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a b s t r a c t 

We propose a risk-based stochastic VIKOR (RB-VIKOR) model that accounts for differences 

in the risk attitudes of the decision makers (DMs) when ranking stochastic alternatives. 

Our proposed RB-VIKOR model is designed to solve multi-criteria problems characterized 

by stochastic data and DMs categorized by their risk averse or risk seeking behavior. These 

differences in risk attitudes determine the subjective beliefs of the DMs regarding the eval- 

uation of each alternative per decision criterion and the resulting rankings. We present a 

case study in the banking industry to illustrate how differences in the risk attitudes of the 

DMs condition the rankings obtained. Moreover, we compare our results with those de- 

rived from a stochastic super-efficiency data envelopment analysis (DEA) model to demon- 

strate the applicability and efficacy of RB-VIKOR. The proposed method has a consider- 

able amount of potential applications to diverse research areas ranging from economics to 

knowledge based and decision support systems. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Multi-criteria decision making (MCDM) techniques are used to rank sets of alternatives characterized by multiple and of-

ten conflicting criteria [7] . Classical MCDM methods generally assume that the ratings of the alternatives and the weights of

the criteria are known precisely. However, decision makers (DMs) face different degrees of risk and uncertainty throughout

their decision making processes when dealing with real-world data [22] . 

MCDM models have been adapted to account for different types of information frictions, which are generally modeled

through stochastic analysis or fuzzy set theory. The former approach applies when a probabilistic data set represents the risk

faced by the DMs, while the latter approach is more appropriate when the observations retrieved are vague and ambiguous

[29] . 

The VIKOR method is a MCDM technique designed to rank a set of alternatives in the presence of conflicting criteria

by proposing a compromise solution [14,17] . This method has been used to solve different types of MCDM problems both
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in crisp [3] and fuzzy [2,15] environments. In particular, there has been an increasing interest regarding its applicability

to multi-criteria group decision making scenarios characterized by different types of fuzzy information such as intuitionistic

[5] and dual hesitant [21] . Moreover, VIKOR has also been integrated with other MCDM techniques such as the fuzzy analytic

hierarchy process (AHP) [9] . A more detailed literature review regarding recent applications of VIKOR can be found in Tavana

et al. [25] . 

These latter authors extended the basic structure of VIKOR and developed a method to solve MCDM problems with

stochastic data. Their model considered several stochastic criteria, whose weights were determined via the fuzzy AHP. The

decision framework developed by Tavana et al. [25] constitutes the base on which the current model is built. In particular,

we define an extended version of the VIKOR method introduced by Tavana et al. [25] that accounts for differences in the

risk attitudes of the DMs when ranking stochastic alternatives. 

Our formal framework allows for modifications in the rating behavior of the DMs that depend both on whether they are

risk seekers or averters and the coefficient of variation exhibited by each alternative. That is, risk-based stochastic VIKOR

(RB-VIKOR) allows the DMs to select the alternative that is more in accordance with their subjective preferences and risk

attitudes while accounting for the uncertainty inherent to the data retrieved to evaluate each alternative. 

Tavana et al. [25] also compared empirically their method with a stochastic version of the super-efficiency data envelop-

ment analysis (DEA) model of Khodabakhshi et al. [10] . We use the same banking industry study to illustrate how differences

in the risk attitudes of the DMs condition the rankings obtained. We conclude that if the DMs do not know the exact dis-

tribution from which the observations are being drawn or are not neutral to the inherent risk, their resulting rankings will

differ from the ones provided by more neutral models such as super-efficiency DEA. 

It should be emphasized that the rankings obtained are determined by the volatility exhibited by the data retrieved from

the different alternatives together with the risk attitude of the DMs. That is, RB-VIKOR improves upon any other MCDM

method that imposes a given probability density on the data or does not account for the subjective risk preferences of the

DMs. Thus, there is a substantial amount of potential applications of the current model to diverse research areas ranging

from economics [6,13,28] to knowledge based [20,26,27] and decision support systems [4,12,18] . 

The rest of the paper is organized as follows. Section 2 provides a brief introduction to the VIKOR method. Section 3 sum-

marizes the stochastic VIKOR model proposed by Tavana et al. [25] . Section 4 describes the main characteristics of RB-VIKOR

and Section 5 completes the model focusing on the effect that the coefficients of variation have on the expected perfor-

mance of the alternatives. Section 6 compares the ranking obtained using RB-VIKOR with the one derived from applying the

super-efficiency stochastic DEA model. Section 7 concludes and suggests future research directions. 

2. The VIKOR method 

The VIKOR method is a MCDM technique introduced by Opricovic [14] that defines positive and negative ideal points and

determines the relative distance of each alternative. After computing each relative distance, the method obtains a weighted

compromise ranking determining the importance of each x j alternative, with j = 1 , 2 , . . . , m . The steps composing the com-

promise ranking algorithm are: 

1. Define the rating functions f i j that describe the value achieved by alternative x j , i = 1 , 2 , . . . , n , when considering the

i − th criterion. Compute the best, f + 
i 

, and the worst, f −
i 

, values for all the rating functions. If the criterion considered is

a positive one, then the corresponding extreme values are given by: 

f + 
i 

= max 
[
( f i j ) | j = 1 , 2 , . . . , m 

]
(1) 

f −
i 

= min 

[
( f i j ) | j = 1 , 2 , . . . , m 

]
(2) 

2. Calculate the values of S j and R j , j = 1 , 2 , . . . , m , as follows 

S j = 

n ∑ 

i =1 

w i 

( f + 
i 

− f i j ) (
f + 
i 

− f −
i 

) (3) 

R j = max 
i 

[ 

w i 

(
f + 
i 

− f i j 

)(
f + 
i 

− f −
i 

)
] 

(4) 

where w i are the weights reflecting the relative importance of the criteria. S j represents the group utility measure and R j 
the individual regret measure defined for each alternative x j . 

3. Compute the values of Q j , j = 1 , 2 , . . . , m , as follows: 

Q j = v 
[

( S j − S + ) 
− +) 

]
+ ( 1 − v ) 

[
( R j − R 

+ ) 
− + 

]
(5) 
( S − S ( R − R ) 
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where 

S + = Min 

[(
S j 

)| j = 1 , 2 , . . . , m 

]
(6)

S − = Max 
[(

S j 
)| j = 1 , 2 , . . . , m 

]
(7)

R 

+ = Min 

[(
R j 

)| j = 1 , 2 , . . . , m 

]
(8)

R 

− = Max 
[(

R j 

)| j = 1 , 2 , . . . , m 

]
(9)

and v is the subjectively defined weight supporting either maximum group utility (v > 1 / 2) , individual regret (v < 1 / 2) , or

consensus between both strategies (v = 1 / 2) . 

4. Rank the alternatives using the values of ( S j , R j , Q j ) , which give place to three different rankings that can be used to

define and validate a compromise solution [16] . 

3. VIKOR method with stochastic data 

We restate the model of Tavana et al. [25] in order to provide some basic intuition and allow for direct comparisons

based on the degree of risk aversion of the DM. These authors defined the following version of VIKOR so as to account for

stochastic realizations of the different rating functions. Their model is based on the sample mean of the rating functions

per criterion and alternative together with their associated coefficients of variation. Given a sample of l realizations, y k , k =
1 , . . . , l, the coefficient of variation ( cv ) is defined as cv = 

σ
ȳ 

, i.e. the ratio of the standard deviation, σ = 

√ 

1 
l 

∑ l 
k =1 ( y k − ȳ ) 2 ,

to the sample mean, ȳ = 

∑ 

y k 
l 

. 

Consider the following decision matrix where the stochastic data are described in terms of rating means and coefficients

of variation: 

C 1 C 2 . . . C n 
A 1 [ f 11 , c v 11 ] [ f 21 , c v 21 ] . . . [ f n 1 , c v n 1 ] 
A 2 [ f 12 , c v 12 ] [ f 22 , c v 22 ] . . . [ f n 2 , c v n 2 ] 
. . . . . . . . . . . . . . . 

A m [ f 1 m , c v 1 m ] [ f 2 m , c v 2 m ] . . . [ f nm , c v nm ] 

W = [ w 1 , w 2 , . . . , w n ] 

where A 1 , A 2 ,…, A m 

represent the alternatives among which the DM has to choose, C 1 , C 2 , . . . , C n are the different criteria

measuring the performance of the alternatives, and w i ( i = 1 , 2 , . . . , n ) are the weights representing the relative importance

assigned by the DM to each criterion. The f i j entries of the matrix correspond to the sample means of the rating functions

for the i − th criterion and alternative x j , The coefficient of variation associated to the i − th criterion and alternative x j is

denoted by c v i j . 

Specifying a domain for a stochastic entry in the decision matrix implies that the realizations of the corresponding

variables can take any value within the interval based on their associated probability densities. In addition, when stochastic

data are used to infer the range of the domain of potential values that an entry can take, their coefficient of variation can

be used to measure the uncertainty associated with a set of realizations. 

The steps of the stochastic version of VIKOR proposed by Tavana et al. [25] are the following ones: 

1. Determine the best f + 
i 

and the worst f −
i 

values for all the rating functions considering two different types of criteria, i.e.

positive and negative. In their model, Tavana et al. [25] used the maximum coefficient of variation obtained per criterion,

i.e. max 
j 

c v i j , in order to define the extremes of the rating functions as follows: 

Positive criterion 

f + 
i 

max f i j ×
(
1 + max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m 

(10)

Negative criterion min f i j ×
(
1 − max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m (11)

Positive criterion 

f −
i 

min f i j ×
(
1 − max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m 

(12)

( )

Negative criterion max f i j × 1 + max j c v i j , ∀ j : j = 1 , 2 , . . . , m (13) 
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2. Compute the values of S j and R j , j = 1 , 2 , 3 , . . . , m 

Positive criterion 

S j 

n ∑ 

i =1 

w i 

max f i j ×
(
1 + max j c v i j 

)
− f i j 

max f i j ×
(
1 + max j c v i 

)
− min f i j ×

(
1 − max j c v i 

) (14) 

Negative criterion 

n ∑ 

i =1 

w i 

min f i j ×
(
1 − max j c v i 

)
− f i j 

min f i j ×
(
1 − max j c v i 

)
− max f i j ×

(
1 + max j c v i 

) (15) 

Positive criterion 

R j 

ma x i 

{ 

w i 

max f i j ×
(
1 + max j c v i 

)
− f i j 

max f i j ×
(
1 + max j c v i 

)
− min f i j ×

(
1 − max j c v i 

)
} 

(16) 

Negative criterion ma x i 

{ 

w i 

min f i j ×
(
1 − max j c v i 

)
− f i j 

min f i j ×
(
1 − max j c v i 

)
− max f i j ×

(
1 + max j c v i 

)
} 

(17) 

We should emphasize that one of the main differences between our model and that of Tavana et al. [25] can be observed

in the computation of the values of S j , and R j . In particular, note that the f i j terms subtracted in the numerators of

Eqs. (14) –(17) do not depend on the coefficient of variation of the respective observations. Thus, the variability inherent to

each alternative per criterion is not considered by the authors when computing the ranking positions. In the current paper,

we account for this variability together with the effect that the risk attitude of the DMs has on the corresponding rankings.

3. Calculate the values of Q j , j = 1 , 2 , . . . , m , using the relation: 

Q j = v 
[

( S j − S + ) 
( S − − S +) 

]
+ ( 1 − v ) 

[
( R j − R 

+ ) 
( R 

− − R 

+ ) 

]
(18) 

Tavana et al. [25] interpreted ( 0 < v ≤ 1 ) as a proxy for the optimism level of the DM, with optimistic DMs assigning

higher values to v than pessimistic ones. Rational DMs were assumed to choose v = 0.5, since the resulting rankings would

be similar to those derived from comparing the sample means of each alternative. 

4. Rank the alternatives, sorting by the values ( S j , R j , Q j ) , and propose a compromise solution. 

4. VIKOR method with stochastic data and risk considerations 

The stochastic data retrieved from different choice alternatives provide a highly intuitive framework to account for the

risk and uncertainty inherent to real-life decision making problems. The volatility exhibited by the alternatives for the dif-

ferent selection criteria, which can be directly inferred from the data retrieved, determines the risk faced by the DMs and

has a direct effect on their evaluations. 

Our extended version of the stochastic VIKOR model developed by Tavana et al. [25] accounts for this real-life feature.

That is, evaluations are performed by DMs, who are endowed with different risk attitudes when choosing among the al-

ternatives. The same sample mean value of the rating functions for a given pair of alternatives does not lead to the same

ranking position when volatility differs, an idea considered by economists and explored further by psychologists [8] . 

We consider different domains to account for the values that can be taken by the stochastic realizations of the alter-

natives based on their associated probability densities. Tavana et al. [25] assumed and verified that their data followed a

normal distribution. This was done to compare their extended VIKOR ranking with the one obtained from the stochastic

super-efficiency data envelopment analysis (DEA) model of Khodabakhshi et al. [10] . In this regard, the ranking structure

introduced in the current paper does not depend on the density functions determining the realizations of the data but on

the observed variability of the latter. Following Tavana et al. [25] , we will use the coefficient of variation to measure the

spread of the domain associated with a given set of realizations. 

Two distinct frameworks will be defined to introduce the risk attitude of the DMs into the equations defining the stochas-

tic VIKOR process. Our definitions of risk averse and risk seeker DMs follow directly from the economic decision-theoretic

ones. That is, risk averse DMs are endowed with concave utility functions, leading them to prefer alternatives with lower

variability over those with a higher one. Risk seekers, endowed with convex utilities, prefer the more variable alternatives.

Finally, risk neutral DMs are endowed with linear utilities and, therefore, indifferent to the variability exhibited by the al-

ternatives, as is the case in the model of Tavana et al. [25] . 
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4.1. The risk averse setting 

The modifications implemented to the extended VIKOR model defined by Tavana et al. [25] will focus on the definitions

of the best f + 
i 

and the worst f −
i 

values of the rating functions and the resulting values of S j and R j . In all cases, we must

differentiate the effects of positive and negative criteria in the corresponding definitions. Consider first the limit values of

the rating functions: 

Positive criterion 

f + 
i 

max f i j ×
(
1 − min j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m 

(19)

Negative criterion min f i j ×
(
1 + min j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m (20)

Positive criterion 

f −
i 

min f i j ×
(
1 − max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m 

(21)

Negative criterion max f i j ×
(
1 + max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m (22)

In their model, Tavana et al. [25] defined the extremes of the rating functions using the maximum coefficient of variation

obtained per criterion, i.e. max 
j 

c v i j . However, when considering explicitly the risk attitudes of the DMs, the extremes of the

reference domains must be modified. The main differences between the model of Tavana et al. [25] and the current approach

in terms of the limit values defined for f + 
i 

and f −
i 

are presented in Fig. 1 . 

For example, when defining f + 
i 

for a positive criterion, risk averse DMs do not only require the maximum value of the

rating function, but also the minimum coefficient of variation. Similarly, the definition of f −
i 

for a positive criterion by

risk averse DMs involves both the minimum value of the rating function and the maximum coefficient of variation. The

same intuition applies to the remaining cases, with risk seeking DMs requiring the maximum coefficient of variation when

defining f + 
i 

and the minimum one when defining f −
i 

. 

Moreover, within the current framework, the coefficient of variation per criterion and alternative, c v i j , will be compared

to the limit values of the corresponding rating functions, determining the resulting ranking of the alternatives. That is, in

order to account directly for their variability, the coefficients of variation will be introduced in the relative evaluation of the

corresponding alternatives. The values of S j (and R j ) , j = 1 , 2 , 3 , . . . , m , are therefore given by: 

Positive criterion 

S j 

n ∑ 

i =1 

w i 

max f i j ×
(
1 − min j c v i j 

)
− f i j ×

(
1 − c v i j 

)
max f i j ×

(
1 − min j c v i j 

)
− min f i j ×

(
1 − max j c v i j 

) (23)

Positive criterion 

n ∑ 

i =1 

w i 

max f i j ×
(√ 

N − 1 − min j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
max f i j ×

(√ 

N − 1 − min j c v i j 

)
− min f i j ×

(√ 

N − 1 − max j c v i j 

) (23 

′ )

Negative criterion 

n ∑ 

i =1 

w i 

min f i j ×
(
1 + min j c v i j 

)
− f i j ×

(
1 + c v i j 

)
min f i j ×

(
1 + min j c v i j 

)
− max f i j ×

(
1 + max j c v i j 

) (24)

Note that we have provided two definitions of S j for the positive criterion. The second one, presented in Eq. (23 ′ ) , has

been adapted to account for the maximum potential spread of the coefficient of variation. That is, when retrieving a finite

sample of N non-negative numbers with a real zero, the coefficient of variation is bounded within the [ 0 , 
√ 

N − 1 ] interval,

with its maximum value being attained when all the realizations except one are equal to zero. 

Thus, in order to avoid potential negative values of the positive criterion for some realizations of the alternatives, we

have shifted the reference point to the maximum value of the coefficient of variation in Eq. (23 ′ ) . This guarantees that all

the evaluations obtained for both types of criteria have a positive sign and can be directly compared. The same analysis and

conclusions follow from the resulting R j values and have therefore been omitted. 

If the data retrieved do not lead to coefficients of variation whose values are higher than one, then the reference points

can be shifted back to those defined in Eq. (23) . This is the case since, as we will show later, the rankings obtained experi-

ence small variations when shifting the corresponding reference points. 

There is a substantial difference between this approach and the one of Tavana et al. [25] , where the coefficients of

variation do not play a direct role in the behavior of the DMs, other than adjusting the intervals of potential realizations for

the different criteria. In the current setting, if the DMs are risk averse, we have a direct negative effect that follows from

the coefficient of variation when determining their evaluation structure. 
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Fig. 1. f + 
i 

and f −
i 

limit values defined by the DMs based on their attitudes towards risk. 

 

 

 

 

 

 

 

 

4.2. The risk seeker setting 

We maintain a consistent approach through both settings to the effect that the coefficient of variation has on the ranking

behavior of the DMs. In the risk averse case, the DMs preferred the alternatives exhibiting a lower coefficient of variation.

In the current setting, the maximum coefficient of variation will be used to define the highest rating achievable by an

alternative, while the minimum one determines the lowest rating. 

Thus, given a positive criterion, the alternative with the highest rating will only achieve the best f + 
i 

value if it has also

the highest coefficient of variation. Once again, the main differences between our settings and the one of Tavana et al.

[25] for both types of criteria are intuitively described in Fig. 1 . Note how risk averse and risk seeker DMs share each one

limit rating value with the framework introduced by Tavana et al. [25] , who shift between both our settings when defining

f + 
i 

and f −
i 

. 

The best and worst values of the rating function within the risk seeker setting are: 

Positive criterion 

f + 
i 

max f i j ×
(
1 + max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m 

(25) 

Negative criterion min f i j ×
(
1 − max j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m (26)

Positive criterion 

f −
i 

min f i j ×
(
1 + min j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m 

(27) 
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Negative criterion max f i j ×
(
1 − min j c v i j 

)
, ∀ j : j = 1 , 2 , . . . , m (28)

The values of S j , j = 1 , 2 , 3 , . . . , m , are defined as follows: 

Positive criterion 

S j 

n ∑ 

i =1 

w i 

max f i j ×
(
1 + max j c v i j 

)
− f i j ×

(
1 + c v i j 

)
max f i j ×

(
1 + max j c v i j 

)
− min f i j ×

(
1 + min j c v i j 

) (29)

Negative criterion 

n ∑ 

i =1 

w i 

min f i j ×
(
1 − max j c v i j 

)
− f i j ×

(
1 − c v i j 

)
min f i j ×

(
1 − max j c v i j 

)
− max f i j ×

(
1 − min j c v i j 

) (30)

Negative criterion 

n ∑ 

i =1 

w i 

min f i j ×
(√ 

N − 1 − max j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
min f i j ×

(√ 

N − 1 − max j c v i j 

)
− max f i j ×

(√ 

N − 1 − min j c v i j 

) (30 

′ )

As already explained, risk seekers consider a high value of the coefficient of variation as a desirable feature when rating

alternatives. The max f i j × ( 1 + max j c v i j ) expression for a positive criterion and the min f i j × ( 1 − max j c v i j ) for a negative

one illustrate the preference of DMs for volatile alternatives, while in the risk averse case volatility was avoided. 

Note that we have provided two definitions of S j for the negative criterion. Similarly to the risk neutral case, the defini-

tion presented in Eq. (30 ′ ) has been adapted to account for the maximum potential spread of the coefficient of variation. 

Given the modifications introduced in the evaluation process, the remaining VIKOR steps follow from those of Opricovic

[14] as described by Tavana et al. [25] . 

5. Coefficients of variation and expected performance of the alternatives 

As a measure of the spread exhibited by the realizations of a given variable, the coefficient of variation should condition

the expected performance of a given alternative and, therefore, the rankings defined by the DMs. This section introduces the

coefficients of variation in the expectation terms defined by the DMs when evaluating the alternatives through the values of

S j and R j for each j = 1 , 2 , . . . , m . It should be emphasized that we will not require any additional information on the side

of the DMs. The resulting rankings are determined by the evaluations received and their relative spreads. 

5.1. The risk averse setting 

We introduce expectations on the definitions of S j and R j using a set of Beta density functions computed by the DMs for

different realizations of the rating functions and the coefficients of variation per alternative and criterion. The values of S j ,

j = 1 , 2 , 3 , . . . , m , for a positive criterion are given by: 

Positive criterion 

S j 
n ∑ 

i =1 

∫ 1 

0 

Beta ( f i j | f i j + γ
(
max j c v i j − c v i j 

)
) w i 

[
max f i j − f i j 

max f i j − min f i j 

]
xdx 

(31)

Positive criterion 

n ∑ 

i =1 

∫ 1 

0 

Beta (c v i j | max 
j 

c v i j ) w i 

[
max f i j − f i j 

max f i j − min f i j 

]
xdx (32)

where 

Beta (x ; c v i j , max 
j 

c v i j ) = 

x c v i j −1 (1 − x ) 
max j c v i j −1 ∫ 1 

0 u 

c v i j −1 (1 − u ) 
max j c v i j −1 

du 

(33)

and a similar definition applies to Beta ( x ; f i j , f i j + γ ( max j c v i j − c v i j ) ) . f i j = 

∑ 

j f i j 

j 
denotes the av erag e of the ratings observ ed

for a set of alternatives within a given criterion and the terms in the square brackets correspond to the expressions described

in Eq. (23) or ( 23 ′ ). Note that we have included a new variable, x , in order to generate an expected value derived from the

Beta density. This function has been designed to condition the expected value of S j on the relative coefficients of variation

of the corresponding ratings. 

We have introduced the subjective beliefs of the DMs through the Beta densities in two different ways. The first one

is defined in Eq. (31) and relies on the average ratings and the relative differences among coefficients of variation. The

second one is defined in Eq. (32) and relies on the differences among the coefficients of variation, i.e. it focuses solely on

the variability of the alternatives. In the first case, the variable γ has been introduced to represent the aversion intensity of

the DMs. This variable takes a value of zero if DMs are risk neutral and a bounded positive one if DMs are risk averse. The

higher the value of γ , the stronger the risk aversion exhibited by the DM. 

The intuition justifying the choice of a Beta distribution as an approximation to the behavior of the DMs when dealing

with risk follows from Fig. 2 . Note how the same difference of five units between reference points has a stronger bias
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Fig. 2. Relative distance between reference points and resulting Beta densities. 

 

 

 

 

 

 

 

 

effect when the width of the spread becomes larger relative to value of the reference points. Moreover, the Beta distribution

must be skewed towards the lower end of its domain in order to provide a better expected evaluation to the DMs. This

requirement follows from the structure of VIKOR, where preferred alternatives exhibit a value of S j closer to zero. 

In this regard, the right hand side of the conditional term defining the Beta density in Eq. (31) , i.e.

[ f i j + γ ( max j c v i j − c v i j ) ] , increases as the value of f i j increases and the coefficient of variation of the corresponding al-

ternative decreases. The same type of behavior follows from the c v i j | max j c v i j term in Eq. (32) , with lower coefficients of

variation representing more preferred alternatives and leading to a Beta distribution skewed towards its lower end. Other

densities could be considered based on the same type of premises regarding the expectations of the DMs, which would lead

to similar results after adjusting the corresponding parameters to the requirements of the current VIKOR environment. 

Extending the definition of Eq. (31) using Eq. (23 ′ ) for the positive criterion and Eq. (24) for the negative one, we have:

Positive criterion 

S j 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(

f i j | 
[

f i j + γ
(
max j c v i j − c v i j 

)])
w i [ 

max f i j ×
(√ 

N − 1 − min j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
max f i j ×

(√ 

N − 1 − min j c v i j 

)
− min f i j ×

(√ 

N − 1 − max j c v i j 

)
] 

xdx 

(34) 
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Negative criterion 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(

f i j | 
[

f i j + γ
(
max j c v i j − c v i j 

)])
w i [ 

min f i j ×
(
1 + min j c v i j 

)
− f i j ×

(
1 + c v i j 

)
min f i j ×

(
1 + min j c v i j 

)
− max f i j ×

(
1 + max j c v i j 

)
] 

xdx 
(35)

5.2. The risk seeker setting 

The intuition provided in the previous section applies also when analyzing the risk seeker setting, though in this scenario

the DMs prefer alternatives endowed with a higher coefficient of variation. As in the risk averse case, when evaluating the

different alternatives their volatility per decision criterion has to be accounted for together with the rating obtained. The

corresponding values of S j , j = 1 , 2 , 3 , . . . , m , for a positive criterion are: 

Positive criterion 

S j 
n ∑ 

i =1 

∫ 1 

0 

Beta ( f i j | f i j + γ
(
c v i j − min j c v i j 

)
) w i 

[
max f i j − f i j 

max f i j − min f i j 

]
xdx 

(36)

Positive criterion 

n ∑ 

i =1 

∫ 1 

0 

Beta ( min 

j 
c v i j | c v i j ) w i 

[
max f i j − f i j 

max f i j − min f i j 

]
xdx (37)

where: 

Beta (x ; min 

j 
c v i j , c v i j ) = 

x min j c v i j −1 (1 − x ) 
c v i j −1 ∫ 1 

0 u 

min j c v i j −1 (1 − u ) 
c v i j −1 

du 

(38)

As in the previous setting, a Beta distribution skewed towards its lower end is used to evaluate the more preferred

alternatives. Eq. (36) illustrates how such a function requires both a high f i j value and the highest coefficient of variation,

with the variable γ reflecting the risk seeking intensity of the DMs. Eq. (37) focuses on the variability of the alternatives to

define the corresponding Beta densities, with higher coefficients of variation constituting preferred choices. 

Extending the definition of Eq. (36) using Eq. (29) for the positive criterion and Eq. (30 ′ ) for the negative one, we have

the following expressions determining the expected evaluations obtained by a given alternative when adding over all the

criteria: 

Positive criterion 

S j 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(

f i j | 
[

f i j + γ
(
c v i j − min j c v i j 

)])
w i [ 

max f i j ×
(
1 + max j c v i j 

)
− f i j ×

(
1 + c v i j 

)
max f i j ×

(
1 + max j c v i j 

)
− min f i j ×

(
1 + min j c v i j 

)
] 

xdx 

(39)

Negative criterion 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(

f i j | 
[

f i j + γ
(
c v i j − min j c v i j 

)])
w i [ 

min f i j ×
(√ 

N − 1 − max j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
min f i j ×

(√ 

N − 1 − max j c v i j 

)
− max f i j ×

(√ 

N − 1 − min j c v i j 

)
] 

xdx 
(40)

5.3. Numerical example 

In this section, we analyze numerically the different rankings defined by the DMs depending on their attitudes towards

risk. In order to do so, we generate ten random alternatives evaluated through five different criteria out of which the first

three are positive and the last two negative. Each alternative is assigned ten random realizations per criterion, which are

generated using a uniform distribution defined on the following domains: [0,5], [0,10], [0,15], [0,20] and [0,25]. Namely, the

domain on which the realizations of the first criterion are defined is [0,5], that of the second criterion is [0,10], and so on.

The average rating values and coefficients of variation per alternative and criterion are reported in Table 1 . 

The lowest and highest values attained by each column variable have been highlighted in blue and red, respectively.

We will define six rankings based on the different VIKOR methods designed to account for the risk attitudes of the DMs.

The evaluations of the alternatives per VIKOR method are presented in Table 2 , whose entries correspond to the value of

Q j when v = 0 . 5 . Moreover, throughout the current numerical example we have implicitly assumed an identical weight for

each criterion in order to focus on the effect that variability has on the rankings defined by the DMs. 

The following notation has been used to represent the different VIKOR models: Tavana refers to the model of Tavana et al.

[25] described in Eqs. (10) –(17) ; RAv corresponds to the risk averse setting presented in Eqs. (19) –(24) with Eq. (23 ′ ) used

for the positive criteria, while RAvN-1 represents the same risk averse setting but based on 

√ 

N − 1 being defined as a
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Table 1 

( ̄f i j , c v ) of the randomly generated alternatives. 

Alternative 

C 1 C 2 C 3 C 4 C 5 

X̄ cv X̄ cv X̄ cv X̄ cv X̄ cv 

1 2.5 0.805536 1.9 0.762704 8 0.699702 9.8 0.764815 11.3 0.836480 

2 3 0.521157 6.3 0.539838 8.3 0.797267 5.9 0.729886 15.7 0.339769 

3 3.1 0.635228 5.1 0.802885 7.7 0.721919 8.8 0.631111 14.0 0.518370 

4 1.9 1.006290 5 0.632456 10 0.447214 10.7 0.564284 11.7 0.745165 

5 1.7 0.736274 3.9 0.787532 6.7 0.656453 10.7 0.703595 12.6 0.574994 

6 2.8 0.602339 5.4 0.593364 5.4 0.624647 10 0.516398 11.1 0.680099 

7 2.4 0.765780 3.8 0.677202 7.3 0.707542 9.3 0.645261 10.9 0.946976 

8 1.8 0.936971 6.3 0.579842 9.6 0.374614 12.6 0.426902 14.1 0.531205 

9 2.6 0.633287 3.2 1.119973 5.8 0.824067 10.7 0.586216 10.8 0.837097 

10 2.3 0.768253 4.3 0.924075 4.9 0.747990 7.7 0.665175 14.1 0.510824 

Table 2 

Q j values of the random alternatives per VIKOR method when v = 0 . 5 . 

Alternative Tavana RAv RAvN-1 Rsk RAvW RSkW 

1 0.882105 0.916828 0.879486 0.583503 0.772238 0.344917 

2 6.35E-07 2.13E −06 0.126080 0.5 3.63E −17 0.625562 

3 0.222481 0.230204 0.200459 0.039085 0.201039 0 

4 0.44803 0.696101 0.684285 0.164996 0.760573 0.164891 

5 0.782695 0.910764 0.904397 0.854941 0.784207 0.579353 

6 0.562774 0.601640 0.58416 0.460293 0.481736 0.313202 

7 0.524358 0.472004 0.392066 0.074167 0.451812 0.093582 

8 0.572355 0.694363 0.745434 1 0.680657 1 

9 0.739957 0.839946 0.808689 0.247435 0.931075 0.129511 

10 0.764483 0.921898 0.938602 0.620777 0.932758 0.231728 

 

 

 

 

 

 

common reference value for both the positive and negative criteria; RSk is the risk seeker case described in Eqs. (25) –(30) ;

RAvW refers to the risk averse setting defined through the following equations: 

Positive criterion 

S j 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(
c v i j | max j c v i j 

)
w i [ 

max f i j ×
(√ 

N − 1 − min j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
max f i j ×

(√ 

N − 1 − min j c v i j 

)
− min f i j ×

(√ 

N − 1 − max j c v i j 

)
] 

xdx 

(41) 

Negative criterion 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(
c v i j | max j c v i j 

)
w i [ 

min f i j ×
(
1 + min j c v i j 

)
− f i j ×

(
1 + c v i j 

)
min f i j ×

(
1 + min j c v i j 

)
− max f i j ×

(
1 + max j c v i j 

)
] 

xdx 
(42) 

while RSkW corresponds to the risk seeker case determined by: 

Positive criterion 

S j 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(
min j c v i j | c v i j 

)
w i [ 

max f i j ×
(
1 + max j c v i j 

)
− f i j ×

(
1 + c v i j 

)
max f i j ×

(
1 + max j c v i j 

)
− min f i j ×

(
1 + min j c v i j 

)
] 

xdx 

(43) 

Negative criterion 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(
min j c v i j | c v i j 

)
w i [ 

min f i j ×
(√ 

N − 1 − max j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
min f i j ×

(√ 

N − 1 − max j c v i j 

)
− max f i j ×

(√ 

N − 1 − min j c v i j 

)
] 

xdx 
(44) 

In both these latter settings we have used the coefficients of variation presented in Table 1 but multiplied by ten in order

to compute the corresponding Beta functions. Note that, otherwise, the low reference values provided by the coefficients of

variation would lead to probability densities that differ significantly from the skewed ones described in Fig. 2 . The resulting

rankings are presented in Table 3 . 

Regarding the acceptability and stability of the results obtained, it can be easily verified that the rankings defined by

Tavana, RAv and RAvW provide an acceptable compromise solution, since they satisfy the Acceptable advantage and the
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Table 3 

Rankings of the random alternatives per VIKOR method. 

Alternative Tavana RAv RAvN-1 Rsk RAvW RSkW 

1 10 9 8 7 7 7 

2 1 1 1 6 1 9 

3 2 2 2 1 2 1 

4 3 6 5 3 6 4 

5 9 8 9 9 8 8 

6 5 4 4 5 4 6 

7 4 3 3 2 3 2 

8 6 5 6 10 5 10 

9 7 7 7 4 9 3 

10 8 10 10 8 10 5 

Table 4 

Ranking correlations among the different RB-VIKOR methods. 

Spearman’s rho Tavana RAv RAvW RSk RSkW 

Tavana Correlation Coefficient 1.0 0 0 .891 ∗∗ .818 ∗∗ .612 .261 

Sig. (2-tailed) . .001 .004 .060 .467 

N 10 10 10 10 10 

RAv Correlation Coefficient .891 ∗∗ 1.0 0 0 .952 ∗∗ .515 .127 

Sig. (2-tailed) .001 . .0 0 0 .128 .726 

N 10 10 10 10 10 

RAvW Correlation Coefficient .818 ∗∗ .952 ∗∗ 1.0 0 0 .442 .030 

Sig. (2-tailed) .004 .0 0 0 . .200 .934 

N 10 10 10 10 10 

RSk Correlation Coefficient .612 .515 .442 1.0 0 0 .867 ∗∗

Sig. (2-tailed) .060 .128 .200 . .001 

N 10 10 10 10 10 

RSkW Correlation Coefficient .261 .127 .030 .867 ∗∗ 1.0 0 0 

Sig. (2-tailed) .467 .726 .934 .001 . 

N 10 10 10 10 10 

∗∗ . Correlation is significant at the.01 level (2-tailed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acceptable stability in decision making conditions required by Opricovic & Tzeng [16] . That is, Q 2 nd alternati v e − Q 1 st alternati v e ≥
1 

10 −1 = 0 . 11 and the first alternatives take also the best scores among the S j and R j values. On the other hand, the RAvN-1,

RSk and RSkW rankings do not satisfy the Acceptable advantage condition, as can be observed in Table 2 . However, they all

satisfy the Acceptable stability in decision making condition since their first alternatives take the best scores among either

the S j or R j values, or both of them. 

Note that the risk averse rankings and the one of Tavana select the second alternative as the most preferred one, given its

lowest coefficient of variation for the first, second and fifth criterion. However, risk seeker DMs select the third alternative

as the most preferred one. Note that this alternative exhibits both relatively high coefficients of variation throughout the

criteria and consistently high average realizations. Indeed, as can be observed in Table 3 , risk averse DMs rank the third

alternative as the second most preferred one. However, the second alternative ranks considerably low among risk seeker

DMs due to its low variability and despite the high average realizations achieved. 

Table 4 reports the existing correlations among the different rankings. We observe how the risk seeker rankings differ

substantially from the risk averse ones and the one of Tavana, which validates the differences observed in Fig. 3 where each

alternative is represented on the horizontal axis and its corresponding ranking position on the vertical one. Thus, the risk

attitude of the DMs has a direct effect on the resulting ranking of alternatives. Such an effect intensifies if the DMs condition

their beliefs on the coefficients of variation when evaluating the corresponding alternatives. 

6. Case study 

Tavana et al. [25] compared their VIKOR model with the stochastic super-efficiency DEA one of Khodabakhshi et al.

[10] by evaluating the performance of several bank branches. In this section, we illustrate how RB-VIKOR behaves when

applied to the case study presented in Tavana et al. [25] and analyze the ranking differences arising from modifications in

the risk attitudes of the DMs. 

6.1. Data acquisition and RB-VIKOR implementation 

Tavana et al. [25] selected 22 branches of the Peoples Bank 1 in West Virginia ( A 1 , A 2 , . . . , A 22 ) and chose seven criteria

( C 1 , C 2 , . . . , C 7 ) to evaluate them: suspicious receivables cost ( C 1 ) , personnel cost ( C 2 ) , capital cost ( C 3 ) , branch equipment
1 The name was changed to protect the anonymity of the bank. 
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Fig. 3. RB-VIKOR rankings determined by the risk attitudes of the DMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

cost ( C 4 ) , incomes ( C 5 ) , deposits ( C 6 ) and banking facilities ( C 7 ) . The first four are negative criteria representing input

variables while the last three are positive criteria corresponding to output variables. All criteria are measured in million

dollar units. The data on the criteria per branch were collected over an eight weeks period. 

Tavana et al. [25] verified the normality of the data retrieved and the resulting rating functions and coefficients of varia-

tion per branch and criterion are presented in Tables 5 and 6 . Note that we are dealing with a risky environment, since the

DMs are assumed to know that the data acquired follow a normal distribution. However, RB-VIKOR has been designed to

account also for uncertain environments, where a uniform distribution - indicating maximum information entropy - could

be assumed on the realizations of the data. A similar formal environment based on such an information structure, where

the evaluations of the DMs are determined by the variability and entropy inherent to the data, is provided by Tavana et al.

[24] . 

Tavana et al. [25] computed the weights assigned to each criterion by applying the extent analysis method to a fuzzy

AHP framework used to evaluate the linguistic opinions of seven banking experts [23] . The resulting criteria weights are

given by 

W = ( 0 . 08671 , 0 . 04667 , 0 . 25633 , 0 . 03724 , 0 . 18773 , 0 . 22411 , 0 . 16121 ) 

Given the information retrieved, the corresponding evaluations per branch and VIKOR method are presented in Table 7 ,

whose entries correspond to the value of Q j when v = 0 . 5 . It should be noted that given the low value displayed by the

coefficients of variation of the different alternatives, a reference value of one, instead of 
√ 

N − 1 , has been applied to compute

S j and R j in both risk settings for the positive and negative criteria. 
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Table 5 

( ̄f i j , c v ) of the negative criteria or inputs per alternative. 

Branch Number 

C 1 C 2 C 3 C 4 

X̄ cv X̄ cv X̄ cv X̄ cv 

A 1 0.183092 0.0 0 0 065903 0.212985 1.24011E −05 0.235626 0.0 0 0113243 0.184808 0.0 0 0162925 

A 2 0.208596 7.08299E −05 0.230363 6.08144E −05 0.245014 7.14695E −05 0.241272 2.59317E −05 

A 3 0.187978 0.0 0 0156629 0.252706 4.93194E −06 0.209421 1.76645E −05 0.171436 6.26938E −05 

A 4 0.225785 3.56953E −05 0.166362 2.14093E −05 0.177091 6.60898E −05 0.234273 8.39646E −05 

A 5 0.25391 2.98975E −05 0.20528 1.29488E −05 0.223603 6.24711E −05 0.249573 5.52285E −05 

A 6 0.214122 5.98553E −06 0.177374 6.41937E −05 0.191373 0.0 0 010 0643 0.164826 6.77854E −05 

A 7 0.21015 3.18718E −05 0.239554 0.0 0 0 026188 0.187291 9.16315E −05 0.189364 7.77015E −05 

A 8 0.243531 0.0 0 0105899 0.221798 0.0 0 0 024126 0.223191 0.0 0 0 087938 0.234913 9.66622E −05 

A 9 0.181421 6.17473E −05 0.187905 3.84803E −05 0.214526 3.64076E −05 0.210105 4.21462E −05 

A 10 0.250902 1.82477E −05 0.165296 0.0 0 0146387 0.22845 8.40266E −05 0.198068 0.0 0 0154162 

A 11 0.156557 3.98902E −05 0.260051 5.74954E −05 0.214174 9.94717E −05 0.25599 9.93986E −06 

A 12 0.190552 3.79299E −05 0.196073 0.0 0 011312 0.231224 0.0 0 0 09193 0.222687 7.58071E −05 

A 13 0.253144 3.79491E −05 0.206956 8.06985E −05 0.224874 0.0 0 0136051 0.167009 8.48621E −05 

A 14 0.243138 5.10019E −05 0.180417 0.0 0 0104778 0.192666 0.0 0 0162396 0.251582 0.0 0 0 076942 

A 15 0.202739 4.07969E −05 0.220127 4.42057E −05 0.186853 6.34488E −05 0.186592 3.07689E −05 

A 16 0.238221 2.85497E −05 0.254391 4.22661E −05 0.228408 6.22422E −05 0.19576 7.77746E −05 

A 17 0.192813 4.36255E −05 0.229055 0.0 0 010 0119 0.175677 6.75783E −05 0.260848 2.45347E −05 

A 18 0.224648 5.34604E −05 0.201761 7.98192E −05 0.17529 7.81931E −05 0.209711 6.92383E −05 

A 19 0.195362 2.14551E −05 0.17204 5.52486E −05 0.213239 0.0 0 0 088118 0.19405 8.61807E −05 

A 20 0.178847 0.0 0 0 070373 0.240755 6.96634E −05 0.208716 0.0 0 0161973 0.258876 9.15553E −05 

A 21 0.23379 1.51622E-05 0.232072 2.87053E −05 0.251264 6.66647E −05 0.183353 5.70796E −05 

A 22 0.180214 4.28247E −05 0.194373 6.75136E −05 0.226479 7.09521E −05 0.171603 6.16828E −05 

Table 6 

( ̄f i j , c v ) of the positive criteria or outputs per alternative. 

Branch Number 

C 5 C 6 C 7 

X̄ cv X̄ cv X̄ cv 

A 1 0.242661 1.98016E −05 0.17367 4.53261E −05 0.211735 1.34646E −05 

A 2 0.152329 2.62357E −05 0.220824 9.33601E −06 0.174535 2.03572E −05 

A 3 0.151927 1.46208E −05 0.166938 4.69472E −05 0.14435 3.64534E −05 

A 4 0.229268 1.86922E −05 0.29375 2.51355E −05 0.247675 2.12795E −05 

A 5 0.249618 2.05784E −05 0.205499 3.61937E −05 0.20643 0.0 0 0 026886 

A 6 0.184324 1.35987E −05 0.1945 3.31699E −05 0.271635 0.0 0 0 019659 

A 7 0.226834 2.49185E −05 0.251782 1.84688E −05 0.212217 1.49143E −05 

A 8 0.175298 1.50756E −05 0.167357 3.30199E −05 0.254375 1.07385E −05 

A 9 0.217959 0.0 0 0 014327 0.15038 3.14595E −05 0.164785 3.47518E −05 

A 10 0.19223 2.53435E −05 0.179498 4.64395E −05 0.160314 3.30879E −05 

A 11 0.252283 1.67157E −05 0.250188 2.16852E −05 0.166095 3.99225E −05 

A 12 0.157571 1.87832E −05 0.149209 4.06469E −05 0.186626 2.92354E- −05 

A 13 0.198878 4.26909E −05 0.164063 6.27114E −05 0.129739 2.42102E −05 

A 14 0.177068 2.27906E −05 0.247196 1.66502E −05 0.221459 2.29682E −05 

A 15 0.240081 1.78092E −05 0.28428 1.01969E −05 0.204324 1.97875E −05 

A 16 0.264702 9.56793E −06 0.277888 1.91376E −05 0.228287 2.20661E −05 

A 17 0.152925 2.63126E −05 0.223313 1.08212E −05 0.279775 0.0 0 0 0 09429 

A 18 0.273498 5.52225E −06 0.193881 1.83026E −05 0.264884 0.0 0 0 0280 07 

A 19 0.264819 2.62788E −05 0.18166 4.41206E −05 0.189833 4.64215E −05 

A 20 0.198868 3.64654E −05 0.217204 2.84405E −05 0.19879 1.45533E −05 

A 21 0.241816 3.61768E −06 0.184588 8.06913E −06 0.232329 2.02833E −05 

A 22 0.160726 3.17916E −05 0.218817 5.60012E −05 0.251616 3.02976E −05 

 

 

 

 

 

 

 

 

Regarding the acceptability and stability of the results obtained, it can be easily verified that the rankings defined by

Tavana, RAv, Rsk and RSvW provide an acceptable compromise solution, since they satisfy the Acceptable advantage and the

Acceptable stability in decision making conditions. In particular, Q 2 nd alternati v e − Q 1 st alternati v e ≥ 1 
22 −1 = 0 . 0476 and the first

alternatives take also the best scores among the S j and R j values. On the other hand, the RAvW ranking does not satisfy

the Acceptable advantage condition. However, it satisfies the Acceptable stability in decision making condition since its first

alternative takes also the best scores among the S j and R j values. 

Finally, note that the relatively low values of the coefficients of variation and the ratings of the alternatives have led the

rankings of Tavana, RAv and RSk to coincide. This result is modified when introducing the subjective expectations of the

DMs in the RAvW and RSkW settings, where the coefficients of variation have been multiplied by 10 5 in order to generate

the corresponding Beta functions. 
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Table 7 

Q j values of the alternatives per VIKOR method when v = 0 . 5 . 

Branch Number Tavana RAv RAvW RSk RSkW 

A 1 0.686622 0.686587 0.686109 0.686672 0.331063 

A 2 0.940992 0.940984 0.638778 0.941031 0.683534 

A 3 0.80481 0.804802 0.717687 0.804577 0.740434 

A 4 2.72E-06 −1.4E −06 −9.6E −06 5.49E −07 1.05E −06 

A 5 0.569357 0.569289 0.389213 0.569435 0.389848 

A 6 0.418054 0.418042 0.320441 0.4179 0.309847 

A 7 0.14139 0.141393 0.103318 0.141377 0.253115 

A 8 0.758847 0.758865 0.606719 0.75866 0.430667 

A 9 0.780726 0.780734 0.585999 0.780464 0.542526 

A 10 0.748587 0.748519 0.724398 0.748632 0.386974 

A 11 0.378786 0.378679 0.401204 0.378861 0.243533 

A 12 0.914561 0.914575 0.832498 0.914307 0.455948 

A 13 0.846516 0.846525 0.999998 0.846303 0.452139 

A 14 0.448179 0.448185 0.374086 0.448039 0.224627 

A 15 0.091787 0.091794 0.046766 0.091763 0.180766 

A 16 0.475855 0.475814 0.272241 0.475947 0.333395 

A 17 0.491389 0.49139 0.427951 0.491166 0.409323 

A 18 0.291587 0.291581 0.116711 0.291439 0.323510 

A 19 0.514841 0.514847 0.564292 0.514675 0.221075 

A 20 0.427065 0.427055 0.501698 0.426989 0.324579 

A 21 0.888267 0.888297 0.474796 0.888323 1 

A 22 0.578245 0.578265 0.620331 0.578076 0.278716 

Table 8 

Ranking of alternatives: RB-VIKOR versus stochastic super-efficiency DEA. 

Branch Number Tavana RAv RAvW RSk RSkW Stochastic DEA 

A 1 14 14 18 14 11 10 

A 2 22 22 17 22 20 21 

A 3 18 18 19 18 21 22 

A 4 1 1 1 1 1 1 

A 5 12 12 8 12 14 16 

A 6 6 6 6 6 8 4 

A 7 3 3 3 3 6 12 

A 8 16 16 15 16 16 18 

A 9 17 17 14 17 19 14 

A 10 15 15 20 15 13 19 

A 11 5 5 9 5 5 2 

A 12 21 21 21 21 18 20 

A 13 19 19 22 19 17 15 

A 14 8 8 7 8 4 17 

A 15 2 2 2 2 2 6 

A 16 9 9 5 9 12 9 

A 17 10 10 10 10 15 5 

A 18 4 4 4 4 9 3 

A 19 11 11 13 11 3 7 

A 20 7 7 12 7 10 13 

A 21 20 20 11 20 22 11 

A 22 13 13 16 13 7 8 

 

 

 

 

 

 

 

 

 

6.2. Comparing RB-VIKOR with stochastic DEA 

We compare now the rankings obtained using RB-VIKOR and a stochastic version of the super-efficiency DEA model

introduced by Andersen and Petersen [1] . Stochastic super-efficiency models are designed to account for the fact that a de-

cision making unit considered to be equally efficient to others may become inefficient when random variations in normally

distributed inputs and outputs are introduced; refer to Section 3.2 in Khodabakhshi et al. [10] and Section 6 in Tavana et al.

[25] for additional guidelines and intuition regarding these models. The rankings obtained from the different VIKOR methods

and the stochastic super-efficiency DEA model of Khodabakhshi et al. [10] are presented in Table 8 . 

Intuitively, some differences are expected to arise across rankings since, in addition to the criteria weights defined by

the experts and the subjective selection of the v parameter, RB-VIKOR accounts for the risk attitudes of the DMs. As Fig. 4

illustrates, these differences are particularly evident when the rankings derived from the RAvW and RSkW settings are

considered. This is the case despite the fact that the different RB-VIKOR methods and the stochastic DEA coincide on the

first alternative and the lower levels of the corresponding rankings do not differ significantly. 
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Fig. 4. Pairwise differences between the RB-VIKOR and stochastic DEA rankings. 

 

 

 

 

 

 

 

 

In other words, the subjective variability introduced in RB-VIKOR distorts what may be considered as the neutral evalua-

tion of DEA, which focuses on the distributional properties of the realizations when computing the efficiency of the alterna-

tives but does not account for subjective judgments or risk attitudes. The existing correlations among the different rankings

are presented in Table 9 and confirm the differences between the RB-VIKOR methods, particularly RAvW and RSkW, and the

stochastic DEA one. Therefore, if the DMs face uncertainty and do not know the exact distribution from which the observa-

tions are being drawn or are not neutral to the inherent risk, their resulting rankings will differ from the one provided by

the super-efficiency DEA model. 

7. Incorporating the relative importance of the criteria 

RB-VIKOR has been defined using the values of the rating functions and their corresponding coefficients of variation. The

numerical example introduced in Section 5.3 illustrates the role played by the risk attitudes of DMs in the adjustment of
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Table 9 

Ranking correlations among the RB-VIKOR methods and stochastic DEA. 

Spearman’s rho RAvW Tavana RSkW DEA 

RAvW Correlation Coefficient 1.0 0 0 .857 ∗∗ .633 ∗∗ .658 ∗∗

Sig. (2-tailed) . .0 0 0 .002 .001 

N 22 22 22 22 

Tavana Correlation Coefficient .857 ∗∗ 1.0 0 0 .860 ∗∗ .735 ∗∗

Sig. (2-tailed) .0 0 0 . .0 0 0 .0 0 0 

N 22 22 22 22 

RSkW Correlation Coefficient .633 ∗∗ .860 ∗∗ 1.0 0 0 .651 ∗∗

Sig. (2-tailed) .002 .0 0 0 . .001 

N 22 22 22 22 

DEA Correlation Coefficient .658 ∗∗ .735 ∗∗ .651 ∗∗ 1.0 0 0 

Sig. (2-tailed) .001 .0 0 0 .001 . 

N 22 22 22 22 

∗∗ . Correlation is significant at the.01 level (2-tailed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the limit values of the rating functions relative to those defined by Tavana el al. [25] . Risk attitudes were shown to affect

the resulting rankings without resorting to modifications in the subjective beliefs of the DMs. At the same time, the Beta

densities, built on the ratings received and their dispersion, reinforce the effect of the risk attitudes of the DMs through

their beliefs. The case study introduced in Section 6 emphasizes the significant role played by expectations when facing

very low coefficients of variation for all the alternatives and criteria. 

Note that the case study presented in Section 6 takes the weights of the criteria as given by a group of experts, while

Section 5.3 assumes identical weight values for each criterion. However, recent research on decision analysis and operations

research has explicitly highlighted the importance of the weights subjectively assigned by the DMs to the different decision

criteria [11,19] . Thus, we incorporate the relative importance of the criteria weights when defining the subjective beliefs of

the DMs and provide intuition regarding their potential effects on the resulting evaluations and rankings. 

7.1. The risk averse setting 

We extend the definition of S j to incorporate the relative importance of the weights of the criteria, 
w i 

w max 
, with w max =

max { w i , i = 1 , . . . , n } , when determining the shape of the Beta density. For consistency purposes, it will be assumed that

less important criteria lead the DMs to assign a lower weight to the variability of the corresponding alternatives when

forming their expectations. The values of S j , j = 1 , 2 , 3 , . . . , m , for a positive criterion are therefore given by 

S j = 

n ∑ 

i =1 

∫ 1 

0 

Beta 

(
f̄ i j 

∣∣∣ [ 
f i j + 

[ 
1 + 

(
w i 

w max 

)] (
ma x j c v i j − c v i j 

)] )
w i [ 

max f i j ×
(√ 

N − 1 − mi n j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
max f i j ×

(√ 

N − 1 − mi n j c v i j 

)
− min f i j ×

(√ 

N − 1 − ma x j c v i j 

)
] 

xdx 

(45) 

S j = 

n ∑ 

i =1 

∫ 1 

0 

Beta 

(
c v i j 

∣∣∣ ma x j c v i j 

[ 
1 + 

(
w i 

w max 

)] )
w i [ 

max f i j ×
(√ 

N − 1 − mi n j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
max f i j ×

(√ 

N − 1 − mi n j c v i j 

)
− min f i j ×

(√ 

N − 1 − ma x j c v i j 

)
] 

xdx 

(46) 

It has been assumed that γ = [ 1 + ( 
w i 

w max 
) ] so as to focus on the variability of the ratings in both density scenarios,

though alternative definitions of beliefs based on 

w i 
w max 

could be considered. In this regard, note how 

w i 
w max 

determines the

relative importance assigned to the variability of the criteria when defining the subjective beliefs of the DM. As a result, the

right hand side of the conditional terms defining the Beta densities increases with the relative importance of the criteria.

Recall that the Beta functions must be skewed towards the lower end of their domains in order to provide an improved

expected evaluation to the DM for the more preferred alternatives. 

7.2. The risk seeker setting 

The same intuition applies when considering the risk seeker scenario. Thus, if a criterion is relatively important, the DM

increases the weight assigned to the variability of the corresponding alternative. The values of S j , j = 1 , 2 , 3 , . . . , m , for a

negative criterion are therefore given by 
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S j = 

n ∑ 

i =1 

∫ 1 

0 

Beta 

(
f̄ i j 

∣∣[ f i j + 

[ 
1 + 

(
w i 

w max 

)] (
c v i j − mi n j c v i j 

)] )
w i [ 

min f i j ×
(√ 

N − 1 − ma x j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
min f i j ×

(√ 

N − 1 − ma x j c v i j 

)
− max f i j ×

(√ 

N − 1 − mi n j c v i j 

)
] 

xdx 

(47)

S j = 

n ∑ 

i =1 

∫ 1 

0 

Beta 
(

mi n j c v i j 

∣∣∣c v i j 

[ 
1 + 

(
w i 

w max 

)] )
w i [ 

min f i j ×
(√ 

N − 1 − ma x j c v i j 

)
− f i j ×

(√ 

N − 1 − c v i j 

)
min f i j ×

(√ 

N − 1 − ma x j c v i j 

)
− max f i j ×

(√ 

N − 1 − mi n j c v i j 

)
] 

xdx 

(48)

We conclude by noting that there are several sources of subjectivity inherent to the design of the RB-VIKOR model, such

as the inclusion of γ and w i on the beliefs and resulting evaluations of the DMs. As already stated, alternative evaluation

scenarios could be defined, with the current one focusing on the effects that the ratings, their variability and the risk

attitudes of DMs have on their beliefs and resulting evaluations. 

8. Conclusion 

We have defined an extended version of the VIKOR method introduced by Tavana et al. [25] that accounts for differences

in the risk attitudes of the DMs when ranking stochastic alternatives. In particular, our formal framework allows for modi-

fications in the rating behavior of the DMs that depend on whether they are risk seekers or averters and the coefficient of

variation exhibited by each alternative. That is, RB-VIKOR allows the DMs to select the alternative that is more in accordance

with their subjective preferences and risk attitudes while accounting for the uncertainty inherent to the real world when

evaluating each alternative. 

Therefore, if the DMs do not know the exact distribution from which the observations are being drawn or are not neu-

tral to the inherent risk, their resulting rankings will differ from the ones provided by more neutral models such as super-

efficiency DEA. Indeed, the proposed method is sufficiently flexible so as to account for both risky and uncertain environ-

ments and can be formally extended to other MCDM techniques such as PROMETHEE or TOPSIS. 

Potential extensions of the current framework should consider the introduction of expected evaluations whose domain is

determined by the entropy inherent to the data, strategic environments whose information structure is conditioned by the

credibility of the reporters providing the data, and the emergence of interdependencies among the different decision criteria

and their effect on the evaluations of the DMs. 
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