and value error by 36.89 % compared to GA, using
a resolution of 300.

ABS demonstrated greater consistency across trials, exhibiting lower or comparable variance than GA and significantly lower
variability than PBS.

These results highlight ABS’s ability to maintain high accuracy and stability across noisy and noiseless scenarios without requiring
hyperparameter tuning, in contrast to GA’s performance sensitivity and PBS’s variability.

5. Discussion and implications

This study introduced a novel approach for identifying all local and global extrema of univariate functions and developed the ABS
algorithms based on this concept. The results carry both theoretical and practical implications.

5.1. Theoretical implications

Traditional heuristics, such as binary search, are commonly used to approximate the extrema of univariate functions. However,
these methods may fail when faced with complex functions or wide domains. Metaheuristics—categorized by Mirjalili et al. [31] into
evolutionary, physics-based, and swarm intelligence algorithms—often offer better estimates due to their flexibility and adaptability.

Table 5
GA Configuration Comparison per Function
test function noise ¢ better than ABS worse than ABS
f1(x) 0.00 0 48
0.01 0 48
0.05 0 48
0.10 0 48
0.20 12 36
F2(x) 0.00 5 43
0.01 0 48
0.05 0 48
0.10 3 45
0.20 10 38
f3(x) 0.00 0 48
0.01 0 48
0.05 0 48
0.10 0 48
0.20 2 46

12
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Yet, all these methods, whether heuristic or metaheuristic, share a critical limitation: they are point-based search (PBS) algorithms that
examine a limited number of points in each iteration. As a result, they may become trapped in local optima and fail to locate the global
extremum.

The ABS approach proposed in this study is fundamentally different. Instead of iterating through discrete points, ABS evaluates
entire subintervals using definite integration, estimating the sum of function values across each segment. This area-based perspective
increases the likelihood of detecting all local extrema and selecting the most promising one as the global optimum. Unlike PBS al-
gorithms, which only seek the global optimum and may overlook local features, ABS attempts to capture the complete extremum
structure of a function systematically. Therefore, ABS represents a distinct and complementary methodology that is not directly
comparable to existing PBS heuristics and metaheuristics.

From a computational standpoint, the ABS method requires the evaluation of subinterval integrals over n subintervals and a linear
scan of the resulting area sequence {Sy };_; . If numerical integration on each subinterval is performed with a fixed accuracy, the overall
cost of ABS grows linearly with the number of subintervals, that is, O(n), with a constant factor that depends on the chosen quadrature
scheme. A simple point-based search (PBS) with m grid points also scales linearly, O(m), but relies on single-point evaluations instead
of subinterval integrals. In contrast, a Genetic Algorithm (GA) evaluates a population of p candidate solutions over g generations,
leading to O(pg) function evaluations per run. In our experiments (Section 4.2), using n = 300 subintervals for ABS provided a
favorable trade-off between accuracy and runtime. For the GA, comparable performance required substantially larger numbers of
function evaluations and remained more sensitive to the choice of algorithmic parameters.

5.2. Practical implications
From a practical standpoint, ABS offers several advantages over conventional PBS algorithms:

e ABS is designed to detect all local extrema, not just global ones. This capability significantly reduces the risk of misidentifying a
local extremum as the global optimum.

e In real-world decision-making, local optima may be more practical or feasible than the global solution. ABS enables decision-
makers to evaluate all available extrema and select the one that best fits their constraints (e.g., resource limitations).

e ABS provides both the locations (x-values) and the corresponding function values (y-values) of all local extrema, facilitating
informed trade-offs among multiple solutions.

e When applied to time-based functions, ABS can track changes in extrema over time. For instance, it can reveal how peak perfor-
mance or losses evolve, which is useful in operational or behavioral contexts.

The proposed ABS method offers several advantages in applied optimization settings. Unlike point-based heuristics that often
converge prematurely to local optima, ABS enables comprehensive domain exploration. It is particularly well-suited for problems
requiring awareness of all local and global extrema. This is critical in applications such as control systems, engineering design, and
decision modeling, where understanding the full spectrum of optima informs robustness and trade-off analysis. ABS demonstrated
greater resilience in environments subject to noise, such as sensor signal processing or real-time decision systems, as its area-based
integration naturally dampens noise effects without requiring complex filtering. Its deterministic structure and single-parameter
control (resolution) make it more interpretable and reproducible than GA, which involves multiple stochastic parameters. Further-
more, ABS can be seamlessly integrated into hybrid pipelines: for example, it may first identify candidate regions for maxima, which
can then be locally refined using conventional optimizers.

By enhancing detection coverage, reducing positional and value errors, and offering greater stability under noise, ABS is a reliable
tool in academic research and real-world applications that require full-spectrum extremum analysis.

These advantages suggest broad applicability. For example, recent studies using metaheuristics for tasks such as feature selection or
optimization in behavioral modeling (e.g., [37,38,39]could benefit from ABS as a more robust alternative. In general, by revealing all
local extrema, ABS provides decision-makers with a richer analytical foundation than methods focused solely on global optima.

6. Challenges and future works

This study introduced the ABS method as a means of detecting all local and global extrema of univariate functions. Its reliance on
subinterval-based integration offers a different framework from traditional point-based search (PBS) algorithms. At the same time, this
paradigm raises challenges in terms of resolution choice, computational cost, and scalability.

A first challenge is selecting the number of subintervals. ABS divides the search interval into equal-width subintervals to
approximate the cumulative function’s behavior. If the subintervals are too wide, the algorithm may miss narrow extrema. If they are
too narrow, the computational burden increases significantly. This trade-off between accuracy and efficiency suggests the need for
adaptive mechanisms that adjust the resolution based on the function’s behaviour. Future work could, for example, use indicators of
smoothness or curvature to refine intervals only where the function changes rapidly, while keeping coarser intervals elsewhere. Wide
search intervals further exacerbate the resolution problem. Uniformly narrow subintervals across a large domain are computationally
expensive. Several strategies could address this. One option is to run the ABS algorithm multiple times with different subinterval
widths to capture both coarse- and fine-scale extrema. Another is to shift the starting point of the segmentation, applying the same
resolution with different offsets to improve coverage. A particularly promising approach is to use ABS in a hybrid fashion: ABS first
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identifies subintervals with high potential—where area comparisons suggest extrema—and then a local point-based method (e.g.,
binary search) or a metaheuristic refines the search within those regions. This idea is already partially implemented in Algorithms 3
and 4 and can be extended further. A fully iterative ABS variant is also conceivable, where the algorithm recursively splits the most
promising subintervals and refines the search space until a stopping criterion is met. Such a design would resemble deterministic zoom-
in or tree-based optimization procedures.

Extending ABS to multivariate functions is conceptually straightforward but computationally challenging. In higher dimensions,
the concept of “area” generalizes to “volume” or “hypervolume,” and the domain must be partitioned into numerous hyperrectangular
subregions. For each region, the multivariate function must be integrated and compared with its neighbouring regions. This leads to
rapid growth in the number of regions as the dimension increases (the curse of dimensionality) and to substantially higher integration
costs. As a result, a naive uniform partition is only feasible in low dimensions or at coarse resolutions. Practical multidimensional ABS
variants would require adaptive partitioning, sparse or low-rank integration schemes, or hybrid methods that use ABS to identify
promising regions and then apply local optimizers within them. Investigating such adaptive and hybrid extensions is a crucial direction
for future work, particularly in constrained settings where integration must be restricted to feasible regions.

The present experiments focus on additive Gaussian noise. An important extension is to evaluate ABS under non-Gaussian dis-
turbances, such as impulsive or heavy-tailed noise and correlated noise processes. These cases are common in engineering and signal-
processing applications, providing a more stringent test of robustness. Additionally, the current comparison utilizes PBS and GA as
representative point-based and metaheuristic baselines. Future studies could extend this benchmark to include more recent meta-
heuristics, such as the Grey Wolf Optimizer and Differential Evolution, as well as related swarm or evolutionary algorithms, to situate
ABS within the broader optimization landscape further.

Beyond direct extensions of the ABS algorithm, it may be useful to integrate ABS principles into metaheuristic frameworks. For
example, evolutionary or swarm intelligence methods could evolve populations of subintervals instead of individual points and
evaluate them via integrated function values. This would form a class of area-based metaheuristics and could improve robustness
under noise and uncertainty. Such ideas are related to applications in information fusion and decision-making, where integrated
behaviour over regions can be more informative than isolated samples.

Finally, the core principle of ABS—evaluating and comparing cumulative function values across segments—can be applied to other
problem classes. Examples include root-finding in univariate functions, discrete optimization (via aggregated scores over subsets), and
financial or operational modelling where local and global extrema of performance profiles are of interest. Overall, ABS reduces the
reliance on isolated sampling and leverages continuous, integrated information. Building on this foundation through adaptive stra-
tegies, hybrid frameworks, multidimensional extensions, and domain-specific applications offers several promising avenues for future
research.

7. Conclusion

This study developed ABS algorithms to identify all local and global extrema of univariate functions f(x) using a straightforward
approach. The method divides a given interval into several equal-width subintervals and computes their respective areas under the
function using definite integration. A subinterval whose area is larger (or smaller) than its neighboring subintervals is likely to contain
at least one local maximum (or minimum). While this assumption may not always hold, particularly when subintervals are too wide,
the approach systematically identifies potential extrema. In contrast to Point-Based Search (PBS) algorithms, which evaluate the
function at selected points and search iteratively, the ABS method aggregates information across continuous ranges, reducing the risk
of missing optima. ABS algorithms offer several advantages. Unlike PBS methods, which focus solely on global optima, ABS seeks all
extrema, providing decision-makers with a broader set of alternatives. This is especially useful in real-world scenarios where the global
optimum may not be feasible or desirable. However, the approach also has limitations. It is currently applicable only to integrable
univariate functions, and its performance is highly sensitive to the number of subintervals used.

To complement the conceptual development, we conducted a thorough MATLAB-based analysis that compared the performance of
ABS with both PBS and Genetic Algorithms (GA) across different levels of noise and resolution. The numerical experiments provided
clear visual and statistical evidence that ABS consistently achieves higher coverage and lower errors, particularly under uncertain or
noisy conditions. These findings reinforce the practical strength of ABS, demonstrating its robustness and reliability.

That said, choosing too few subintervals may result in missed extrema due to insufficient resolution, while choosing too many
subintervals can make the computation unnecessarily complex. Finding the optimal balance between accuracy and computational
effort remains a key direction for future research.

In summary, ABS offers a novel and practical alternative to classical search methods, particularly in noisy or uncertain environ-
ments. Its ability to consider the full domain and detect multiple extrema makes it a promising tool in theoretical and applied opti-
mization tasks.
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Appendix A

GA Configs vs ABS - Position Error: sin(5x)“exp(—0.1x2)
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Fig. Al. Average Position and Value Errors of ABS vs. GA for f;(x).
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GA Configs vs ABS - Position Error: cos(3x)'exp(-0.2x2)
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Fig. A2. Average Position and Value Errors of ABS vs. GA for fa(x).

GA Configs vs ABS - Position Error: sin(2x)+0.5cos(4x)
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Fig. A3. Average Position and Value Errors of ABS vs. GA for f3(x).
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