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A B S T R A C T   

Data-driven simulation (DDS) is fundamental to analytical and decision-support technologies in Industry 4.0 and 
smart manufacturing. This study investigates the potential of DDS for resource allocation (RA) in high-mix, low- 
volume smart manufacturing systems with mixed automation levels. A DDS-based decision support system (DDS- 
DSS) is developed by incorporating two RA strategies: simulation-based bottleneck analysis (SB-BA) and 
simulation-based multi-objective optimization (SB-MOO). To enhance the performance of SB-MOO, a unique 
meta-learning mechanism featuring memory, dynamic orthogonal array, and learning rate is integrated into the 
NSGA-II, resulting in a modified version of the NSGA-II with meta-learning (i.e., NSGA-II-ML). The proposed DSS 
also benefits from a post-optimality analysis that leverages a clustering algorithm to derive actionable insights. A 
real-life marine engine manufacturing application study is presented to demonstrate the applicability and exhibit 
efficacy of the proposed DSS and NSGA-II-ML. To this aim, NSGA-II-ML was tested against the original NSGA-II 
and differential evolution (DE) algorithm across a set of test problems. The results revealed that NSGA-II-ML 
surpassed the other two in terms of the number of non-dominated solutions and hypervolume, particularly in 
medium and large-sized problems. Furthermore, NSGA-II-ML achieved a 24% improvement in the best 
throughput found in the real case problem, outperforming SB-BA, NSGA-II, and DE. The post-optimality analysis 
led to the extraction of valuable knowledge about the key, influencing decision variables on the throughput.   

Introduction 

The fourth industrial revolution (I4.0), characterized by integrating 
innovative technologies and cutting-edge design principles, has sub-
stantially changed the conventional industrial landscape [1,2]. The 
implications of I4.0 on the manufacturing sector are extensive and 
profound, most notably a substantial enhancement in productivity and 
flexibility [3,4]. Moreover, the advent of I4.0 has precipitated a para-
digm shift towards advanced operations management and analytical 
strategies [5]. Among the array of evolving analytical methodologies, 
data-driven simulation (DDS) has emerged as an effective and flexible 
approach for decision analytics and support in complex manufacturing 
environments [6,7]. 

DDS leverages the abundant data generated within the 
manufacturing environment to create accurate and dynamic models of 

manufacturing processes [8,9]. DDS can be considered a digital repre-
sentation of the physical world [10] and can be utilized to predict system 
behavior, thereby offering foresight into potential issues and enabling 
the implementation of preemptive measures [11]. Moreover, they pro-
vide a risk-free environment for assessing different scenarios, thus 
facilitating the examination of various strategies and approaches [12, 
13]. Additionally, DDSs enhance decision-making processes by offering 
data-supported insights and recommendations [14]. 

A crucial aspect of manufacturing wherein DDS proves invaluable is 
resource allocation (RA), a process inherently complex due to the dy-
namic nature of manufacturing operations [15]. RA refers to the sys-
tematic process of distributing resources among various performing 
units to achieve one or more objectives [16]. Appropriate RA is crucial 
to align with changes in the production plan and ensure its successful 
execution [17]. RA decisions significantly impact the most critical 
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performance measure of production, namely throughput [18,19], and 
finding the appropriate allocation of resources to maximize throughout 
results in a highly complex decision-making problem known as the RA 
problem. 

This study primarily focuses on exploring two critical applications of 
DDS in the domain of RA within manufacturing systems: simulation- 
based bottleneck analysis (SB-BA) and simulation-based multi-objec-
tive optimization (SB-MOO). SB-BA is a process that involves identifying 
resources or processes that are the constraints limiting the overall per-
formance of the system [20]. This analysis is vital in any manufacturing 
setup as it aids in identifying areas that require improvement or modi-
fication to enhance system efficiency and productivity [21]. Conversely, 
SB-MOO aims to determine the most effective allocation of resources to 
maximize system performance. DDS in both these applications can offer 
a detailed and dynamic representation of the manufacturing system. It 
can support the evaluation of various allocation strategies and facilitate 
the identification of optimal solutions, enabling a more informed 
decision-making process. 

The RA problem addressed in this study arises in industries with 
highly customized and complex products, such as marine and automo-
tive engine manufacturers. Such products are manufactured by a mix of 
automated and manual processes, with production often involving high 
customization to meet specific customer requirements. This results in 
various product specifications and relatively low production volumes, as 
each product is unique and not mass-produced. The key to enhancing 
throughput in these systems lies in the strategic allocation of mobile 
resources across different segments of the production line. The pro-
duction plans in these industries are dynamic and subject to frequent 
changes to accommodate varying product specifications. Therefore, a 
flexible RA strategy that can adapt to the changing needs of the pro-
duction line is required. According to their flexibility and ease of real-
location, this study focused on mobile resources, namely operators and 
automated forklifts (AFLs), which can be easily reassigned according to 
the changing production plan. 

In this paper, a DDS-based Decision-Support system (DDS-DSS) is 
proposed for the effective allocation of mobile resources in response to 
changing production plans and constraints imposed by the availability 
of resources. The proposed DDS-DSS is empowered by two mechanisms, 
namely simulation-based bottleneck analysis (SB-BA) and simulation- 
based multi-objective optimization (SB-MOO). However, each of these 
mechanisms, SB-BA and SB-MOO, face their own unique challenges 
when applied to resource allocation (RA), particularly in high-mix low- 
volume (HMLV) production systems [21]. 

One of the key challenges lies in the scalability of SB-BA [22,23]. As 
the complexity of the manufacturing system increases, the ability of 
SB-BA to effectively identify bottlenecks and constraints becomes a 
significant concern. Furthermore, given the complexity and frequency of 
RA problems in HMLVs, the performance of MOO algorithms is another 
critical issue. The need for efficient and high-quality solutions in a 
timely manner is paramount, yet achieving this in a constantly changing 
environment is a daunting task. Among the potential improvement 
mechanisms, the application of meta-learning stands out [24]. 
Meta-learning, as a higher-level learning approach, learns from past 
optimization experiences and applies this knowledge to improve the 
performance of the algorithm [25]. This approach can potentially 
improve the efficiency and quality of solutions in large optimization 
problems [26]. However, the application of meta-learning techniques, 
particularly in the context of RA, remains largely unexplored, especially 
within the HMLV production environments. This gap in research un-
derscores the need for further investigation into the potential benefits 
and applications of meta-learning in this context. 

This study aims to develop a DDS-DSS that efficiently addresses 
short-term resource allocation in HMLV production environments, 
particularly in industries with highly customized and complex products. 
Thus, the following research questions have been formulated to guide 
this study: (1) How can a DDS-based Decision-Support system (DDS- 

DSS) be developed to efficiently address short-term RA in HMLV pro-
duction environments, particularly in industries with highly customized 
and complex products? (2) In the context of optimizing RA in HMLV 
production environments, how do the SB-BA and SB-MOO compare in 
terms of scalability and performance?”. 

Moreover, as an integrated part of the proposed DDS-DSS, the 
application of a clustering algorithm, namely density-based spatial 
clustering of applications with noise (DBSCAN), is investigated for 
performing post-analysis and extracting knowledge on the results of 
multi-objective optimization (MOO). The DBSCAN clusters the decision 
space into several regions of similar solutions, amongst which the 
decision-maker can choose the most desired region. 

Given that the output of this study is an artifact composed of three 
distinct components - a simulation model, a bottleneck analysis tool, and 
an optimization algorithm – the methodology of design science (DS) is 
employed. DS is a research methodology that involves creating and 
evaluating artifacts designed to meet specific goals or solve particular 
problems. It is particularly suited to this study as it allows for the 
development and assessment of each component individually and their 
integration into a cohesive whole. DS methodology is characterized by 
iterative refinement, where the artifacts are continually evaluated and 
improved based on their performance in meeting the set objectives. This 
iterative process ensures that the final artifact effectively achieves its 
intended purpose and is robust in its design [27]. 

The rest of this paper is structured as follows. Section 2 presents a 
literature review to find and summarize the relevant research. Section 3 
describes the problem addressed in detail. The detailed structure of the 
proposed DDS-DSS is elaborated in Section 4. The implication of the 
proposed DDS-DSS in a real-life application study is expounded in Sec-
tion 5. The results of SB-BA and SB-MOO, including the performance 
evaluation of NSGA-II-ML, are respectively explained in Section 6. 
Section 7 further explains the post-optimality analysis and managerial 
insights. Finally, Section 8 provides a conclusion and highlights the in-
sights gained from the study. 

Literature review 

This section reviews the existing research focusing on the DDS 
approach for RA in manufacturing industries. 

Pierce and Yurtsever [28] introduced a data-driven system in the 
manufacturing context. They detailed Motorola’s graphical 
manufacturing monitoring system (i.e., GraMMS). This data-driven 
system facilitated real-time visual monitoring of manufacturing data, 
including work-in-process (WIP), throughput, and dispatch rankings. 
The system enhanced wafer fab throughput by 15% and reduced cycle 
time by 20%, resulting in significant time and resource savings. Koyuncu 
et al. [29] developed a real-time dynamic, multi-scale simulation model 
that adaptively adjusted simulation fidelity by incorporating dynamic 
data. This model, applied in semiconductor manufacturing supply chain 
operations, utilized four heuristic algorithms for efficient computational 
resource management and inter-operable communication. Segura 
Velandia et al. [30] proposed a database system for handling the big 
data generated in printed circuit board manufacturing to improve 
product and process life cycle management. The proposed data storage 
and analysis approach improved the performance of their proposed 
simulation-based decision support system (DSS). This system improved 
data-exchange practices in the electronics manufacturing industry and 
was compatible with various tools and standards. Hussaini and Lahrman 
[31] demonstrated the effectiveness of a data-driven approach in solving 
real-life manufacturing problems through a comprehensive simulation 
model of a manufacturing facility. They emphasized the importance of 
DDS in the medical device industry, particularly for RA, performance 
evaluation, and operations excellence. Rashid et al. [32] presented an 
RA framework for modular construction, using a discrete event simu-
lation (DES) model and a genetic algorithm (GA) to optimize worker 
assignments. Despite the challenges of MOO and adaptive GA for 
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real-time dynamic optimization, such a DDS approach resulted in a 15% 
make-span reduction. 

Wang et al. [33] proposed a DDS framework for real-time process 
change, addressing throughput and resource utilization issues. The 
framework, integrated with Flexsim software, captured shop floor 
changes, although further research was suggested to develop plugin 
toolkits for manufacturing systems. Fani et al. [34] introduced a DDS for 
high-mix, low-volume (HMLV) environments, which required quick and 
reactive reconfiguration of production lines. The data-driven approach 
was implemented in a footwear industry SME, demonstrating its po-
tential for improving performance without specific knowledge in 
building and validating simulation models. Luo et al. [35] highlighted 
the increasing trend of automated flexible production lines (AFPLs) in 
manufacturing enterprises. They proposed a data-driven cloud simula-
tion architecture for AFPLs in smart factories, tested in a 3 C (computer, 
communication, consumer electronics) company’s workshop. The ar-
chitecture enabled real-time RA decisions, addressing a previously 
unmet need in the research on dynamic RA within AFPLs. More recently, 
Sakr et al. [36] provided a DDS for the fabrication areas in the semi-
conductor industry, characterized by high market demand and product 
mix. The authors proposed a DDS for dispatching and RA using rein-
forcement learning. The model they developed incorporated data-driven 
DES and agent-based simulation, with the agents employing 
Deep-Q-Network reinforcement learning. Their approach enhanced 
global system performance and RA, outperforming heuristics-based 
strategies. Consequently, this led to an improvement in the production 
performance. 

The reviewed literature provided an overview of the evolution and 
application of DDS in various manufacturing contexts. From the early 
implementation of Motorola’s GraMMS system, which significantly 
improved throughput and reduced cycle time, to the recent de-
velopments in AFPLs, DDS has been proven to be a powerful tool for 
enhancing manufacturing efficiency and performance. Such a literature 
review also shows the versatility of DDS, with successful applications in 
diverse industries such as semiconductor manufacturing, medical device 
production, modular construction industries, and footwear 
manufacturing. The studies above highlight the capacity of DDS to 
enable instantaneous monitoring, adaptable resource distribution, and 
effective decision-making in manufacturing operations. 

Considering the notable progressions in DDS, there still exists a gap 
in research regarding the utilization of DDS in sectors that exhibit multi- 

phase production procedures and violent demand fluctuations. While 
Fani et al. [34] introduced a DDS in HMLV environments, their study 
was limited to a single SME in the footwear industry. Further research is 
needed to explore the applicability and effectiveness of DDS in HMLV 
industries, particularly those with more complex manufacturing pro-
cesses. In addition, Luo et al. [35] and Sakr et al. [36] investigated the 
system throughput improvement via the dynamic distribution of tasks to 
available resources and the dynamic dispatching of products to specific 
workstations. Both studies assumed that production flow, including 
allocating tasks and dispatching products to fixed resources, can be 
dynamically altered. However, this assumption does not hold in all 
real-world production systems. In such cases, enhancing throughput 
necessitates the strategic reallocation of flexible and mobile resources 
rather than relying on fixed resources and changing the assignment of 
tasks to them. Thus, this study diverges from the prevailing literature by 
focusing on deploying mobile resources (i.e., operators and AFLs), 
leveraging their inherent flexibility to optimize production efficiency. 

In light of the above explanations, the principal contribution of this 
study lies in developing a DDS-DSS to determine the optimal allocation 
of mobile resources across various segments of the production line while 
simultaneously accounting for fluctuations in demand. This research 
offers a unique perspective on improving manufacturing performance by 
emphasizing the strategic utilization of flexible resources through two 
distinctive approaches, namely SB-BA and SB-MOO. SB-BA identifies 
bottleneck areas and devises bottleneck-based strategies to assign re-
sources to parts of the production line with a more urgent need. On the 
other hand, SB-MOO uses optimization to allocate resources near- 
optimally to different parts of the production line. 

Problem description 

In HMLV manufacturing environments, the RA problem involves the 
optimal assignment of mobile resources to various tasks or operations. 
This problem becomes particularly complex due to frequent changes in 
production plans, driven by varying product specifications and customer 
demands. The objective is to allocate these dynamic resources in a way 
that maximizes throughput while minimizing the total number of mobile 
resources allocated to the production line. 

A schematic view of the problem addressed in this study is presented 
in Fig. 1. As depicted in this figure, the production plan is determined 
and updated based on new orders received, backlogged orders, and data 

Fig. 1. The general configuration of an HMLV production line and production plan process.  
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gathered from the shop floor. Afterward, the short-term production 
schedule is determined under the devised production plan. The next step 
is to find the optimal allocation of mobile resources to fulfill the short- 
term production schedule. This process repeats every time an update 
happens in coming orders. The problem addressed in this study occurs in 
HMLV production systems of complex and highly customized products, 
such as in the automotive or marine engine industry. In HMLV pro-
duction systems, a high level of customization and frequent changes in 
product specifications make it difficult to maintain a smooth production 
flow. Consequently, the production planning and scheduling horizon is 
relatively short, making RA a frequent and challenging problem. 

According to the complexity of production processes, such HMLV 
production systems benefit from various automation levels to maintain 
performance while gaining more flexibility. Using different levels of 
automation in different parts of the line makes it necessary to decouple 

the line at stations in which automation level changes, e.g., from auto-
matic to manual or vice versa. These decoupling points are places to put 
buffers, which divide the line into several segments (S). A segment is 
then defined as a series of workstations connected without intermediate 
buffers. Each segment may contain one or more workstations. The 
number of operators required in each segment (Ops) is dependent on the 
level of automation in that segment. Manual and collaborative segments 
are operated by full or partial involvement of operators, respectively. 
Fully automated segments do not need the involvement of operators. 
The processing time of each manual and semi-automated segment de-
pends on the number of operators assigned to that segment. The problem 
addressed here is focused on the production lines in which AFLs 
accomplish material handling between decoupling points. The 
throughput of the line is highly dependent on the total number of 
available AFLs and the assignment of operators to line segments. With 

Fig. 2. The structure of the proposed DDS-DSS.  

Fig. 3. The steps taken to realize and evaluate the proposed DDS-DSS.  
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many AFLs, the throughput of the production line will be improved to a 
certain level by removing waiting time for material handling. However, 
the operating and maintenance costs will rise as well. Moreover, the risk 
of collision and the complexity of the work environment will increase 
with a higher number of AFLs. Hence, keeping the number of AFLs as 
low as possible is desired while ensuring it doesn’t affect line 
throughput. Therefore, the objectives are maximizing throughput 
(MaxE(Th)), minimizing total number of operators (Min

∑

s∈S
(Ops)), and 

minimizing the number of AFLs (Min AFL). The constraints of the 
problem include the lower and upper bound on the number of operators 
assigned to each segment (Opl

s ≤ Ops ≤ Oph
s ), the total number of 

available operators (
∑

s∈S
(Ops) ≤), and the maximum number of available 

AFLs. 

Data-driven simulation-based decision support system 

The proposed structure for the DDS-DSS is depicted in Fig. 2. To find 
the appropriate assignment of resources in the studied case, two 
different approaches, namely SB-BA and SB-MOO, are employed. FACTS 
Analyzer software [37] was used to build an efficient DES model for RA 
in the studied HMLV production system. The entering sequence, pro-
cessing times at each workstation, the total number of available AFLs, 
time to failure, time to repair for each workstation, and travel time of 
AFLs are extracted from historical data and considered in the simulation 
model. The production plan, which includes the product variants and 
their specifications and the production steps for each variant, is given as 
inputs in the simulation period. The inputs can be updated according to 
a predefined update period or by the user command. Post-optimality 
analysis is performed by applying the DBSCAN algorithm to cluster 
the generated solutions according to the decision-maker’s preferences to 
provide the managers with applicable rules. To realize the proposed 
DDS-DSS, the steps shown in Fig. 3 are undertaken. 

Scenario analysis using SB-BA 

Scenario analysis is creating and analyzing various possible out-
comes of scenarios or situations using a model built based on real-world 
phenomena or artifacts. Through scenario analysis, it is possible to 
identify and evaluate potential risks and opportunities and develop 
strategies to respond to various possible outcomes. It also allows 
decision-makers to gain insights that inform their judgment and further 
optimize results. However, to make efficient scenarios, they must be 
built around the leverage points of a system. A leverage point in a system 
refers to a point at which a small change or intervention can lead to a 
significant impact or outcome. According to the theory of systems [38], 
the leverage point of a manufacturing system is its bottleneck. Thus, the 
scenarios in this study are designed to mitigate the bottlenecks of the 

systems. Hence, SB-BA is used to find the bottlenecks of the system. The 
simulation model imitates the behavior of the real system and generates 
the required data to perform BA. 

Employing SB-BA for short-term resource allocation aligns with the 
existing literature on bottleneck management in complex manufacturing 
systems. Drawing parallels with the digital twin-based framework by 
Kumbhar et al. [39], the current study focuses on predicting future 
bottlenecks through simulation models, offering a proactive approach to 
resource reallocation. Furthermore, diagnostic insights generated by the 
data-driven approach proposed by Subramaniyan et al. [22] can be in-
tegrated into the simulation model to provide more comprehensive and 
effective resource allocation strategies. By incorporating diagnostic in-
sights into the simulation model, it is possible to first identify the root 
cause of the bottleneck. This allows for determining whether resource 
allocation is the most suitable solution for the identified bottleneck. For 
instance, if the bottleneck is primarily due to maintenance issues, simply 
re-allocating resources may not address the underlying problem. In such 
cases, the simulation model can suggest alternative solutions, such as 
prioritizing certain maintenance activities. 

The SB-BA used in this study benefits from the active period method 
(APM) [40] to identify and rank bottlenecks in the production system. 
APM divides the resource states into two categories, namely active and 
inactive. In APM, a resource is called inactive when it is starved (waiting 
for a part to arrive) or blocked (waiting for a finished part to leave that 
resource). The rest of the time is counted as active (Fig. 4). Using the 
APM, two numbers are calculated for each resource, the percentage of 
the sole bottleneck and the percentage of the shifting bottleneck. The 
bottleneck severity of a resource is then defined as the sum of sole and 
shifting bottleneck percentages for that resource. Following the identi-
fication of bottlenecks, several scenarios are devised for resource allo-
cation to improve production throughput. In SB-BA, the general goal 
should be to prevent the most severe bottleneck (i.e., the resource with 
the highest value of bottleneck severity) from starving or being blocked. 
This can be done in the problem under study by relocating mobile re-
sources in the production line. 

Algorithm 1 describes the steps of the SB-BA approach to identify, 
rank, and mitigate bottlenecks using scenario analysis. In Algorithm 1, R 
is a set of resources involved in the production, Tstart and Tend are the 
start and end of the duration to perform BA, to is the time duration be-
tween two consecutive observations, and No is the number of observa-
tions made over the time period [Tstart ,Tend]. At each observation, the 
state of the resources (zero if the resource is inactive, and 1 if the 
resource is active) is updated and stored in a matrix Rstates, which is of 
the dimension R× Nm. To perform SB-BA, active periods are extracted 
from the resource states matrix (Rstates) using the “Extract active periods” 
function, which returns a list of “active periods” of each resource. Af-
terward, by applying the “Find bottlenecks” function to “Active pe-
riods,” the resource with the longest active period is marked as a 
bottleneck at each to. Finally, the “Shifting bottleneck” function will get 

Fig. 4. A visualization of the active period method for resources using simulation outputs.  
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the “Bottleneck list” generated by the “Find bottlenecks” function and 
extract overlap time durations as shifting periods. Algorithm 1, equip-
ped with a bottleneck visualization function, is implemented in Python 
(see [41]). 

Algorithm 1. SB-BA resource allocation procedure. 

SB-MOO 

The SB-MOO proposed in this study uses the simulation model out-
puts as inputs for the optimization algorithm. Upon receiving these 
outputs, the algorithm generates a revised assignment of resources, 
which the simulation model then assesses. This iterative process con-
tinues until the termination criterion of the optimization algorithm is 
met. In this paper, the outputs of the simulation model are the 
throughput of the production line, the number of operators assigned to 
each workstation, and the total number of AFLs. 

NSGA-II-ML 
This study uses an enchanted non-dominated sorting genetic algo-

rithm (NSGA-II) as the optimization algorithm, incorporating a 
customized meta-learning mechanism to optimize its performance. 
NSGA-II is amongst the most commonly used evolutionary algorithms 

that can solve multi-objective problems [42]. 
The pseudo-code of the NSGA-II-ML is presented in Algorithm 2. 

More details about the NSGA-II-ML, including solution representation, 
non-dominated sorting, crowding distance, meta-learning with memory, 
dynamic orthogonal arrays, and learning rate, crossover, and mutation, 
are described, respectively. The notation used in Algorithm 2 is as fol-
lows: N is the population size, gen is the number of generations, α and pc 
are crossover alpha and crossover probability, respectively, pm is mu-
tation probability, learning_timeout is the time given to the learning 
process in each iteration of NSGA-II-ML, Th,Ops,AFLs are objectives, 
and Meta_learningParameters are the parameters of the meta-learning 
mechanism and are described in more detail. 
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The NSGA-II algorithm is implemented by creating a first initial 
population of parents (P). Each solution in the population is assigned a 
Pareto front through the sorting algorithm. A binary tournament, 
crossover, and mutation are used in this step to create an offspring Q 
with a size of N. The algorithm then incorporates a meta-learning 
mechanism, which runs for a specified duration within each genera-
tion. This mechanism adjusts the crossover and mutation probabilities 
based on the learning from previous generations, thereby improving the 
algorithm’s performance over time. 

The hybrid population is sorted based on the crowding comparison 
operator, and then the N best solutions are taken as the future popula-
tion (Pt+1). By using the crowding comparison operator and selecting a 
binary tournament, this algorithm guarantees the population variety of 
each generation. Non-dominated sorting will result in multiple Pareto 
fronts of the combined population (Rt= Pt UQt). The best solutions are 
grouped in the first front, namely F1, followed by the second, third, and 
other fronts generated. This selection method ensures that elite members 
of the latest generation are not removed, resulting in higher stability and 
convergence. 

Algorithm 2. NSGA-II-ML. 

Solution representation 
Meta-heuristic algorithms are most effective when the solution is 

represented effectively [43]. In this study, a solution representation for 
the defined problem is designed. This representation has a length of NS +

1, in which NS is the number of segments, and the last part is the number 
of AFLs used in the line. A sample of the solution representation is 
presented in Fig. 5. 

Fast non-dominated sorting and crowding distance 
Using Fast Non-Dominated Sorting for each solution p, two factors 

are determined; Sp, a set of solutions dominated by solution p, and np, the 
number of solutions that dominate solution p. For a population with the 
size N and a problem with m objective functions, the computational 
complexity of the non-dominated sorting is equal to O

(
mN2). First 

Pareto front, F1, is composed of the solutions that their np = 0. In this 
step, the nj for each member of Sp, belonging to F1, is reduced by one, 
and members with nj = 0 will form F2. In the next step, the members of 
F1 are left from the calculations, and the same procedure will happen on 
the F2. Using non-dominated sorting, the solutions will be ranked on 
several fronts, with Rank 1 being the best, followed by Rank 2, etc. Al-
gorithm 3 presents the pseudo-code of the non-dominated sorting 
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algorithm. 

Algorithm 3. Non-dominated sorting. 

NSGA-II uses a measure called crowding distance to determine the 
density index of each solution. Crowding distance is used to adjust the 
variety of the solutions generated in each iteration of the optimization 
algorithm. The average distance of points surrounding a solution is 
calculated to find the density index for a solution. This value is used as 
an estimated value for the perimeter of the cuboid surrounding a 
particular solution without including other points [44]. The 
pseudo-code for crowding distance calculation is shown in Algorithm 4, 
in which F represents fronts stored in F (returned by Algorithm 3). 

Algorithm 4. Crowding distance. 

Meta-learning with memory, dynamic orthogonal arrays, and learning rate 
The meta-learning algorithm begins by taking some required inputs, 

which are the current population Pt , crossover probability pc, mutation 
probability pm, and Meta_learning paramteres. Meta_laerning parame-
ters are learning rate (lr = 0.85), memory size (Memsize = 10), thresh-
olds for the standard deviation of population (σlow = 0.2,σhigh=0.8), the 
size of orthogonal array (Orthlarge = 10,Orthmedium = 5,Ort = 5), and the 
number of learning iterations (learning iters = 5). The algorithm then 
calculates the standard deviation (σ) of the fitness values of the current 
population Pt . Depending on the value of this standard deviation, it 
selects an appropriate size (S) for the orthogonal array, which is a sta-
tistical method of experimental design providing a set of well-balanced 
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(orthogonal) data. The pseudo-code of the Meta-learning algorithm with 
memory, dynamic orthogonal array, and learning rate is provided in 
Algorithm 5. 

The algorithm then checks if there is any existing memory. If there is, 
it calculates the average crossover and mutation probabilities from the 

memory and generates an orthogonal array based on these averages. If 
there is no existing memory, it generates an orthogonal array based on 
the initial crossover and mutation probabilities. This orthogonal array is 
used to explore the parameter space in a balanced way, ensuring that the 
algorithm doesn’t focus too much on one area of the parameter space. 

The next part of the algorithm involves a learning process. For each 
orthogonal array, the algorithm runs a certain number of learning iter-
ations. In each iteration, it appends a new population from NSGA-II 
using the crossover and mutation probabilities from the orthogonal 
array. It then calculates the maximum standard deviation of the fitness 
values of the three populations (Th,Ops,AFls) and appends this to a list of 
standard deviations. This process allows the algorithm to explore 

different combinations of crossover and mutation probabilities and 
observe their effects on the population’s fitness. 

Algorithm 5. Meta-learning with memory, dynamic orthogonal, and 
learning rate. 

After the learning process, the algorithm uses the Get best parameters 
function to find the best parameters (Algorithm 6). This function nor-
malizes the standard deviations to a range between − 1 and 1 and finds 
the index of the closest value to zero (closest_index). This index corre-
sponds to the best orthogonal array, which contains the best parameters. 
The algorithm then updates the crossover and mutation probabilities 
using a learning rate (lr) and the best parameters. It also appends these 
new probabilities to the memory. If the memory size exceeds the spec-
ified limit, it removes the oldest element. This process allows the algo-
rithm to gradually adjust the crossover and mutation probabilities based 
on the results of the learning process, improving its performance over 
time. 
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Algorithm 6. Get best parameters. 

The Get best parameters function is a crucial part of the algorithm. It 
takes the standard deviations and the orthogonal array as inputs. The 
function first normalizes the standard deviations to a range between − 1 
and 1. It then finds the index of the value in the normalized array that is 
closest to zero. This index is used to select the corresponding element 
from the orthogonal array, which is returned as the best parameters. 

This function essentially identifies the set of parameters that resulted in 
the most stable (lowest standard deviation) performance during the 
learning process. 

Crossover and mutation operators 
Crossover is an operator used in GAs and evolutionary computation 

to combine the genetic information of two parents to generate new 
offspring. This process can generate offspring exhibiting traits that fall 
beyond the range of values defined by the parental genes. This study 
employed a crossover suitable for GAs with real-valued parameters 
named Blend-Alpha (BLX-α) [45]. The details of the applied crossover 
are presented in Algorithm 7. p1, and p2 are two randomly selected 
parents, the parameter α governs the extent of extrapolation, and pc is 
crossover probability. Although this approach can facilitate a more 
efficient search space exploration, it may generate offspring that conflict 

with the constraints of the problem, necessitating supplementary 

handling methods. In this study, the gene values are in the range [0,1]. 
Thus, the newly generated values are clipped to this range using the 
min(max(c, 0),1 ) formula. The value of α is set to be 0.5, as proposed by 
several studies [46]. 

Algorithm 7. BLX-α Crossover. 

The mutation is a genetic operator utilized by evolutionary algo-
rithms to preserve diversity and explore new regions of the search space. 
It includes introducing random modifications to the genetic information 
of a population member to develop new solutions. Mutation aims to add 
diversity to a population of solutions and prevent premature conver-
gence. This study benefits from the Gaussian mutation, which involves 
adding a stochastic value selected from a Gaussian distribution to the 
pre-existing value of a gene [47]. The details of the applied mutation are 
described in Algorithm 8. The degree of alteration to a specific gene is 
determined by the standard deviation of the Gaussian probability dis-
tribution using this mutation. The utilization of the Gaussian mutation 
operator is frequently observed due to its ability to facilitate a sub-
stantial likelihood of minor alterations, owing to the Gaussian distri-
bution’s characteristics, while also enabling sporadic significant leaps. 

Algorithm 8. Gaussian mutation. 
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Post-optimality analysis 

Post-optimality analysis is usually performed on the results of MOO 
to extract applicable knowledge from a portion of decision space that is 
more favorable to decision-makers. Similar to Bandaru et al. [48], this 
study applies a posterior approach, in which the DBSCAN clustering 
algorithm is used to cluster the decision space according to the deci-

sion-makers’ preferences [49]. Then, frequency analysis is performed 
over the solutions, falling in the desirable cluster(s) to generate appli-
cable rules for the values of decision variables. 

DBSCAN is a clustering technique that does not adhere to the con-
straints of convexity and isotropy imposed by other methods like K- 
means. The adaptability of DBSCAN accommodates the intricate and 
diverse structures that frequently arise in MOO situations. In such sce-
narios, the Pareto-efficient solutions frequently exhibit non-linear and 
non-uniformly shaped clusters in the objective space, which can be 
effectively detected and clustered by the DBSCAN [50]. 

For better clarification, the pseudo-code of the DBSCAN algorithm is 
provided in Algorithm 9. The input parameters of the algorithm include 
dataset D (a dataset of values of objective functions generated by the 
MOO algorithm), a radius epsilon, and a minimum number of points 
MinPts. The algorithm commences with the iteration of every unvisited 
point in the dataset, subsequently designating it as visited. The algo-
rithm identifies the epsilon-neighborhood of a given point P, which 
encompasses all points within a distance of eps from P. It subsequently 
verifies whether this neighborhood comprises a minimum of “MinPts” 
points. If it does, a novel cluster C is initiated and subsequently 
augmented by including all data points deemed density-reachable from 
P, denoting all the points that are part of the same cluster as P. The al-
gorithm proceeds with the expansion of the cluster until no additional 
density-reachable points are discovered. Points that are not density- 
reachable from any other point are classified as noise. The function 

“RegionQuery” yields points located within the epsilon-neighborhood of 
point P. The function “ExpandCluster” is designed to incorporate a given 
point P into a designated cluster C and subsequently expand the cluster 
by including all points considered density reachable. The termination of 
the algorithm occurs upon the visiting of all points. 

Algorithm 9. DBSCAN. 

A real-world application study 

This study addresses a real-world RA problem in an HMLV marine 
engine manufacturer in Sweden. The factory aims to improve its agility 
in the face of frequent changes in the production plan. The simulation 
steps introduced by Banks et al. [51] were performed rigorously to build 
a valid simulation model of the real-world factory for further experi-
mentation and optimization. The simulation model is presented in Fig. 6. 

The studied company buys its cylinder heads and blocks from an 
external foundry. When the blocks and cylinder heads arrive at the 
factory, the raw material goes through a machining area before they are 
introduced into the simulated assembly line. The assembly line is 
responsible for the production of three distinct marine engine types, 
namely D3, D4, and D6, each of which can be customized based on over 
300 different specifications. A visual representation of the assembly line 
can be seen in Fig. 6. The assembly process encompasses 46 operations, 
including assembly, painting, leakage tests (cold tests), repair, final 
performance tests (hot tests), customization, and packaging. As depicted 
in Fig. 6 (a), the production line consists of three assembly areas (Flow 1 
to Flow 3), leakage test area, repair area, pre-paint, paint shop, post- 
paint assembly, hot engine test, customization, and packaging. The 
transportation between these areas is handled by AFLs. 

All operations, except the fully automated paint shop, involve full or 
partial human intervention. This human element introduces a signifi-
cant degree of variability into the processes, leading to frequent reworks 
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and varying cycle times, which are the primary root causes of bottle-
necks. On the other hand, the automated paint shop maintains consis-
tent uptime due to a rigorous preventive maintenance regime conducted 
outside of production hours. This results in high reliability and negli-
gible maintenance-related downtime, a common bottleneck in many 
production systems. Therefore, in this context, the major driver of bot-
tlenecks is not equipment failure or maintenance-related downtime but 
the variability in cycle times due to high product variation and manual 
operations. This underscores the need for optimizing RA to ensure 
smooth production flow. 

The production schedules in the factory are planned three days 

ahead of the production. The allocation of operators in each area de-
pends on the availability of operators and the specification of engines to 
be produced in the day. In such a scenario, the manufacturing com-
pany’s typical objective is maximizing throughput while minimizing the 
number of operators and AFLs. Given these complexities and the dy-
namic nature of the production environment, the objective is to provide 
the decision-makers with a DDS-DSS that is capable of effectively 
managing the challenges of RA and ensuring production efficiency in the 
HMLV production environment of the factory. 

Fig. 6 (b) represents an image of the simulation model. The model 
can read the data from the company database by interfacing it with 
Mircosoft Excel. The data input to the simulation model includes the 
updated production plan, including engine input sequence and specifi-
cations, the availability of the operators for the coming production 
period, and the availability of AFLs. 

The simulation model was built in a C+ +-based software package, 
FACTS Analyzer [37], which has proven efficient in simulating various 
discrete events in the manufacturing context (e.g., [52,53]). Verifying 

Fig. 5. Solution representation.  

Fig. 6. A schematic view of the production line and simulation model.  
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and validating the model is necessary to ensure the simulation model is 
qualified for further analysis. The verification of models is an ongoing 
process that ensures the model is functioning as expected [54]. 

Model validity was tested using statistical analysis following the 
validation procedure proposed by [55]. All statistical tests were per-
formed using the Scipy library. As a first step, the Kolmogorov-Smirnov 
test (K-Test) was used to test the normality of data (i.e., daily engine 
throughput) for the real system and simulation model. P-values for daily 
throughput of both the real system and simulation, shown in Fig. 7(a) 
and (b), are greater than 0.05, indicating that the null hypothesis (i.e., 
data follows a normal distribution) is not rejected with a 95% confidence 
interval. 

The next step of the validation procedure is natural pairings 

evaluation. As the data are normally distributed but not paired, the 
Bartlett test determines whether the variances of real data and simula-
tion results are equal. The p-value calculated for the Bartlett test is equal 
to 0.11, which is more than 0.05. As a result, at a 95% confidence level, 
the null hypothesis (i.e., the variances of real system throughput and 
simulation results are equal) is accepted. 

Because the normality of the data and equality of variances were not 
rejected in the first two steps of the validation procedure, the third step 
was an independent T-Test. The independent T-Test resulted in a P-value 
of 0.58. As a result, at a 95% confidence level, the null hypothesis (i.e., 
the mean values of real system throughput and simulation results are 
equal) is accepted. According to Chung’s Validation Procedure, the 
simulated model behaves consistently with the actual production line. 

Fig. 7. Kolmogorov-Smirnov test (K-Test) results.  
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Fig. 8. Bottleneck analysis results using AFLs.  
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Therefore, it is concluded that the simulation model is valid. 

Results 

Scenario analysis using SB-BA 

By changing one or several decisions, scenario analysis aims to 
improve the performance measures of the interest. The number of op-
erators in different sections of the line and the number of available AFLs 
are the decision variables of the system. Moreover, the performance 
measures are hourly throughput, the number of operators, and the 
number of AFLs. Improvement scenarios are designed based on two 
underlying concepts: the availability and limitations in the allocation of 
resources. For example, the maximum number of available AFLs and the 
location of primary bottlenecks in the production process. Fig. 8 illus-
trates the results of APM based on the simulation output for all opera-
tions involved in the production process. As depicted in Fig. 8, APM 
generates two characteristics for each bottleneck operation, namely, the 
sole portion and shifting portion, and sorts the operations based on the 
sum of the sole and shifting portions. According to the results of BA, the 
workstation following the paint shop is considered the main bottleneck 
of the production system, followed by Assembly3, Assembly2, AFLs, 
Robot1, and Robot2. 

According to TOC and APM, the first step after detecting the 
bottleneck is to prevent it from being starved or blocked. Hence, to 
improve the throughput of the current production line using SB-BA, 68 
scenarios are designed according to three types of improvement strate-
gies. The improvement strategies are designed to decrease the number of 
operators in underutilized segments, relocate them to bottleneck areas, 
and change the number of AFLs in the production line. Fig. 9 reveals that 
the customization, packaging, and leakage test area operators are under- 
utilized.  

• Strategy 1 includes reducing the number of operators in the under- 
utilized segments (i.e., customization, packaging, and leakage test), 
which reduces the total number of operators.  

• Strategy 2 includes relocating the operators from the under-utilized 
areas to bottleneck resources. This means that one operator is 
replaced from the most under-utilized segments of the production 
line and reassigned to the bottleneck stations. Accordingly, it is 
desired to evaluate scenarios in which an operator is removed from 
the under-utilized segments and relocated to Post Paint-Shop, As-
sembly3, Assembly2, and Assembly1, respectively.  

• Strategy 3 includes changing the number of available AFLs. The 
number of available AFLs can be changed from 3 to 7. 

In total, 67 unique improvement scenarios are evaluated and 
compared regarding throughput, the number of operators, and the 
number of AFLs. The settings of the production line and the number of 
unique improvement scenarios under each strategy are presented in the 
supplementary material (see supplementary material). 

The values of the decision variables and the performance measures in 
each improvement scenario are depicted in Fig. 10 using Parallel Co-
ordinate Plots (PCP). In this figure, the term “_Op” added after the name 
of each variable represents the number of operators in that segment (e. 
g., “Assemnly1_Op” is the number of operators in Assemnly1). As shown 
in Fig. 10 (a), reducing under-utilized resources will decrease the total 
number of operators in the production line. However, it does not affect 
the throughput of the production line. Fig. 10 (b) reveals that reallo-
cating under-utilized operators to bottleneck segments can lead to an 
11% increase in hourly throughput. According to Fig. 10 (c), decreasing 
the number of AFLs in production will affect the throughput negatively. 
However, increasing the number of AFLs cannot significantly improve 
the throughput. 

Although SB-BA resulted in valuable insights about the production 
line, manually evaluating many possible improvement scenarios is time- 
consuming. For instance, in this case, it is possible to combine Strategy 1 
with either Strategy 2 or Strategy 3, which results in 640 improvement 
scenarios. As demonstrated in this section, scenario analysis is a viable 
method for assessing the potential effects of prospective future occur-
rences on system performance while considering multiple alternative 
outcomes. Nevertheless, the capacity of scenario analysis to investigate a 
vast array of possible outcomes is restricted. To put it differently, the 
scalability of SB-BA presents a significant challenge when dealing with 
large decision spaces. To overcome this challenge, SB-MOO systemati-
cally searches to identify optimal or near-optimal solutions. 

SB-MOO 

In this segment, after tuning the parameters of the algorithms, first, 
the results of performing SBO on the real-world case study are presented. 
Afterwards, the performance of the proposed NSGA-II with meta- 
learning is compared with NSGA-II and DE. This comparison is based 
on two most important performance indicators: the number of non- 
dominated solutions (NNDS) and hyper-volume (HV) [56,57]. The 
evaluation is conducted on 30 test problems randomly derived from the 
original problem. Additionally, we also report the highest throughput 
discovered by each algorithm. 

Parameter tuning 
Parameter setting has an important role in the performance of meta- 

heuristic algorithms [58,59]. Thus, conducting prepared experiments to 
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find a suitable value for each parameter is paramount. The parameters of 
NSGA-II, NSGA-II-ML, and DE are tuned at four levels using the 
Gray-based Taguchi method [60], as shown in Table 1. As presented in 
Table 1, L16

(
44) Taguchi Orthogonal Array was employed to design 

experiments to tune the parameters of the optimization algorithms. 
Following the Grey-based Taguchi Method, a reasonable combination of 
parameter values is set to select the best parameter levels to maximize a 
certain measure known as the signal-to-noise (S/N) ratio [61]. The main 
effects diagrams for Means and S/N ratios are plotted in Fig. 11. 

According to the Taguchi Method, the best levels of the parameters are 
those falling on the highest S/N levels, resulting in the selected levels for 
parameters of NSGA-II and NSGA-II-ML to be population size (PS= 100), 
crossover probability (PC = 0.90), mutation probability (Pm = 0.3), and 
number of evaluations (NE = 3000). In the DE case, the selected values 
are the Differential Weight (DW = 0.8), population size (PS= 100), 
crossover probability (PC = 0.70), mutation probability (Pm = 0.5), and 
number of evaluations (NE = 5000). 

Fig. 10. PCP of the scenarios developed under each strategy.  
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Results of SB-MOO on the application study 
The results of SB-MOO, using the proposed NSGA-II-ML, NSGA-II, 

and DE, are depicted in Fig. 12, which is a 3D scatter plot of the objective 
space. The highest achieved hourly throughput by NSGA-II-ML, NSGA- 
II, and DE are 1.01, 0.93, and 0.96, respectively, which is 24%, 16%, and 
20% higher than the current throughput of the system. As depicted in 
Fig. 12, NSGA-II-ML achieves the best throughput among the three al-
gorithms, given a similar number of iterations. This superior perfor-
mance can be attributed to the meta-learning mechanism inherent in 
NSGA-II-ML. This meta-learning mechanism allows NSGA-II-ML a bet-
ter exploration of decision space, as it can leverage the knowledge 
gained from previous iterations. This is particularly beneficial in the case 
of large problems, where the search space is vast and the number of 
potential solutions is enormous. 

Performance evaluation 
In order to thoroughly assess the performance and scalability of the 

proposed NSGA-II-ML, it has been benchmarked against NSGA-II and DE 
over an extensive evaluation across 30 randomly generated instances. 
These instances are generated with a diverse range of decision space 
sizes, allowing a careful comparison of the algorithms. The instances are 
generated in 3 groups; small instances have a decision space of size 103 

to 104; medium instances have a decision space of size 105; and large 
instances have a decision space of size 109. Detailed information 
regarding the generated instances, including the lower and upper 
bounds of decision variables, as well as the size of the decision space for 
each instance, can be found in the supplementary material 
(supplementary material). Fig. 13 presents the performance of NSGA-II- 
ML, DE, and NSGA-II over two performance measures. 

In the analysis of NNDS (Fig. 13 (a)) across small-sized, medium- 
sized, and large-sized problems, all three algorithms - NSGA-II-ML, 
NSGA-II, and DE - exhibit an upward trend. For small-sized problems, 
as the problem size increases, NSGA-II-ML and NSGA-II gradually in-
crease their performance in terms of NNDS, with NSGA-II-ML eventually 
surpassing the others. DE starts strong but remains stable. In the 
medium-sized problem phase, all algorithms significantly increase their 
performance, i.e., NNDS, adapting to the problem size, with NSGA-II-ML 
maintaining the lead and DE showing substantial improvement. For 
large problems, while all algorithms continue to increase their solutions, 
the rate of increase slows for NSGA-II and DE. NSGA-II-ML, however, 
maintains a steady growth rate, ending with the highest number of non- 
dominated solutions. 

In the analysis of HV (Fig. 13 (b)) for small-sized, medium-sized, and 
large-sized problems, all three algorithms - NSGA-II-ML, NSGA-II, and 

Fig. 11. Parameter tuning of NSGA-II and NSGA-II with meta-learning (a and b) and DE (c and d) using the grey-based Taguchi method.  

Table 1 
The levels of the parameters for the algorithm.  

Algorithm Parameter Level_1 Level_2 Level_3 Level_4 

NSGA-II and NSGA- 
II with meta- 
learning 

PS 20 50 100 150 
PC 0.7 0.8 0.90 0.95 
Pm 0.1 0.15 0.2 0.3 
NE 500 1000 3000 5000 

DE PS 20 50 100 150 
PC 0.7 0.8 0.9 0.95 
Pm 0.2 0.3 0.4 0.5 
Differential 
Weight (DW) 

0.2 0.4 0.6 0.8 

NE 500 1000 3000 5000  
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DE - show an increase as the problem size grows. For small-sized prob-
lems, NSGA-II-ML and NSGA-II gradually increase their hypervolume, 
with NSGA-II-ML eventually surpassing the others, while DE starts 
strong but remains stable. In the medium-sized problem phase, all al-
gorithms significantly increase their HV, adapting to the problem size, 
with NSGA-II-ML maintaining the lead and DE showing substantial 

improvement. For large-sized problems, while all algorithms continue to 
increase their HV, the rate of increase slows for NSGA-II and DE. NSGA- 
II-ML, however, maintains a steady growth rate, ending with the highest 
HV. 

Fig. 12. The 3D-objective space of the optimization performed on the application study by NSGA-II-ML, NSGA-II, and DE.  
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Post-optimality analysis 

As illustrated in Fig. 14, the DBSCAN algorithm divides the objective 
space into seven clusters based on throughput values. The rationale 
behind clustering based on the throughput values is rooted in the 
mobility of operators and AFLs, as reallocating these resources does not 
entail substantial overhead costs to existing operations. Consequently, 
this study has aimed to identify the rules governing the cluster of solu-
tions situated in the upper-right corner of Fig. 14. These solutions 
exhibit high values for throughput. The presence of multiple solutions 
within the cluster indicates the necessity of conducting statistical anal-
ysis to determine the range of decision variables that lead to the optimal 
region of the objective space. 

As it is visually clear in Fig. 14, it has demonstrated remarkable ef-
ficacy in clustering the results of MOO. The effectiveness of this method 
is predominantly attributed to its distinctive capability to detect clusters 
with diverse shapes and dimensions. 

Analyzing the solutions falling in the desired cluster(s) can provide 
managers with insightful knowledge about the variable bounds that can 
guide the production towards that cluster. In this study, a boxplot is used 
to perform frequency analysis and accordingly extract the values of 
decision variables that can result in the highest throughput values. As 
depicted in Fig. 15, the total number of operators for the solutions with 
the best achievable throughput falls in the range of 26–29. The number 
of AFLs can be 5 or 6. The values for the number of operators in each 
segment are also evident in Fig. 15. 

Managerial insights 

The following points critically analyze the results of the current 
study and propose managerial insights for production systems. 

SB-BA has proven to be a powerful and intuitive tool for handling the 
RA problem in HMLV production systems. However, its capacity to 
explore large decision spaces is somewhat limited. This limitation be-
comes more pronounced in scenarios with larger decision spaces, where 
SB-MOO proves to be a more suitable option. For instance, the industrial 
case studied in this paper operates in two distinct modes: a two-shift 
mode and a one-shift mode. In the two-shift mode, the decision space 
for each shift is smaller due to the limited number of operators, making 
it manageable for SB-BA. However, in the one-shift mode, where all 
operators are consolidated into a single shift, the number of operators is 
higher, leading to a larger decision space. This expansion of the decision 
space exposes the limitations of SB-BA’s capacity to handle such 
scenarios. 

The second point pertains to applying meta-learning within sto-
chastic short-term RA problems. Meta-learning, as an adaptive modifi-
cation approach, has been shown to improve the algorithm’s 
performance in terms of scalability and exploration of the decision 
space. It allows the algorithm to learn from evolving populations and 
adjust its parameters in response, thereby enhancing its performance 
over time. This novel application of meta-learning to the NSGA-II within 
the context of RA potentially offers a more efficient and effective solu-
tion to complex, dynamic RA problems. 

Moreover, the results of this study indicated that the reallocation of 
mobile resources could substantially impact throughput, which presents 
a promising opportunity for enhancing operational efficiency. Never-
theless, this procedure presents specific difficulties, especially regarding 
the redistribution of human resources within a manufacturing system. 
From a cognitive standpoint, it is imperative to comprehend the effects 
of frequent reallocation on operators who are frequently subjected to 
such adaptations. One cannot ignore the possibility of unintended con-
sequences that might have a long- or medium-term negative impact on 
the employee’s overall performance. An employee who experiences 
frequent task switching may encounter difficulties in coping with the 
intricacies of the transitions, resulting in a deterioration of work output 
and a rise in occupational mistakes. 

Hence, it is imperative for managers to diligently oversee the cir-
cumstances and carefully observe any alterations in a worker’s behavior 

Fig. 14. Results of DBSCAN performed on the objective space of SB-MOO.  

Fig. 15. Boxplot of optimal decision variables for maximum throughput.  
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or attitude. With this kind of monitoring, issues can be found early and 
fixed immediately. In addition, it is imperative to furnish the employees 
with the necessary assistance and instruction to facilitate their adjust-
ment to the modifications. Potential strategies to enhance employee 
performance may include providing supplementary training sessions, 
furnishing unambiguous instructions for new assignments, or instituting 
a mentorship initiative whereby experienced workers can guide inex-
perienced operators. By following these guidelines, managers can ensure 
a smooth transition during reallocation, preserving productivity and 
morale while lowering the risk of mistakes. 

Conclusions and future research 

This paper has addressed one of the significant challenges of HMLV 
manufacturing systems, i.e., appropriate allocation of resources, by 
focusing on providing a DDS-DSS. The proposed DDS-DSS incorporates a 
simulation model capable of receiving updated data, including, but not 
limited to updates in received orders, availability of resources, work-
station processing times, machine failures, product rejection rates in 
quality inspection, etc. The updates could happen on a pre-determined 
time interval or user command. This system allows resource allocation 
using two powerful approaches, SB-BA and SB-MOO, with the method 
being dependent on the decision-maker’s preferences. The SB-BA ben-
efits from a recently developed data-driven BA approach. Then, different 
RA strategies, i.e., reducing the number of operators in under-utilized 
segments, relocating the operators from under-utilized areas to bottle-
necks, and changing the number of available AFLs, are designed based 
on BA results to find the near-optimal allocation of mobile resources, 
namely, operators and AFLs. 

SB-MOO utilizes a popular MOO algorithm, namely, NSGA-II, that 
has been demonstrated to be an effective approach to performing RA in 
response to changes in demand and production plans. Additionally, 
DBSCAN is employed to cluster the MOO results for post-optimality 
analysis. The results revealed that general rules of thumb could be 
extracted to allocate resources to achieve the highest possible 
throughput. 

While the SB-BA approach was found to be more limited in its 
exploration capabilities, it was also more controllable and intuitive, 
making it a suitable choice for decision-makers who prefer a more 
straightforward approach. On the other hand, despite requiring certain 
knowledge and skill, SB-MOO has been proved to be a powerful tool for 
RA in today’s volatile environment. 

In this study, the SB-MOO approach has been further improved using 
a meta-learning mechanism to enhance the performance of NSGA-II-ML. 
The comparison between NSGA-II-ML, NSGA-II, and Differential Evo-
lution (DE) algorithms shows that NSGA-II-ML demonstrates superior 
scalability, consistently improving its performance as problem sizes in-
crease. It consistently outperforms the other two algorithms across all 
problem sizes, achieving the highest number of non-dominated solutions 
and the highest hypervolume. This superior performance can be attrib-
uted to the meta-learning mechanism inherent in NSGA-II-ML, which 
allows it to adapt more quickly to new problems or larger problem sizes 
by leveraging the knowledge gained from previous iterations. 

Overall, this study underscores the potential of DDS-DSS as a valu-
able tool in managing and optimizing HMLV production systems, of-
fering decision-makers a flexible and effective approach to RA. The 
results revealed that an 11% improvement is attainable using the SB-BA 
through analyzing a limited number of scenarios. Moreover, the opti-
mization results obtained by NSGA-II-ML, NSGA-II, and DE showed 
24%, 16%, and 20% higher hourly throughput than the current 
throughput of the system, respectively. These findings highlight the 
power of the improved SB-MOO approach, particularly in today’s vol-
atile environment, and the benefits of integrating meta-learning mech-
anisms into MOO algorithms for resource allocation in HMLV 
production systems. The results derived from the post-optimality anal-
ysis indicate that the optimal solutions, which yield the highest 

achievable throughput, necessitate a total operator count ranging be-
tween 26 and 29. Additionally, the quantity of AFLs required for these 
solutions can either be 5 or 6. Overall, this study underscores the po-
tential of DDS-DSS as a valuable tool in managing and optimizing HMLV 
production systems, offering decision-makers a flexible and effective 
approach to RA. 

There are two promising directions for future research within the 
domain of DDS-DSS in manufacturing systems, expanding upon the 
findings of this study. The first direction could concentrate on broad-
ening DDS-DSS application across different manufacturing sectors. In 
contrast, the second direction could focus on enhancing the performance 
of DDS-DSS as a promising tool for improving manufacturing systems. 

Regarding the first research direction, the application of DDS-DSS 
could be extended beyond RA to include a broader spectrum of prob-
lems prevalent in the manufacturing industry, potentially leading to 
more substantial improvements. Various demand-dependent decision- 
making problems could be considered in conjunction with RA. One of 
these problems is the buffer allocation problem, which involves deter-
mining the optimal locations and sizes of buffers to maximize 
throughput and minimize work-in-process. Additionally, advanced 
demand-driven logistics management approaches, including demand- 
driven material requirement planning, could also benefit from the 
application of DDS-DSS. By integrating DDS-DSS with production 
planning, allocation of resources and buffers, and logistics management, 
manufacturers could more accurately forecast demand and plan their 
production, thereby reducing inventory costs and improving customer 
service. Moreover, expanding the DSS method to additional complex 
line topologies and controls, e.g., fully dynamic moving assembly sys-
tems, could enable even greater productivity improvements through 
real-time resource allocation. 

The second research direction in DDS-DSS could focus on improving 
the internal structure and performance of DDS-DSS by developing more 
robust and efficient algorithms capable of handling large-scale complex 
manufacturing systems. This research direction focuses on developing 
more advanced data analytics techniques to extract and manage the vast 
data generated in manufacturing processes. Future research could also 
explore the use of more sophisticated or alternative algorithms, poten-
tially enhancing the efficiency and effectiveness of the optimization 
procedure. Moreover, integrating machine learning and artificial intel-
ligence in DDS-DSS could significantly enhance decision-making. For 
instance, integrating data-driven predictive models (e.g., the study by 
Subramaniyan et al. [22]) with a simulation model for optimal resource 
allocation could be a compelling exploration area for practitioners and 
researchers. While this approach promises to enhance bottleneck pre-
diction, it also presents challenges such as dependency on the range and 
diversity of training data and increased computational complexity. In 
this regard, future studies should focus on developing robust models 
capable of handling significant deviations from historical production 
situations. Additionally, strategies to manage the computational effi-
ciency of the integrated system, possibly through parallel processing or 
model simplification, should be investigated. Furthermore, the produc-
tion line studied in this research represents a system with relatively low 
product flow velocity, as is common in industries dealing with physi-
cally large and complex products. In such cases, bottlenecks tend to be 
more persistent than frequently shifting. As the industrial partner indi-
cated, the primary challenge is mitigating the severity of these bottle-
necks, which was the focus of this work. However, a key strength of the 
DDS-DSS is that the simulation model can be continuously updated 
based on real-time data to adapt to emerging disruptions or changes in 
the production line. This makes it possible to use the DDS-DSS in pro-
duction systems with higher bottleneck shiftiness. However, the higher 
frequency of updating and running DDS-DSS requires more processing 
power. Hence, enhancing the capability of the proposed approach to 
address shifting bottlenecks in production systems with greater vari-
ability and dynamics is an important direction for future research. 

Alongside the focus on DES for decision support in this study, the 
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growing interest in Artificial Intelligence (AI) based decision support 
systems in production system resource management should be 
acknowledged, as evidenced by Subramaniyan et al. [62]. Combining 
DES and AI-based decision support could offer a more comprehensive 
and effective approach to managing production system resources. This 
integration could potentially enhance the prediction and management of 
bottlenecks, providing a more dynamic and adaptable framework for 
resource allocation. Therefore, future research should explore this 
integration to enrich the discourse further and provide more robust 
solutions for production system management. 
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[14] Santos MS, Pinto TVB, Júnior ÊL, Cota LP, Souza MJF, Euzébio TAM. Simheuristic- 
based decision support system for efficiency improvement of an iron ore crusher 
circuit. Eng Appl Artif Intell 2020;94:103789. https://doi.org/10.1016/j. 
engappai.2020.103789. 

[15] Zhou B, Bao J, Li J, Lu Y, Liu T, Zhang Q. A novel knowledge graph-based 
optimization approach for resource allocation in discrete manufacturing 
workshops. Robot Comput-Integr Manuf 2021;71:102160. https://doi.org/ 
10.1016/j.rcim.2021.102160. 

[16] Bouajaja S, Dridi N. A survey on human resource allocation problem and its 
applications. Oper Res 2017;17:339–69. https://doi.org/10.1007/s12351-016- 
0247-8. 

[17] Mendonça PA, da Piedade Francisco R, de Souza Rabelo D. OEE approach applied 
to additive manufacturing systems in distributed manufacturing networks. Comput 
Ind Eng 2022;171:108359. https://doi.org/10.1016/j.cie.2022.108359. 

[18] Chiu C-C, Lin JT. An efficient elite-based simulation–optimization approach for 
stochastic resource allocation problems in manufacturing and service systems. 
Asia-Pac J Oper Res 2022;39:2150030. https://doi.org/10.1142/ 
S0217595921500305. 

[19] Schmenner RW. The pursuit of productivity. Prod Oper Manag 2015;24:341–50. 
https://doi.org/10.1111/POMS.12230. 

[20] Mahmoodi E, Fathi M, Ghobakhloo M. The impact of Industry 4.0 on bottleneck 
analysis in production and manufacturing: current trends and future perspectives. 
Comput Ind Eng 2022;174:108801. https://doi.org/10.1016/j.cie.2022.108801. 

[21] Latsou C, Farsi M, Erkoyuncu JA. Digital twin-enabled automated anomaly 
detection and bottleneck identification in complex manufacturing systems using a 
multi-agent approach. J Manuf Syst 2023;67:242–64. https://doi.org/10.1016/j. 
jmsy.2023.02.008. 

[22] Subramaniyan M, Skoogh A, Sheikh Muhammad A, Bokrantz J, Turanoğlu Bekar E. 
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