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ABSTRACT
In this study, we propose a new multi-objective mathematical model for designing compact,
balanced, and contiguous districts in healthcare systems. The objective functions minimize
districting heterogeneity and the implementation cost of monitoring plans for promoting
hygiene and public health. Expert teams perform these plans periodically by maximizing the
coverage area. The purpose of the districting problem is to specify how teams are formed
and allocated based on their service provision capacity and type of expertise. Improper
team allocation and unsuitable service provision cause an increase in time and costs, foster-
ing an adverse effect on the promotion of public health in the area. Compliance of the plan
with the specified requirements and its implementation cost are the main factors impacting
the districting problem decisions. We define two meta-heuristic algorithms including a
multi-objective genetic algorithm II (NSGAII) and a multi-objective grey wolf optimizer
(MOGWO) for solving the mathematical model in a real-scale because districting problems
are NP-hard problems. We also present a case study taking place at a university medical
centre in Iran to demonstrate the applicability and efficacy of the proposed model.
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1. Introduction

Generally defined, the districting problem refers to the
grouping of small areas (basic units) into larger groups
(districts). Optimally, the resulting districts should
exhibit features such as balance, contiguity, compact-
ness, and absence of embedded districts. This latter
condition is met whenever districts are not located
inside one another. In a districting problem, the inter-
area relations must be shown in a network represented
as an undirected graph G ¼ V;Eð Þ; where V repre-
sents the set of vertices, and E represents the commu-
nication paths between the vertices. In other words,
the set V ¼ vi; i ¼ 1; 2; :::; Vj j� �

; with a cardinality of
Vj j; represents the vertices of the graph. Each vertex
within this set, vi; is represented by vertical and hori-
zontal vector components, xi; yið Þ: Similarly, the set
E ¼ eij; i; j ¼ 1; 2; :::; Vj j; i 6¼ j; eij ¼ eji

� �
; containing

a total of Ej j elements, accounts for the graph edges,
with eij representing the relation between vertices vi
and vj: The districting problem has many applications,
such as political, school, and social facility districting,
as well as urban waste collection. Healthcare consti-
tutes one of the newest applications of the districting
problem (Datta, Figueira, Gourtani, & Morton, 2013).

One of the main activities performed by most
health systems is the implementation of specific

plans aimed at supporting the provision of a wider
range of services, which advances hygiene and pub-
lic health levels. These plans are generally developed
with the help of expert medical teams allocated and
dispatched to populated areas (Shortell & Kaluzny,
2000). The allocation of a team to a specific area
requires coordination with government centres,
which usually involves administrative bureaucracy,
as well as time and money. Coordination activities
facilitate the allocation of resources and reduce
operating costs. Moradi-Lakeh and Vosoogh-
Moghaddam (2015) show that plan compliance,
namely, the effectiveness of the plans, and oper-
ational costs are the key criteria for their successful
implementation.

The allocation of teams and populated areas to a
partition is based on the type of services needed by
the areas and aimed at maximizing the coverage
level of the needs. When a team responsible for the
implementation of a specific number of services is
allocated to a partition, it may happen that some of
the services provided by the team are not demanded
in several areas covered by this particular partition.
In this regard, the concept of accurate implementa-
tion does not denote the quality of service imple-
mentation provided by the team, since this latter
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depends on the experience and scientific levels of
the team members. This concept denotes accuracy
in the proper fulfilment of the services needed by
each sector by the team(s) allocated to it. For
example, if plan compliance is a vital factor, the
allocation of any area to a partition should aim at
its fulfilment in an optimal state. In this case, allo-
cating only one area to each partition leads to a het-
erogeneity value of zero and the maximum accuracy
possible. The second criterion, the implementation
cost, is not limited to the financial costs of imple-
menting the plan, but also includes costs derived
from the coordination activities required to form
and transfer teams as well as those arising from the
different interactions with the administrative bur-
eaucracy. Therefore, if the implementation cost of
the plan is one of the main priorities, the optimal
scenario would consist of the creation of a single
partition to which all the areas are allocated.
Therefore, as can be intuitively inferred, the two fac-
tors considered, plan compliance and implementa-
tion costs, are in direct conflict since increasing one
of them leads to a decrease in the other.

The problem investigated in this paper is that of
districting populated areas and allocating the services
needed by the areas to the relevant districts using a
bi-objective mathematical model with the objectives
of maximizing plan compliance and minimizing
implementation cost. The objectives are achieved,
respectively, by minimizing the heterogeneity of the
services required by the populated areas composing
the partitions and the number of team displacements
taking place across the different partitions.
Furthermore, since teams must be established in a
given partition, the formation of partitions results in
the formation and establishment of the teams being
allocated to each one of them. Therefore, the number
of partitions defined must aim at reducing the costs of
formation and establishment of teams according to
the objectives stated in the problem.

The paper proceeds as follows. Section 2 reviews
the related literature and provides intuition on the
research being performed. The mathematical model
along with the main assumptions on which it is built
are presented in Section 3. The solution method pro-
posed and the corresponding algorithms are detailed
in Section 4. The results obtained are presented and
analysed in Section 5. Furthermore, the monitoring
plan implemented by the health authorities of the
South Khorasan Province in Iran is investigated as a
case study in Section 6. Finally, Section 7 concludes
and suggests future research directions.

2. Literature review

Several methods have been suggested to solve dis-
tricting problems focusing on their different

applications. However, a comprehensive mathemat-
ical model has not yet been presented due to the
difficulties involved in defining constraints such as
the necessity of contiguity and the absence of
embedded districts (Boulle, 2004; Kalcsics, 2015;
Lewis, Kochenberger, & Alidaee, 2008; Salazar-
Aguilar, R�ıos-Mercado, & Cabrera-R�ıos, 2011;
Steiner, Datta, Neto, Scarpin, & Figueira, 2015). As
a result, heuristic and meta-heuristic algorithms
have been used for solving partitioning problems
(e.g. Baruch, Cret, & Pusztai, 1999; Datta &
Figueira, 2011; Kim, Hwang, Kim, & Moon, 2011;
Steiner, Datta, Neto, Scarpin, & Figueira, 2015).
Some of the most important studies describing the
structure and potential applications of the districting
problem are examined below.

Baruch, Cret, and Pusztai (1999) applied the
meta-heuristic genetic algorithm for the first time to
solve partitioning problems. In recent years,
researchers have focused on the behaviour of algo-
rithms in solving the graph partitioning problem.
Even though there are just a few of these papers,
their results have impressively promoted the power
of algorithms in solving several problems in the
field. Kim and Moon (2004) investigated the solu-
tion space structure of graph partitioning problems.
Based on their results, the space around the global
optimal solution is convex. Thus, if the crossover
operator is used to search the space, the perform-
ance of the algorithm would increase, since the
operator leads the solutions to transfer more quickly
from marginal regions to central ones in the space,
which makes it more probable to find a proper solu-
tion. The crossover operator has therefore been
identified as an important one in designing solution
algorithms for graph partitioning problem. Refer to
Kim, Hwang, Kim, and Moon (2011) to familiarize
with how algorithms, the genetic one in particular,
operate in solving graph partitioning problems.

Since the genetic algorithm lacks proper perform-
ance when doing proximity searches around the
available solutions, hybrid algorithms based on the
genetic one have been developed. The main purpose
of designing these combinatorial algorithms is to
exploit the advantages of other algorithms together
with the crossover operator of the genetic one. Local
search algorithms are an instance of this type of
algorithms, which usually obtain feasible solutions
within an acceptable time, though such solutions are
often of improper quality. In this regard, the
memetic algorithm refers to a group of algorithms
that incorporate the environmental conditions of
the problem within the genetic one. Inayoshi and
Manderick (1994) applied the memetic algorithm
for the first time to solve the graph partitioning
problem. Table 1 presents some of the main studies
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in the different research areas where the genetic
algorithm has been applied to solve the graph parti-
tioning problem.

Besides the genetic algorithm, several other meta-
heuristic ones, such as simulated annealing (Brooks
& Morgan, 1995), tabu search (Bozkaya, Erkut, &
Laporte, 2003), hybrids of simulated annealing and
tabu search (Ba~nos, Gil, Paechter, & Ortega, 2007),
particle swarm (Wang, Wu, & Mao, 2007), and dif-
ferential evolution (Datta & Figueira, 2011), have
been applied to solve partitioning problems in dif-
ferent application areas. Table 2 describes several
main research opuses that have used algorithms
other than the genetic one for solving the partition-
ing problem. Moreover, Table 3 describes several
recent studies that have also investigated the popula-
tion area partitioning problem.

Based on the literature reviewed, we have not
found any research dealing with the districting
problem together with the organization of expert
teams when implementing health system plans.
Furthermore, only three studies have investigated
multi-objective problems when analysing healthcare
districting (Benzarti, Sahin, & Dallery, 2013; Datta,
Figueira, Gourtani, & Morton, 2013; Steiner, Datta,
Neto, Scarpin, & Figueira, 2015). This is the case
despite the fact that in developed and developing
countries a large part of social health is evaluated
using the implementation of such plans. To the best
of our knowledge, the simultaneous evaluation of
the healthcare districting problem together with the
organization of expert teams in the implementation
of health system plans is investigated for the first
time in the current paper.

Despite the large number of publications, only a
small number of papers have studied districting
problems in practice. Kalcsics (2015) has argued

that there is very little consensus on the suitability
of the districting criteria, their importance and
measurement in real-world problems. This author
has suggested that instead of developing yet another
meta-heuristic for districting problems, researchers
should focus on a common and generic framework.
Therefore, in the current paper, a generic frame-
work for districting problems is investigated for the
first time using integer mathematical modelling.
Furthermore, the model proposed considers the
compactness and contiguity of partitions as well as
the absence of embedded districts constraints. The
contiguity and absence of embedded districts con-
straints are among the fundamental ones of area
partitioning and can be used in other partitioning
problems as well. The proposed mathematical model
has two objectives, namely, the maximization of the
plan compliance factor – achieved through the
minimization of the heterogeneities included in each
partition – and the minimization of the implemen-
tation cost factor – achieved through the minimiza-
tion of the number of displacements of the expert
teams across partitions.

3. Statement of the problem

This paper investigates the districting problem
designed to manage the implementation plans of
organizations whose goal is to improve the general
hygiene level of society. In these plans, the cities
demanding health services are divided into specific
districts. Unlike previous research, the number of
districts is not given as input data, and the proposed
mathematical model specifies the optimal number of
districts based on the objectives being considered.
Furthermore, the fundamental constraints of the dis-
tricting problem (contiguity, compactness, and

Table 1. Genetic algorithm used in solving the districting problem.

Author(s) Area of study

Constraints Objective function

Contiguity Compactness Lack of holes Single-objective Multi-objective

Maini, Mehrotra, Mohan, and
Ranka (1994)

Structural study � �

Rummler and Apetrei (2002) Structural study � �
Datta, Figueira, Fonseca, and

Tavares-Pereira (2008)
Structural study � � � �

Tavares-Pereira, Figueira,
Mousseau, and Roy (2007)

Partitioning and analysing the
urban transport system
in Paris

� � �

Datta, Fonseca, and
Deb (2008)

Urban land segmentation � � �

Datta and Figueira (2011) Partitioning populated areas � � � �
Datta, Malczewski, and

Figueira (2012)
Political partitioning of

populated areas
� � � �

Datta, Figueira, Gourtani, and
Morton (2013)

Health system partitioning � � � �

Steiner, Datta, Neto, Scarpin,
and Figueira (2015)

Health system partitioning � � � �

Knight, Harper, and
Smith (2012)

Locating emergency
medical services

� �

Lin, Sir, and Pasupathy (2013) Specification of resource
levels in surgical services

� �
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absence of holes) have been formalized and accur-
ately implemented for the first time in the current
model. As emphasized through the previous section,
no integrated, complete mathematical model has

been presented so far in the literature due to the
difficulty involved in designing these constraints
(Kalcsics, 2015; Salazar-Aguilar, R�ıos-Mercado, &
Cabrera-R�ıos, 2011).

Table 2. Meta-heuristic algorithms used in solving the districting problem.
Author(s) Case study Method Domain of usage

De Assis, Franca, and Usberti (2014) S~ao Paulo, Brazil GRASP Classifying urban areas for classifying
electric meter readers

Li, Church, and Goodchild (2014) Southern California TS-SA Partitioning urban lands, transport in
Southern California

Benzarti, Sahin, and Dallery (2013) – MILP Partitioning population areas, domestic
health system

Shirabe (2012) – Geographic map
analysis-heuristic
method

School bus problem

Salazar-Aguilar, R�ıos-Mercado, and
Gonz�alez-Velarde (2011)

Monterrey, Mexico MILP Partitioning population areas, mineral
water distribution

Ricca, Scozzari, and Simeone (2013) Italy TS & SA Partitioning population areas,
polling places

Haugland, Ho, and Laporte (2007) – TS-heuristic Partitioning and planning transport,
goods delivery

Galv~ao, Novaes, De Cursi, and
Souza (2006)

S~ao Paulo, Brazil Weighted frequency
diagram

Partitioning areas, mail
package delivery

Bozkaya, Erkut, and Laporte (2003) Edmonton, Canada TS-heuristic Partitioning population areas,
polling places

D’Amico, Wang, Batta, and
Rump (2002)

Buffalo SA Partitioning population areas, police
centres, urban management

R�ıos-Mercado and Salazar-Acosta (2011) Food product company GRASP Partitioning population areas, drink
bottle collection

Yamada (2009) Japan GA, SA, TS Political partitioning
Garc�ıa-Ayala, Gonz�alez-Velarde, R�ıos-

Mercado, and Fern�andez (2016)
Structural study MILP Arc routing districting

R�ıos-Mercado and Escalante (2016) Coke bottle distribution
company

GRASP-CTDP Commercial districting

Alawadhi and Mahalla (2015) Kuwait 4 meta-heuristic Political partitioning
Contreras, Fern�andez, and

Reinelt (2012)
Benchmark instances MILP Combined facility location and

network design
R�ıos-Mercado and L�opez-P�erez (2013) Monterrey, Mexico MILP Commercial districting
Liu, Xie, and Garaix (2014) Benchmark instances TS Periodic vehicle routing problem
Salazar-Aguilar, R�ıos-Mercado,

Gonz�alez-Velarde, and Molina (2012)
Business company TS-Scatter Search &

NSGAII
Commercial border specification

Table 3. Recent research on the districting problem.
Author(s) Description

Camacho-Collados, Liberatore,
and Angulo (2015)

Subject Police districting – Spain
Innovation It is the first research to mention the physical characteristics of the area, risk,

compactness, and insurance coverage level with regard to urban police
partitioning. The decision-maker can specify his desirability value from the
features based on workload balance and effectiveness

Solution method Heuristic methods of the greedy algorithm, the local search algorithm, and the
random search algorithm

Butsch, Kalcsics, and
Laporte (2014)

Subject Partitioning – arc routing
Innovation It is the title of the first research that has investigated the combinatorial

problem of partitioning and arc routing with a consideration of the
contiguity and proximity constraints as well as some other new criteria

Solution method A heuristic method based on the operation of the tabu search algorithm
Jovanovic, Tuba, and
Voss (2016)

Subject Commercial partitioning – sending and delivering goods from customers
Innovation It is the title of the first research that has used the ant colony algorithm for the

area partitioning problem
Solution method The ant colony algorithm

Datta, Figueira, Gourtani,
and Morton (2013)

Subject Partitioning populated areas in health system management – the southern part
of England

Innovation Presentation of a five-objective problem with a consideration of the contiguity
and absence of embedded districts constraints

Solution method The NSGAII algorithm
Steiner, Datta, Neto, Scarpin,
and Figueira (2015)

Subject Partitioning populated areas in treatment networks – Paran�a State, Brazil
Innovation Presentation of a five-objective problem with a consideration of the contiguity

and absence of embedded districts constraints
Solution method The NSGAII algorithm

Benzarti, Sahin, and
Dallery (2013)

Subject Partitioning populated areas in the domestic health system
Innovation Presentation of the multi-objective mathematical model of manpower allocation

(without consideration of the contiguity and absence of embedded districts
constraints in the partitions)

Solution method Solving the mathematical model and investigating with the help of randomly
generated data
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The main objective of the problem is to classify
populated areas (cities and villages) into districts
(hygiene networks), as well as to allocate expert
teams in the provision of health services to each dis-
trict based on the needs of the areas composing the
district. It is noteworthy that, since this problem is a
planning decision, the time frame through which
demand occurs is about 2–5 years. The objective
functions accounting for the heterogeneity of the
services provided in the districts and the number of
displacements of the expert teams across districts
are simultaneously minimized. An expert team has
been considered for the provision of each of the
services required. After the optimal districting is
specified, each expert team is located in the district
with the largest number of cities demanding its
services. In order to serve the other demanding dis-
tricts, the team in question needs to travel from the
district where it is located to all those demanding its
expertise. It will be assumed that an expert team
can move between the cities located in a district
without incurring into any interactions with the
administrative bureaucracy. In contrast, the dis-
placement of a team across districts requires dealing
with the administrative bureaucracy and spending
considerable amounts of time and money.

3.1. Satisfying the contiguity and absence of
embedded districts constraints

One of the prominent characteristics of the current
model is that it considers the set of fundamental
constraints characterizing the districting problem
(contiguity, compactness, and absence of embedded
districts). To the best of our knowledge, no inte-
grated, specific mathematical model has been pre-
sented so far in the literature, since the
corresponding constraints are difficult to define and
implement within an optimization model (Kalcsics,
2015). For the constraints to be met, the shortest
path available between every two points in a district
must be located inside the very same district. This
requires all the areas on the shortest path between
two points to be placed within the same district.
Besides assuring contiguity and avoiding unusual
district allocations, this constraint generates compact
partitions. Therefore, the final districts generated are
expected to be convex and prevent the inclusion of
any unusual allocation such as a hole.

The points on the shortest path between two
nodes can be specified using standard algorithms in
the field such as Dijkstra’s algorithm. This algorithm
is structured so that the shortest-path tree is formed
if it is run for all the points in the area under inves-
tigation. The relations between points will be
defined in the form of a graph network, as can be

observed in the case study presented. It should be
noted that there is not necessarily one communication
path between each two points (corners) within the
graph network used in the current research. A ques-
tion that may be raised is how path selection works if
there is more than one shortest path between two dif-
ferent nodes. To answer this question, we must con-
sider the structure of Dijkstra’s algorithm and note
that the shortest-path tree is generated after running
the algorithm for all the nodes in the area. Therefore,
two shortest paths cannot be identified between two
specific nodes, since the resulting structure would
then involve a cycle, which is no longer a tree, contra-
dicting the structure of the algorithm. It therefore fol-
lows that the algorithm implemented identifies the
points on the shortest path between two nodes. The
mathematical model of the problem is presented in
Section 3.2 based on the requirements described.

3.2. Notations

3.2.1. Subscripts

i; j; r City indices
c; c0 Expert team indices providing services of

type c; c0

p Partition indices

3.2.2. Set

P Set of districts
V Set of cities
T Set of services
Hij The set of points on the shortest path between

cities i and j

3.2.3. Parameters

Vic 1 if city i needs the expert team that provides
service c, and zero otherwise

M A positive, sufficiently large number

3.2.4. Decision variables

xip 1 if city i is allocated to district p, and
zero otherwise

Scp 1 if the expert team that provides service type
c is allocated to district p, zero otherwise

3.2.5. Mathematical model

Min Z1 ¼
X
c

X
p

Scp
X
i

xip 1� Vicð Þ (1(a))

Min Z2 ¼
X
c

X
p

Scp � 1
� �

s:t: (1(b))

X
p

xip ¼ 1 8i 2 V (2)
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X
i

xip Vic � M Scp 8p 2 P ; 8c 2 T (3)

xip þ xjp � 1 � xrp 8i 6¼ j 2 V; r 2 Hij; p 2 P

(4)
xip; Scp 2 0; 1f g 8i 2 V; c 2 T; p 2 P (5)

The first objective function minimizes the value of
the heterogeneity arising between the services
needed and offered in the districts. In this objective
function, the number of heterogeneous city needs–-
service provided pairs is considered across all dis-
tricts as the criterion for heterogeneity. The second
objective function minimizes the total number of
displacements between districts. As stated before,
there is an expert team per service type provided
and each team must be located in one of the dis-
tricts. Thus, the number of times that each expert
team needs to travel among districts is obtained by
subtracting one (which accounts for the district
where the team is located) from the total number of
districts demanding the services provided by the
team in question. The second objective function
counts the number of times that an expert team
must travel from the district where it is located to
the other districts demanding its services.

Constraint (2) guarantees that each city is allo-
cated to only one district. Constraint (3) sets the
values of the decision variables Scp as determined by
the demand for services across the different districts.
Constraint (4) guarantees the absence of embedded
districts together with the contiguity and convexity
of the partitions. According to this constraint, if two
nodes i and j belong to a given district, then all the
nodes located on the shortest path between them
must also be assigned to the same district. Besides
assuring contiguity and absence of holes, this con-
straint gives place to compact districts. Constraint
(5) defines the range of the decision variables of the
mathematical model.

We provide now a more detailed description of
the intuition on which the two objective functions
are built and emphasize their complementarity.
Consider the first objective function. It has been
designed to minimize the heterogeneity of the serv-
ices demanded by the cities composing the different
districts. That is, note that whenever an expert team
providing a given service is allocated to a district,
that is, when Scp ¼ 1; a set of potential requirements
for this service emerges across the cities composing
the district. The diversity of these requirements is
captured by the expression

P
i xip 1� Vicð Þ; which

accounts explicitly for the cities within the district
that do not demand a given service. More precisely,
this expression lists all the cities within the district
and assigns them a value of zero if they require a
given service and a value of one if they do not.

Whenever the model adds cities to a given dis-
trict, it is constrained by the fact that their needs
will have to be fulfilled, as required by Equation (3).
As a result, a large diversity of cities requiring a
unique service each would create a highly heteroge-
neous set, leading to a substantial value of Equation
(1(a)). Ideally, all the cities within a given district
should require all the services being assigned to it.
Note how the objective function defined in (1(a))
focuses on the homogeneity of the services that
must be provided within a given district. As a result,
this equation does not impose any restriction on the
distribution of expert teams across districts.
Equation (1(b)) has been defined to tackle this
second requirement. In this case, we focus on the
distribution of expert teams across districts. Once
again, Equation (1(a)) does not impose any con-
straint on their distribution as long as the needs of
the cities composing the districts are satisfied. This
implies that a distribution where all the expert
teams are allocated to a unique district and another
one where they are evenly distributed across all the
districts would deliver identical minimization
results. In order to prevent such a logistic shortcom-
ing, which could be quantified in terms of transpor-
tation costs, we have introduced Equation (1(b)) as
the second objective function of the problem.

In this case, we account explicitly for the travel
requirements of each team of experts across dis-
tricts. That is, the team of experts located in a given
district will have to travel to all of those districts
where cities requiring their services have been allo-
cated. The travel requirements of a team across dis-
tricts are captured by the expression

P
p Scp � 1

within Equation (1(b)), which delivers a value equal
to the total number of districts minus one if a team
has to travel to all the districts (including the one
where it has been located) in order to provide its
service. On the other hand, if the team does not
have to travel outside its own district, the value of
this expression will be equal to zero, namely, the
district where the team is located minus one. Note
that this equation has been introduced in order for
the model to favour distributions of cities across
districts that constrain the number of trips that the
teams have to make. That is, between two distribu-
tions of expert teams across the same number of
districts, this constraint favours the distribution
leading to a lower number of displacements of the
teams across districts.

Note that Equation (1(b)) does not only account
for the distribution of teams across districts. The
distribution of cities across districts is also implicitly
considered since it determines the trips that must be
performed by the different teams. Thus, Equation
(1(b)) complements the constraint imposed by
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Equation (1(a)) when defining the trips that must
be performed by each team across districts. The
functions described in both equations are required
to guarantee that cities and teams simultaneously
minimize the potential heterogeneity of the districts,
which would lead to an inefficient use of expert
teams’ displacements, and the number of trips that
must be performed by each team, which is deter-
mined by the location selected for each team and
the distribution of cities across districts.

The complementary structure defined by
Equations (1(a)) and (1(b)) determines the distribu-
tion of cities and teams across districts. However,
the main novelty of the current paper is given by
Equation (4), which distributes cities across districts
by considering the shortest path between every two
city nodes within each district. Based on the
literature review performed, Constraint (4) consti-
tutes – to the best of our knowledge – the first
mathematical form presented to assure contiguity,
compactness, and absence of embedded districts.
Figure 1 provides a representation of how this con-
straint operates. As illustrated in Figure 1(a), a dis-
trict cannot be created inside another since it would
block the communication paths between districts
and violate the convexity requirement. Similarly,
Figure 1(b) describes the lack of contiguity between
the areas of a district, a potential scenario prevented
by the implementation of Constraint (4).

A potential problem regarding the practical
implementation of this constraint is that too many
constraints will actually be generated given its cur-
rent structure. More precisely, assume that there are

10 points on the shortest path between points A
and B. Consequently, the set HABjA;B 2 Vf g will
contain 10 members and Equation (4) will generate
one constraint for each of the members. However,
the description of this equation seems to imply the
existence of a unique constraint. The structure of
Constraint (4) has therefore been improved and pre-
sented as Constraint (6)X
r2Hij

xrp � SPij �M 2� xjp þ xipð Þ� �
; 8i 6¼ j 2 V; p 2 P

(6)

where SPij denotes the number of points on the
shortest path between i and j: This equation gener-
ates a constraint for the whole set of points on the
shortest path instead of generating a constraint for
each of the points on the path. Thus, the mathemat-
ical model of the problem consists of the first and
second objective functions, (1(a)) and (1(b)),
together with Constraints (2), (3), and (6). Note that
the first objective function is nonlinear due to an
expression containing the product of two binary
variables. It is possible to linearize the correspond-
ing equation by defining a new decision variable.

We conclude this section by noting that the for-
malization closest to the model presented in the cur-
rent paper is that of Steiner, Datta, Neto, Scarpin,
and Figueira (2015). One of the main features on
which the current model improves upon theirs is
the fact that in their model the number of districts
is a parameter while in the current framework it is
selected as part of the optimization process.
Moreover, even though the objectives defined are

Figure 1. Contiguity and absence of embedded districts constraints.
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similar – due to the fact that both models formalize
a districting problem – Steiner et al. (2015) focus on
average differences in the heterogeneity of districts
and the services provided within them.
Furthermore, the set of constraints on the districting
process are all introduced separately, requiring a
complex amount of additional equations, while we
are able to incorporate all the constraints within a
unique compact expression. Finally, the mathemat-
ical structure of the current model considers the dis-
placement of teams across districts, a feature that
combined with the traveling distance minimization
objective of Steiner et al. (2015) could deliver inter-
esting results in future research.

Regarding recent developments in districting and
allocation problems, we describe the main related
opuses below while remarking that none of them
follows a formalization process similar to the one
just introduced in the current paper.

Steiner Neto et al. (2017) apply the same formal
approach as Steiner et al. (2015) to determine the
location of grain silos in the Brazilian state of
Paran�a. In particular, they minimize the difference
between storage capacity and production from their
mean values per region and the product transporta-
tion cost across region municipalities. A different
approach is applied by De Barros Franco & Arns
Steiner (2018) to categorize abandoned locations
within two clusters based on their potential to host
facilities to capture solar energy. These authors use
a hybrid fuzzy c-means algorithm initialized by
three meta-heuristics to distribute different locations
between both clusters.

Among the recent multi-objective location–alloca-
tion environments analysed in the literature, we
would like to highlight the research of Yanık, S€urer,
and €Oztayşi (2016) and that of Khodaparasti et al.
(2017). The former authors apply a multi-objective
genetic algorithm to cluster geographic areas so that
their energy requirements match the capacity of the
corresponding clusters. They follow an iterative
location–allocation strategy where the location of
the clusters is selected using a genetic algorithm
while the allocation follows from a binary integer
programming model that minimizes the total dis-
tance between basic units and region centres. On
the other hand, Khodaparasti et al. (2017) focus on
the ease of access to a facility as one of the main
factors conditioning the commitment to the pro-
grams offered by community based organizations.
Accessibility is determined by the number, type and
location of the first and second level facilities avail-
able. These authors design a location–allocation
model within a multi-objective framework to
account for the social welfare features of equity,
accessibility, and efficiency.

Finally, Zhou, Geng, Jiang, and Wang (2018)
tackle a queuing model for a hospital with stochastic
arrivals and lengths of stay among patients, who
must be allocated to the different wards without
decreasing revenues. Zhou et al. (2018) design a
multi-objective stochastic programming model to
maximize revenue and equity, focusing on the per-
formance of the system and its patient admission
and allocation capacities.

4. Solution method

Due to the conflict existing between the objective
functions, it is impossible to obtain a solution that
simultaneously optimizes both objectives. Therefore,
the main purpose is to obtain a set of efficient or
non-dominant Pareto points. Several methods have
been introduced to solve multi-objective mathemat-
ical models, such as simple additive weighting, goal
programming, as well as the epsilon constraint and
LP metric methods.

In the current paper, the epsilon method is used
to solve the proposed mathematical model. In order
to obtain the Pareto front applying this method, the
first objective function is considered as the main
objective of the problem, and the second one as a
constraint restricted to a specific e value. The model
can therefore be rewritten as follows:

Min Z1 ¼
X
c

X
p

Scp
X
i

xip 1� Vicð Þ; s:t:

(1(a))

X
c

X
p

Scp � 1
� �

� e; (7)

Z�
2 � e � Z2 Z�

1

� �
(8)

(2, 3, 5, 6).
All the Pareto front points can be identified itera-

tively after solving the above mathematical model
aided by a standard optimization software.

4.1. Proposed algorithms

Since the districting problem is an NP-hard one
(Steiner, Datta, Neto, Scarpin, & Figueira, 2015), the
optimal solution cannot be obtained within the
proper time for large-scale problems. Meta-heuristic
algorithms are used to overcome this problem and
obtain acceptable solutions within proper times.
Most studies dealing with districting problem across
different fields have applied the genetic algorithm
(Kim, Hwang, Kim, & Moon, 2011). Similarly, in
this paper, two meta-heuristic algorithms, namely, a
multi-objective genetic algorithm II (NSGAII) and a
multi-objective grey wolf optimizer (MOGWO), are
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implemented to solve the problem in large
scale instances.

4.2. Chromosome representation and
initialization

The algorithm solution chosen for the current
healthcare system districting problem is an array of
basic units. The value of a solution element consists
of the districts where the represented basic units
belong. More precisely, the structure of the chromo-
somes is shown below.

Each gene identifies a district number while the
position of a gene represents a basic unit in a
chromosome. The length of a chromosome corre-
sponds to the number of basic units. For example,
the above chromosome (string) displays a four-dis-
trict solution with the following basic units in
each district:

District 1: Basic units 1 and 4
District 2: Basic units 3 and 6
District 3: Basic units 5 and 8
District 4: Basic units 2 and 7

To impose a continuous representation, the
value of each gene is generated from 1; Pj j þ 1

� �
and converted into an integer number using a ceil-
ing function. For example, let Pj j ¼ 5: The corre-
sponding representation generates chromosomes as
follows:

We apply a greedy algorithm to initialize the
algorithm solution since it is rather difficult to
obtain a feasible solution in graph partitioning prob-
lems using random assignments. In addition, a
labelling mechanism, which relabels a disconnected
portion of a district as a new district, is applied if
the contiguity constraint is violated when imple-
menting the proposed crossover operator. However,
the remaining constraints could be violated at vari-
ous stages through the initialization process or when
generating a given solution. Consequently, a con-
structive/repairing mechanism is applied to ensure
that those constraints are sufficiently satisfied
according to the guidelines of the algorithm pro-
posed by Steiner, Datta, Neto, Scarpin, and
Figueira (2015).

4.3. Multi-objective genetic algorithm (NSGAII)

Many evolutionary algorithms (especially from the
genetic algorithm family) have been developed so as
to solve the multi-objective optimization problems
tackled in different research areas. One of the most
common multi-objective meta-heuristic algorithms
is the second version of the multi-objective genetic
algorithm based on non-dominance sorting
(NSGAII) proposed by Deb, Pratap, Agarwal, and
Meyarivan (2002). The most important feature of
this algorithm is the sorting solution designed based
on the dominance criteria. In each generation, the
chromosomes that are not dominated by other chro-
mosomes are labelled as the first level of dominance.
The process of forming dominance levels, the tem-
porary removal of chromosomes, and the search for
the non-dominated chromosomes continues until all
the solutions are graded.

The NSGAII algorithm is structured as Pseudo-
code1 below. According to the chromosome struc-
ture, the initial population is generated randomly or
systematically. In each generation, parents are cate-
gorized for crossover and mutation using binary
selection operators. Two parents are selected ran-
domly each time and compared via the dominate
level or crowding distance. A specified number of
chromosomes is selected to generate offspring by
repeating this operator through each generation.
The final step consists of selecting the population
for the next iteration, a strategy based on elitist
selection. Following to this strategy, the first chro-
mosomes in the mating pool are sorted based on
the dominate level or crowding distance. This oper-
ation continues until the stopping criteria
are satisfied.

4.4. Multi-Objective GWO (MOGWO)

Two new processes are applied to perform multi-
objective optimization with GWO. The first one

1 4 2 1 3 2 4 3

Pseudo-code1: NSGAII

Initialize Population
Generate N feasiable solution and insert into Population
While Stopping criteria not met Do
Generate ChildPopulation of Size N
Select Parents from Population
Create Children from Parents
Mutate Children
Repare Solution using repair mechanism
Merge Population and ChildPopulation with size 2N
For each individual in CurrentPopulation Do
Assign rank based on Pareto-Fast non-dominates sort
end

Generate sets of non-dominated vector along PFknown
Loop (inside) by adding solution to the next generation of
Population starting from the best front
Until N solution are found and determine crowding distance
between points on each front

end
Report results
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involves archiving the non-dominated Pareto opti-
mal solutions. The second process involves selecting
a leader to choose alpha, beta, and delta solutions
from the archived list. An archive controller is used
to control the archive. The non-dominated solutions
are compared against the archive through the course
of iterations (Mirjalili, Saremi, Mirjalili, and
Coelho, 2016).

5. Numerical example

In this section, several numerical examples are
examined to validate the mathematical model and
assess the performance of the proposed algorithms.
The quality of the solutions generated by the algo-
rithms is compared to the quality of those obtained
from CPLEX 12.5.1. Due to the lack of sample cases,
numerical examples have been generated randomly.
The proposed meta-heuristic algorithms, coded in
the C# environment, were run using a personal
computer with a central Core i7 series processor
with a processing power of 3.2GHz and
16GB RAM.

5.1. Validation of the mathematical model

In order to validate the mathematical model, an
example area with 10 cities demanding a total of 15
medical service types is examined. The geographic
location of the cities is illustrated in Figure 2 and
the type of services needed in these cities is
described in Table 4. These needs are assumed to be
determined by the viewpoints of experts from
organizations in charge of public health.

After solving the example using the CPLEX
solver, the results are presented in accordance with
the structure of the heuristic method defined in
Section 4 to obtain the Pareto front. In order to
allow for a more accurate examination of the model
performance and the behaviour of Constraint (6),
the Pareto front is presented in Figure 3 and the
solutions described in each of the front points are
examined afterwards.

As shown in Figure 3, none of the Pareto front
members dominates another. A new non-dominated
point is created as the number of partitions is modi-
fied in each iteration of the solution method. This
result may indeed reflect the efficiency of the pro-
posed heuristic method for finding the Pareto
points. It is also clear that as one objective function
is improved, the other one is worsened. Another
important feature of the model regards its run time
per iteration. Figure 4 illustrates how the solution
time of the model increases in the number of

Pseudo-code2: multi-objective gray wolf optimization algorithm (MOGWO)

Initialize the grey wolf population
Initialize a, A, and C
Calculate the objective values for each search agent
Find the non-dominated solutions and initialized the archive with them
Xa¼ Select Leader (archive)
Exclude alpha from the archive temporarily to avoid selecting the

same leader
Xb¼ Select Leader (archive)
Exclude beta from the archive temporarily to avoid selecting the

same leader
Xd¼ Select Leader (archive)
Add back alpha and beta to the archive
t ¼ 1

While (t<Max number of iterations)
For each search agent
Update the position of the current search agent
Repare Solution using repair mechanism
End

Update a, A, and C
Calculate the objective values of all search agents
Find the non-dominated solutions
Update the archive with respect to the obtained non-
dominated solutions

If the archive is full
Run the grid mechanism to omit one of the current
archive members
Add the new solution to the archive
End

If any of the new added solutions to the archive
is located outside the hypercube
Update the grids to cover the new solution(s)
End

Xa¼ Select Leader (archive)
Exclude alpha from the archive temporarily to avoid selecting the
same leader
Xb¼ Select Leader (archive)
Exclude beta from the archive temporarily to avoid selecting the
same leader
Xd¼ Select Leader (archive)
Add back alpha and beta to the archive
t ¼ t þ 1
End while

Return archive

Figure 2. Geographic locations of the cities in the numer-
ical example.

Table 4. Types of services needed in the cities within the
first example.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

C1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1
C2 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0
C3 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1
C4 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1
C5 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1
C6 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0
C7 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0
C8 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0
C9 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0
C10 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0
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partitions through consecutive iterations. This is of
course predictable since an increment in the number
of partitions increases the complexity of the prob-
lem when determining the optimal allocations. On
the other hand, as the number of partitions con-
verges to the number of cities, the solution time
decreases, reflecting a decrease in the complexity
level of the problem with a very large or very small
number of partitions.

In order to provide additional intuition regarding
the performance of the model and the behaviour of
Constraint (6), the solution defined by point (13,
52) in the Pareto front of Figure 3 – and consisting

of a total of three districts – is explicitly presented
in Figure 5. As can be observed, cities 1, 2, 6, 9, and
10 have been allocated to District 1, cities 4, 7, and
8 to District 2, and cities 3 and 5 to District 3. The
features of compactness, contiguity, and absence of
embedded districts can also be identified. Given the
objective functions of the problem, the cities have
been allocated to the corresponding districts so that
heterogeneity (namely, the first objective function)
and displacement (the second objective function)
have the lowest possible values. It can therefore be
stated that Constraint (6) is sufficiently efficient to
assure the creation of compact, contiguous districts

Figure 3. Non-dominated solutions obtained by CPLEX.

Figure 4. CPU time for each iteration (district).
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without uncommon allocations (i.e. guaranteeing
the absence of embedded districts). The other
important feature of the model concerns the way in
which services are allocated to the districts, as
described in Table 5.

Note how the number of expert teams allocated
to District 1 is greater than those assigned to the
other two districts. At the same time, the first dis-
trict contains a larger number of cities. The model
has minimized the value of the objective functions
by locating cities with a demand for common serv-
ices in one district, while assigning the expert teams
to the districts so that the lowest possible number of
displacements takes place. Clearly, the partitioning
of districts and the allocation of expert teams will
differ if a different Pareto front point is examined.

5.2. Evaluation of the efficiency of
the algorithms

In this section, several numerical examples are ran-
domly generated to evaluate the effectiveness of the
algorithms. The proposed algorithms are run 10
times for each test problem and the best solutions
obtained in the executions are compared.

5.2.1. Evaluation metrics

In order to perform comparisons regarding the
quality of the different Pareto-optimal fronts pro-
duced by the optimization algorithms, we consider
the following performance assessment metrics.a.
Convergence measure: it calculates the distance
between the Pareto-algorithm front and the Pareto-
optimal front as follows:

c ¼
P Qj j

i¼1 di
Qj j ; (9)

where di is the minimum Euclidean distance
between solution i 2 Q and the best solution, and
Q is the final Pareto front (Datta & Figueira,
2012).b. Dispersion measure: it is considered a meas-
ure of the distribution around the Pareto-optimal
fronts and is calculated through the following equa-
tion:

D ¼
PM

m¼1 d
e
m þP Qj j

i¼1 di�d
		 		PM

m¼1 d
e
m þ Qj jd ; (10)

where Q is the final Pareto front, m is the number
of solutions in the Pareto-optimal front, di is the
minimum Euclidean distance between solution i 2
Q and the best solution, d is the average of the di
values, dem is the distance between the best Pareto
front value and solution i 2 Q in the objective
function m. We should note that this measure works
best when the distribution is uniform (Coello,
Lamont, & Van Veldhuizen, 2007).c. Diversification
metric: it is used to measure the spread of a non-
dominated solution set as follows:

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

max x0i�y0i
		 				 		� �s

; (11)

where n is the number of Pareto front members,
and x0i�y0i

		 				 		 is the Euclidean distance between the
non-dominated solutions xi and yi (Coello, Lamont,
& Van Veldhuizen, 2007).d. Spread of non-dominant
solution (SNS): it is considered as a diversity meas-
ure and evaluates the standard deviation of the dis-
tance from a non-dominated set to an ideal point.
The SNS is calculated as:

SNS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 c�cið Þ2
n� 1

s
: (12)

e. Data envelopment analysis (DEA): it is usually
applied to evaluate the performance of different
choices according to some pre-specified attributes.
In the current paper, we consider each Pareto-opti-
mal solution as a decision-making unit and use
DEA to measure the efficiency of the non-domi-
nated solutions obtained by each method. The val-
ues of the objective functions are used as inputs and
outputs. Subsequently, all the non-dominated solu-
tions are combined and DEA is implemented to
measure their efficiency (Coello, Lamont, & Van
Veldhuizen, 2007).

5.2.2. Comparisons among the algorithms

In this section, the efficiency of each algorithm is
assessed using the above evaluation metrics to deter-
mine whether there is a significant difference among
their performances. As shown in Table 6, the
MOGWO algorithm is superior to the NSGAII one
in all the evaluation metrics. This superiority is

Figure 5. Optimal partitioning with three districts (for Point
(13, 52) in Figure 3).

Table 5. Allocation of services to the partitions.
District 1 1; 2; 3; 4; 5; 6; 7; 9; 10; 11; 12; 13; 14f g
District 2 1; 2; 7; 8; 12; 13; 14; 15f g
District 3 1; 2; 3; 4; 10; 11; 12f g
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more prominent in the medium and large instances.
Although there is also a slight superiority in the
small instances, absolute superiority is not observed
in this scale relative to NSGAII. Another point to be
noted concerns the values of cð Þ and Dð Þ in instan-
ces 10–30. Since CPLEX is incapable of defining the
optimal front in these instances, it is not possible to
calculate the values of cð Þ and Dð Þ:

The Pareto fronts obtained from solving the
instances in different scales are presented in Figure
6. When the problem size is small, the solutions
provided by CPLEX, NSGAII, and MOGWO are
similar, as illustrated in Figure 6(a). This result sug-
gests the appropriate efficiency of the algorithms in
solving small-scale problems, as also described in
Table 6. It can be observed in Figure 6(b), where
the Pareto front obtained from solving a medium
scale problem is displayed, that the solutions pro-
vided by MOGWO are closer to those of the
CPLEX Pareto front. Some of the points in the
NSGAII Pareto front are close to those of the
CPLEX algorithm, but the NSGAII Pareto front dis-
plays a general lower quality than that of MOGWO.
In Figure 6(c), only the solutions offered by NSGAII
and MOGWO are presented, since CPLEX does not
provide results in this scale due to the high com-
plexity of the problem. As can be observed, some of
the points in the NSGAII and MOGWO Pareto
fronts are close to each other, particularly at the ini-
tial and final sections of the fronts. The reason for

such similarities is quite possibly the fact that the
complexity of the problem is relatively low at the
initial and final points of the front, which, as illus-
trated in Figure 3, display a lower solution time
than the middle points. All in all, the main result
obtained from these comparisons is the fact that the
MOGWO algorithm obtains more appropriate
results than NSGAII.

We continue the analysis of the behaviour of the
algorithms in solving the test instances by examin-
ing and comparing their performances in terms of
solution process and solution time. One of the main
factors determining the efficiency of an algorithm is
the rate at which it converges into the final solution
for each Pareto front member. Figure 7 presents a
graphical comparison of this factor for the same
members of the Pareto front in large-scale instances.
It can be observed that the MOGWO algorithm
converges much faster than NSGAII and obtains
solutions of higher quality. In particular, the differ-
ence between the fitness of the best member and the
mean fitness in each iteration is insignificant in the
MOGWO algorithm, whereas it cannot be ignored
in the NSGAII case. Figure 8 confirms the above
conclusions. In this figure, the variance among the
solutions obtained in each population illustrates the
superiority of the MOGWO algorithm in finding
the appropriate solution space and transferring the
solutions from the exploration to the exploit-
ation phase.

Table 6. The metrics obtained for the performance of the algorithms.

Instance Size

Algorithm 1: NSAGII Algorithm 2: MOGWO

c D DM SNS DEA c D DM SNS DEA

Ins.1 Small 0 N/A 127.13 94.31 0.66 0 N/A 137.43 112.11 0.69
Ins.2 0 N/A 136.89 92.76 0.53 0 N/A 151.99 111.26 0.61
Ins.3 0.00867 0.8749 85.26 105.46 0.53 0 N/A 103.86 125.86 0.59
Ins.4 0.00892 0.6902 157.18 82.93 0.61 0 N/A 172.58 106.73 0.65
Ins.5 0.00992 0.7584 109.01 87.64 0.59 0 N/A 124.81 107.74 0.65
Ins.6 Medium 0.01238 0.7689 160.4 65.27 0.64 0.00511 0.4488 172 78.87 0.68
Ins.7 0.01413 0.8293 146.77 57.06 0.59 0.00625 0.5947 163.97 70.36 0.65
Ins.8 0.01491 0.8091 156.96 101.45 0.51 0.0065 0.4599 167.76 115.75 0.54
Ins.9 0.01067 0.6524 90.15 57.58 0.57 0.00602 0.4970 108.85 68.68 0.6
Ins.10 – – 96 71.76 0.64 – – 112.2 86.66 0.72
Ins.11 – – 114.25 105.71 0.5 – – 129.15 122.21 0.55
Ins.12 – – 126.25 72.26 0.66 – – 141.35 83.56 0.69
Ins.13 – – 158.7 100.52 0.45 – – 180.6 121.72 0.53
Ins.14 – – 73.57 96.73 0.68 – – 95.37 108.03 0.71
Ins.15 – – 159.4 105.83 0.53 – – 180 125.73 0.58
Ins.16 Large – – 122.8 65.14 0.49 – – 140.4 86.04 0.58
Ins.17 – – 157.66 56.87 0.47 – – 173.16 72.47 0.54
Ins.18 – – 129.26 70.26 0.65 – – 139.56 94.16 0.68
Ins.19 – – 141.94 51.01 0.63 – – 163.54 62.31 0.67
Ins.20 – – 144.64 59.94 0.44 – – 165.94 83.84 0.53
Ins.21 – – 91.34 101.13 0.51 – – 113.44 115.03 0.58
Ins.22 – – 112.37 72.81 0.49 – – 133.97 93.71 0.52
Ins.23 – – 159.52 72.58 0.6 – – 175.62 94.38 0.67
Ins.24 – – 157.57 75.2 0.65 – – 178.97 98.7 0.7
Ins.25 – – 137.64 90.51 0.63 – – 149.34 109.31 0.68
Ins.26 – – 141.1 102.93 0.56 – – 162.3 122.03 0.62
Ins.27 – – 74.41 60.05 0.54 – – 97.21 71.25 0.63
Ins.28 – – 82.23 58.51 0.5 – – 104.63 74.91 0.54
Ins.29 – – 88.8 81.96 0.55 – – 106.9 100.56 0.63
Ins.30 – – 72.1 88.48 0.51 – – 94 110.48 0.58

1752 H. FARUGHI ET AL.



We proceed now with the analysis of the case
study and therefore focus on the health system in
the South Khorasan Province of Iran.

6. The case study

The South Khorasan Province (SKP) is one of the
eastern provinces of Iran and its capital is the
county of Birjand. The area of the province equals
151,193 kmð Þ2; which makes it the third largest
province in Iran in terms of land area. Based on the
most recent information issued, is has a population
of about 800,000 people. The province includes 11
counties, 25 cities, 61 rural divisions, and 28 towns.

Figure 9 provides an illustrative view of the geo-
graphic location and structure of the province.
Given its geographic location and shared borders
with Afghanistan and the Provinces of Sistan &
Baluchestan and Kerman, it has a high ethnic diver-
sity compared to the other Iranian provinces. Its
population diversity together with the dry desert cli-
mate foster the potential occurrence and prevalence
of different diseases within the province. Managing
its health system is particularly challenging since the
tasks that must be performed require a considerable
amount of coordination and discipline.

A health-monitoring plan has been periodically
implemented in different areas within SKP since

Figure 6. Dispersion of non-dominated solutions obtained by different algorithms in three scales.
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Figure 7. Comparison of the convergence of the objective function and the mean objective function for NSAGII and MOGWO.

Figure 8. Comparison of diversification in the NSGAII and MOGWO algorithms.
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2011. Based on the reports available, the implemen-
tation of the plan has increased the societal health
level and reduced the anomalies resulting from
unfamiliarity with primary health care. However,
one of the main concerns of the managers has
always been to increase the coverage level as far as
possible and promote the quality of service provi-
sion along with reducing the costs of the system. In
2015, an ambitious plan was implemented in 82
populated areas of the province accounting for a
total of 27 health services. The input information is
presented in Figure 9 and Table 7. The complete
information is accessible through the systems of the
Statistical Centre of Iran, the Department of Roads
and Urban Planning of the province, and the
Deputy of Health Networks of the Birjand
University of Medical Sciences.1

Given its superior performance relative to the
NSGAII one, the MOGWO algorithm will be
applied to solve the above case study. We will first
present the Pareto front generated by the algorithm
and then select one of its points so as to examine
the resulting structure in detail.

6.1. Results and discussion

Based on the method presented to obtain non-
dominated solutions, the number of Pareto front
members equals the number of populated points.
The run time of the algorithm for a population size
of 800 and 3000 generations is 5 h 37min. The
Pareto front obtained contains 82 points, with
obj1; obj2
� � ¼ 7; 1051ð Þ; 1127; 81ð Þ representing the
best values relative to each objective function.
According to the information available, the objective
function values derived from the structure used to
implement the health monitoring plan in 2015 are
given by obj1; obj2

� � ¼ 421; 1344ð Þ: The correspond-
ing structure contains a total of nine partitions.
Table 8 presents the two extreme Pareto front solu-
tions together with the one being implemented, the
compromised solution selected and its improvement
over the existing one.

Although specific information is required to
select one solution from the members of the Pareto
front, each point potentially selected by the manag-
ers can be considered as the final solution for com-
parison purposes with the solution being currently
implemented. In this regard, point obj1; obj2

� � ¼
314; 775ð Þ; endowed with a similar structure to
that of the existing solution, is selected as the com-
promised solution. This solution improves the first
objective function by 34.1% and the second one by
73.4% with respect to the existing solution.

Figure 10 displays the (non-dominated members
composing the) Pareto front obtained when apply-
ing the MOGWO algorithm together with the exist-
ing and compromised solution selected. Note that
the existing solution is dominated by all the points
in the Pareto front, implying that the compromised
solution is clearly superior to the existing one.

Figure 9. A view of the south Khorasan province map and
the populated points connectivities based on a non-crossing
edges graph.

Table 7. Services needed by the cities.
A1 A2 A3 A4 A5 A6 A7 … A74 A75 A76 A77 A78 A79 A80 A81 A82

C1 1 1 0 1 1 1 1 … 1 1 0 0 1 0 0 0 0
C2 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0
C3 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0
C4 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0
C5 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1
… … …
C23 1 0 1 1 0 0 0 … 1 0 1 0 1 0 0 0 0
C24 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1
C25 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1
C26 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1
C27 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1

Table 8. Extreme solutions from the Pareto front, existing
solution, and compromised solution.
Objective functions f1 f2
Solution with the best (minimum) value of f1 7 1051
Solution with the best (minimum) value of f2 1127 81
Existing solution (ES) 421 1344
Compromised solution (CS) 314 775
Improvement in the compromised

solution ¼ ES�CS
CS � 100

0.341 0.734
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Moreover, as illustrated in Figure 11, all the restric-
tions regarding contiguity and absence of embedded
districts are properly met. In order to allow for a
closer examination of the results, the structures gen-
erated by the existing solution and the compromised
one are presented in Table 9 and Figure 11.

It can be observed that the districts formed in
the structure of the compromised solution are more
balanced in terms of number of cities per district.
Though this result is not among the objectives of

the problem, it describes the seemingly more appro-
priate partitioning created by the current model.
Another important point concerns the way in which
services are allocated to the different districts in
both the compromised solution and the existing
one, as respectively described in Tables 10 and 11. It
should be emphasized that the compromised solu-
tion has been designed to minimize the number of
inter-district displacements as well as the heterogen-
eity within districts.

Figure 10. Pareto front along with the existing and compromised solutions.

Figure 11. Existing and compromised optimum maps of the healthcare system of SKP.
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Finally, we should note that the selection of an appro-
priate solution from among the Pareto front members is
a matter of great importance, since the implementation
of the results obtained can be regarded as a strategic-
level decision. This is particularly the case when the
structures defined fail to operate appropriately as a result
of the population changes occurring over a long period
of time. Although population changes usually take place
very slowly, this problem should be considered in light
of the substantial importance of keeping a balanced
population within the health system. It is therefore rec-
ommended that proper scientific methods are applied to
select the final solution.

7. Conclusion and future research directions

The main objectives in the design of a health system
consist of increasing the coverage level and reducing
its operating costs. In this regard, the design of the
health infrastructures of a country is one of the
most important problems in the field of macro-level
decision-making. To the best of our knowledge, the
current paper is the first research proposing a com-
prehensive mathematical model to address the parti-
tioning problem while considering the contiguity
and absence of embedded districts constraints.

The model has been designed to guarantee that all
the services required by each city within a district are
satisfied while minimizing the heterogeneity of districts

in terms of the services required by their cities.
Moreover, the distribution of the teams of experts pro-
viding services across districts has been defined to min-
imize their number of displacements (and subsequent
operating costs). All in all, the formal structure of the
model allows us to consider the problems of district
generation and service provision simultaneously.

We have used the NSGAII and MOGWO algo-
rithms to solve several numerical examples and then
compared the results obtained. Since MOGWO out-
performs NSGAII, it has been applied to analyse
(and improve upon) the health monitoring plan
implemented in the South Khorasan Province of
Iran in 2015. The partitioning of the corresponding
populated areas has been defined after identifying
and comprehensively studying the regulations gov-
erning the health system of the country as well as
investigating the plan being implemented.

From a computational viewpoint, different solu-
tion algorithms can be applied to solve the model
and their behaviour in dealing with the partitioning
problem should be further investigated. In addition,
the definition of a comprehensive mathematical
model implies that accurate solution methods such
as Local Solver can be applied to the current frame-
work, a possibility suggested when conducting
future research. Finally, the model could be modi-
fied and adapted to account for the population shifts
derived from migration processes, particularly when
studying border and developing areas.
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Table 9. Distribution of cities among the districts.
Existing solution Compromised solution

Number of
districts

Number of cities
in a district

Total number
of cities

Number
of districts

Number of cities
in a district

Total number
of cities

1 3 3 4 9 36
2 5 10 3 11 33
1 9 9 1 6 6
2 10 20 1 7 7
2 12 24 – – –
1 16 16 – – –
9 – 82 9 – 82

Table 10. Service allocation in the compromised solution.
District 1 3; 5; 6; 7; 8; 9; 11; 13; 15; 16; 18; 20; 21; 23; 24; 25f g
District 2 1; 4; 7; 10; 11; 14; 19; 20; 21; 22; 26f g
District 3 2; 4; 6; 9; 11; 14; 15; 21; 23; 24; 25; 26f g
District 4 1; 2; 3; 5; 6; 7; 9; 11; 12; 14; 18; 21; 23f g
District 5 5; 9; 12; 16; 18; 20; 21f g
District 6 1; 3; 4; 7; 8; 9; 10; 12; 13; 20; 21; 23; 25; 26; 27f g
District 7 3; 6; 8; 9; 11; 14; 16; 17; 21; 23; 25; 26; 27f g
District 8 1; 3; 4; 7; 8; 10; 11; 13; 14; 15; 16; 17; 18; 19; 21; 22; 24; 26; 27f g
District 9 2; 3; 4; 8; 9; 10; 12; 13; 15; 17; 18; 21; 22; 24f g

Table 11. Services allocation in the exiting solution.
District 1 4; 8; 9; 11; 12; 18; 20; 21; 23; 24; 27f g
District 2 1; 2; 4; 5; 6; 7; 8; 10; 10; 16; 18; 20; 21; 23; 24; 25f g
District 3 1; 2; 3; 6; 10; 11; 14; 15; 16; 17; 20; 21; 26f g
District 4 3; 5; 8; 10; 12; 16; 17; 23; 24f g
District 5 1; 1; 1; 1; 6; 7; 8; 11; 14; 16; 18; 19; 20; 22f g
District 6 2; 3; 4; 5; 9; 11; 12; 16; 17; 19; 21; 23; 26f g
District 7 1; 2; 3; 4; 5; 8; 10; 11; 13; 14; 16; 20; 23; 24; 26; 27f g
District 8 2; 4; 6; 7; 910; 13; 15; 16; 24; 26f g
District 9 1; 2; 4; 8; 9; 14; 15; 18; 21; 24; 25; 2; 6; 27f g
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