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a b s t r a c t

Although crisp data are fundamentally indispensable for determining the profit Malmquist
productivity index (MPI), the observed values in real-world problems are often imprecise
or vague. These imprecise or vague data can be suitably characterized with fuzzy and
interval methods. In this paper, we reformulate the conventional profit MPI problem as
an imprecise data envelopment analysis (DEA) problem, and propose two novel methods
for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy
or vary in intervals. We develop a fuzzy version of the conventional MPI model by using
a ranking method, and solve the model with a commercial off-the-shelf DEA software
package. In addition, we define an interval for the overall profit MPI of each decision-
making unit (DMU) and divide theDMUs into six groups according to the intervals obtained
for their overall profit efficiency and MPIs. We also present two numerical examples to
demonstrate the applicability of the two proposed models and exhibit the efficacy of the
procedures and algorithms.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Efficiency and productivity measurement in organizations has enjoyed a great deal of interest among researchers
studying performance analysis. Data envelopment analysis (DEA) is a popular method for comparing the inputs and
outputs of a set of homogenous decision-making units (DMUs) by evaluating their relative efficiency. Charnes et al. [1]
originally proposed the first DEAmodel, known as the CCRmodel (see also [2]). DEA is non-parametric, and it utilizes linear
programming (LP) to measure the relative efficiency of the DMUs without a priori specification of input and output weights
(or multipliers). A score of 1 is assigned to the frontier (efficient) units. The frontier units in DEA are those with maximum
output levels for given input levels or with minimum input levels for given output levels. While DEA does not provide
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a precise mechanism for achieving efficiency, it does help in quantifying the magnitude of change required to make the
inefficient DMUs efficient and hence contribute to productivity growth.

In addition to comparing the relative performance of a set of DMUs at a specific period, conventional DEA can also
calculate the productivity change of a DMU over time. Caves et al. [3,4] proposed a Malmquist productivity index, hereafter
referred to as the MPI, which calculated the relative performance of a DMU for different time periods. While the efficiency
measures are calculated by DEA, the productivity is measured by the MPI and defined as the ratio between efficiency, as
calculated by the DEA, for the same DMU in two different time periods. Several decompositions for calculating the MPI
have been proposed in the literature. The most popular method is the one proposed by Färe et al. [5], which uses the
geometric mean of the MPIs calculated from two base periods. Färe et al. [5] also proposed a non-parametric Malmquist
index for productivity analysis that relied on constructing a best practice frontier and computing the distance of individual
observations from the frontier. Ray and Desli [6] proposed a variable returns to scale (VRS) decomposition for the MPI to
calculate scale efficiency changes based on a technology defined by DMUs of two periods.

Many applications have been reported in the literature [7] using the MPI to calculate a productivity change (e.g., [8–11]).
More specifically, Asmild et al. [12] have presented a framework where DEA was used to measure the overall efficiency
by considering more general behavioral goals. They clarified the relationships between models used to measure overall
efficiency and various cone-ratio DEAmodels. They showed that as the multiplier cones tighten, the cone-ratio DEAmodels
converge to themeasures of overall efficiency. Furthermore, they argued thatmultiplier cone and cone-ratiomodel selection
must be consistentwith the behavioral goals. Consistentwith this reasoning, they introduced twonewmodels formeasuring
effectiveness when value measures were represented by separable or linked cones.

The conventional MPI requires precise measurement of the inputs and outputs. However, one of the main challenges
associated with the application of the MPI is the difficulty in quantifying some of the input and output data in real-
world problems where the observed values are often imprecise or vague. Imprecise or vague data may be the result of
unquantifiable, incomplete, and non-obtainable information. It is also generally very difficult to accurately evaluate the data
for DMUs when the system’s complexity increases. Furthermore, decision makers generally prefer using linguistic phrases
and expressions such as ‘‘good’’ profit or ‘‘low’’ inventory in their day-to-day communication. In order to use vague and
uncertain data in the MPI, it is necessary to represent them with the interval approach or fuzzy set theory.

The imprecise data representation with interval, ordinal, and ratio interval data was initially proposed by Cooper
et al. [13–15] to study the uncertainty in DEA. Soon after, many researchers adopted the concept and proposed different
DEA models with interval data in the DEA literature [16–20].

The alternative imprecise method, which is called ‘‘fuzzy DEA’’, can be classified into four general classes of methods, as
follows: (1) the fuzzy ranking approach (e.g., [21,22]); (2) the possibility approach (e.g., [23,24]); (3) the tolerance approach
(e.g., [25]); and (4) the α-level-based approach (e.g., [26–29]).

Computing the MPI using DEA with fuzzy data or interval data has not been studied extensively in the literature, as most
DEA methods using ambiguous and vague data have been based on the simple CCR or BCC models, where only the input
and output data are represented in fuzzy and/or interval forms (e.g., [30,20,28,31,32,22–24,26,16,19]). In this paper, we
reformulate the conventional profit MPI model as an imprecise DEA model and propose two novel methods for measuring
the overall profitMPIwhen the inputs, outputs, and price vectors are fuzzy or vary in intervals.We develop a fuzzy version of
the conventional MPI model by using a ranking method and solve the model with a commercial off-the-shelf DEA software
package. In addition, we define an interval for the overall profit MPI of each DMU and divide the DMUs into six groups
according to the intervals obtained for their overall profit efficiency and Malmquist indices.

The remainder of this paper is organized as follows. The next section presents an overview of the overall profit efficiency
andMalmquist indices followed by some basic definitions of fuzzy set theory.We then present overall profitMalmquistwith
fuzzy data followed by overall profitMalmquistwith interval data. Nextwepresent twonumerical examples to demonstrate
the applicability of the proposed frameworks and exhibit the efficacy of the procedures and algorithms. Finally, we present
our conclusions and future research directions.

2. Overall profit efficiency and MPIs

TheMPI is the ratio of the efficiencymeasures for the same production unit in two different time periods or between two
different observations for the same period. Färe et al. [33,5] developed a non-parametric Malmquist index using DEA. The
DEA-based Malmquist productivity is a combined index that can be extended to measure the productivity change of DMUs
over time. In this section, we discuss the overall profit efficiency and the overall profit MPIs.

2.1. Overall profit efficiency

Suppose that we have n DMUs, DMUj (j = 1, . . . , n), each consuming various amounts ofm inputs to produce s outputs.
Let xj = (x1j, . . . , xmj) and yj = (y1j, . . . , ysj) be the input and output vectors, respectively, for DMUj (j = 1, . . . , n), where
xj ≥ 0, yj ≥ 0, xj ≠ 0, and yj ≠ 0. We also consider X and Y as them × nmatrix of the inputs and the s × n as the matrix of
the outputs, respectively. In addition, c and r are the input and output price vectors, respectively, for DMUj (j = 1, . . . , n),
where c ≥ 0, r ≥ 0, c ≠ 0, and r ≠ 0.
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Asmild et al. [12] have proposed the following model (see also [34]) for measuring the overall profit efficiency:

max
ϕ,θ,λ

ϕ − θ

s.t ϕ[rTo yo] ≤ rTo Yλ

θ [cTo xo] ≥ cTo Xλ

λ ≥ 0,

(1)

where the index o signifies the particular DMU under consideration: DMUo (o = 1, . . . , n). The objective function of this
linear program is to maximize the profit by maximizing the total revenue (ϕ) andminimizing total cost (θ) for a given price
vector, pTo = (rTo , cTo ).

Toloo et al. [35] extended this model for measuring the overall profit efficiency of DMUo with n different price vectors:

max
ϕ,θ,λ

ϕ − θ

s.t ϕ[rTj yo] ≤ rTj Yλ, ∀j,

θ [cTj xo] ≥ cTj Xλ, ∀j,
λ ≥ 0.

(2)

Although the objective ofmodel (2) is similar to that ofmodel (1), thismodel considers the input and output price vectors,
pTj = (rTj , cTj ). The following definition and theorem are referred to [35].

Definition 1. DMUo is overall efficient if, in model (2), ϕ − θ = 0.

Theorem 1. For every optimal solution (ϕ∗, θ∗, λ∗) of (2), we have ϕ − θ ≥ 0.

It should be noted that since CRS models implicitly assume zero maximum profit it is more suitable for profit efficiency
evaluation to consider VRS by adding convexity constraint (1λ = 1) to the above models.

2.2. Overall profit MPIs

The constant returns to scale overall profit MPI can be decomposed using four output distance functions, each defined
on a benchmark technology using DEA in two different time periods.

By using the following models, similar to model (2), the within-period distance functions can be estimated as

Dp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(rpj )
Typo] ≤ (rpj )

TY pλ, ∀j,

θ [(cpj )
T xpo] ≥ (cpj )

TXpλ, ∀j,
λ ≥ 0.

(3a)

Xp and Y p are respectively the input and output matrices of the observed data for period p. Therefore, we solve model
(3a) for p = t and t + 1. The adjacent-period distance functions can then be estimated using model (3b), similar to model
(2), where model (3b) is solved for p, q = t, t + 1 when p ≠ q:

Dp
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(rpj )
Typo] ≤ (rqj )

TY qλ, ∀j,

θ [(cpj )
T xpo] ≥ (cqj )

TXqλ, ∀j,
λ ≥ 0.

(3b)

Theorem 2. For every optimal solution (ϕ∗, θ∗, λ∗) of (3a), we have

ϕ∗
− θ∗

≥ 0.

Proof. Model (3a) has a feasible solution ϕ = 1, θ = 1, λo = 1, λj = 0 (j ≠ o). Hence, the optimal solution ϕ − θ , denoted
by ϕ∗

− θ∗, is greater than or equal to 0, i.e., ϕ∗
− θ∗

≥ 0. �

Remark 1. The objective function values for model (3b) can be less than or equal to zero.

Definition 2. DMUo is overall efficient if Dt+1
o (xt+1

o , yt+1
o ) = 0 and Dt

o(x
t
o, y

t
o) = 0.

Definition 3. The efficiency scores of models (3a) and (3b) are computed as follows

(i) If ϕ − θ ≥ 0, then ρ =
1

1 + ϕ − θ
.
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(ii) If ϕ − θ ≤ 0, then ρ = 1 + θ − ϕ.

Obviously, if ρ = 1 DMUo is efficient, and if ρ < 1, DMUo is inefficient.

Definition 4. The relative overall profit efficiency change for DMUo is defined as

TECo =
ρt+1
o (xt+1

o , yt+1
o )

ρt
o(xto, yto)

.

Definition 5. The change between t and t + 1 is calculated as follows:

FSo =


ρt
o(x

t+1
o , yt+1

o )

ρt+1
o (xt+1

o , yt+1
o )

×
ρt
o(xto, yto)

ρt+1
o (xto, yto)

.

The overall profit MPI for DMUo is calculated by multiplying the overall profit efficiency change and technology change
at periods t and t + 1 as follows:

Mo =
ρt+1
o (xt+1

o , yt+1
o )

ρt
o(xto, yto)

·


ρt
o(x

t+1
o , yt+1

o )

ρt+1
o (xt+1

o , yt+1
o )

×
ρt
o(xto, yto)

ρt+1
o (xto, yto)

. (4)

The above relation can be simplified as

Mo =


ρt
o(x

t+1
o , yt+1

o )

ρt
o(xto, yto)

×
ρt+1
o (xt+1

o , yt+1
o )

ρt+1
o (xto, yto)

. (5)

Therefore, we have three conditions:

(i) Mo > 1, increase productivity and observe progress;
(ii) Mo < 1, decrease productivity and observe regress; and
(iii) Mo = 1, no change in productivity at time t + 1 in comparison with t .

3. Background of fuzzy sets

In this section, we review some basic definitions for fuzzy sets [36–39].

Definition 6. Let U be a universe set. A fuzzy set Ã of U is defined by a membership function µÃ(x) → [0, 1], where
µÃ(x), ∀x ∈ U , indicates the degree of membership of Ã to U .

Definition 7. A fuzzy subset Ã of real numbers R is convex iff

µÃ(λx + (1 − λ)y) ≥ (µÃ(x) ∧ µÃ(y)), ∀x, y ∈ R, ∀λ ∈ [0, 1],

where ‘‘∧’’ denotes the minimum operator.

Definition 8. Ã is a fuzzy number iff Ã is a normal (see Definition 10) and convex fuzzy subset of R.

Definition 9. A fuzzy number Ã = (a1, a2, a3, a4) is called a generalized trapezoidal fuzzy number with membership func-
tion µÃ, and it has the following properties:

(a) µÃ is a continuous mapping from R to the closed interval [0, 1],
(b) µÃ(x) = 0 for all x ∈ (−∞, a1],
(c) µA is strictly increasing on [a1, a2],
(d) µÃ(x) = 1 for all x ∈ [a2, a3],
(e) µÃ is strictly decreasing on [a3, a4], and
(f) µÃ(x) = 0 for all x ∈ [a4, +∞).

The membership function µÃ of Ã can be defined as follows:

µÃ(x) =


fa(x), a1 ≤ x ≤ a2,
1, a2 ≤ x ≤ a3,
ga(x), a3 ≤ x ≤ a4,
0, otherwise,

(6)

where fa : [a1, a2] → [0, 1] and ga : [a3, a4] → [0, 1].



A. Emrouznejad et al. / Mathematical and Computer Modelling 54 (2011) 2827–2838 2831

The inverse functions of fa and ga, denoted as f −1
a and g−1

a , exist. Since fa : [a1, a2] → [0, 1] is continuous and strictly
increasing, f −1

a : [0, 1] → [a1, a2] is also continuous and strictly increasing. Similarly, since ga : [a3, a4] → [0, 1] is
continuous and strictly decreasing, g−1

a : [0, 1] → [a3, a4] is also continuous and strictly increasing. That is, both
 1
0 f −1

a dy
and

 1
0 g−1

a dy exist [40].
In particular, we are working with a special type of trapezoidal fuzzy number with a membership function µÃ expressed

by

µÃ(x) =



x − a1
a2 − a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
a4 − x
a4 − a3

, a3 ≤ x ≤ a4,

0, otherwise.

(7)

The trapezoidal fuzzy number Ã = (a1, a2, a3, a4) is reduced to a real number A if a1 = a2 = a3 = a4. Conversely, a real
number A can bewritten as a trapezoidal fuzzy number Ã = (a, a, a, a). If a2 = a3, then Ã = (a1, a2, a4) is called a triangular
fuzzy number. Also, let F(R) be the family of fuzzy numbers on R.

Definition 10. The α-level of fuzzy set Ã, Ãα , is the crisp set Ãα = {x|µÃ(x) ≥ α}. The support of Ã is the crisp set
Sup(Ã) = {x|µÃ(x) > 0}. Ã is normal iff Supx∈UµÃ(x) = 1, where U is the universal set. The lower and upper endpoints of
any α-cut set, [Ã]α , are represented by [Ã]

L
α and [Ã]

U
α , respectively. Note that [Ã]

L
α and [Ã]

U
α of each triangular fuzzy number

(a1, a2, a3) are computed by a1 + α(a2 − a1) and a3 − α(a3 − a2), respectively.

Definition 11. A fuzzy number Ã is named a non-negative fuzzy number if [Ã]
L
0 ≥ 0.

Ranking fuzzy numbers is an important part of the decision-making process in a fuzzy environment because of imprecise
measurements. Many fuzzy number ranking approaches have been developed in the literature. Chen and Hwang [41]
have surveyed the existing methods and classified them into four categories: (1) preference relation methods including
degree of optimality, Hamming distance, α-cut and comparison function, (2) fuzzy mean and spread methods based on
probability distributions, (3) fuzzy scoring methods including proportional optimal, left/right scores, centroid index and
area measurement, and (4) linguistic methods. To examine the methods of each category, see [41].

Definition 12. We use the following distance measure for two arbitrary fuzzy numbers, Ã and B̃:

d(Ã, B̃) =

∫ 1

0
s(α)([Ã]

L
α + [Ã]

U
α − [B̃]Lα − [B̃]Uα )dα, (8)

where s(α) is an increasing function, s(0) = 0, s(1) = 1, and
 1
0 s(α)dα =

1
2 . See [42] for further details.

Definition 13. We also use the following ranking system proposed by Yao and Wu [43] for two arbitrary fuzzy numbers, Ã
and B̃:

d(Ã, B̃) > 0 iff Ã ≻ B̃,

d(Ã, B̃) < 0 iff Ã ≺ B̃,

d(Ã, B̃) = 0 iff Ã ≈ B̃.

4. Overall profit Malmquist with fuzzy data

Although several conventional DEA models have explicitly addressed the effectiveness analysis, all the data assume the
form of specific numerical values. However, the observed values of the input and output data in real-world situations are
sometimes inexact, incomplete, vague, ambiguous, or imprecise. These imprecise or ambiguous data can be represented
as linguistic variables characterized by fuzzy numbers for reflecting a kind of general sense or experience of experts. The
fuzzy set theory developed by Zadeh [36] is the formal body of theory that allows the treatment of imprecise estimates in
uncertain environments. In this section, we propose a fuzzy overall profit Malmquist of a set of DMUs with fuzzy inputs and
outputs. Hence, we consider model (2) in crisp form and extend it to a fuzzy model using a fuzzy signed distance.

Let us assume that we have a set of DMUs consisting of DMUj (j = 1, . . . , n), with fuzzy input–output vectors (x̃j, ỹj),
where x̃j ∈ (F(R) ≥ 0)m, ỹj ∈ (F(R) ≥ 0)s, and F(R) ≥ 0 is the family of all non-negative fuzzy numbers. We also assume
that X̃ and Ỹ represent the m × n matrix of fuzzy inputs and the s × n matrix of fuzzy outputs, respectively. Hence, the
overall profit MPI at times t and t + 1, in which time t + 1 with the frontier of time t (the within-period time) and time t
with the frontier of time t + 1 (the adjacent-period time), can be obtained as follows.
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Within-period time

Dp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(r̃p)T ỹpo] ≤ (r̃p)T Ỹ pλ,

θ [(c̃p)T x̃po] ≥ (c̃p)T X̃pλ,
λ ≥ 0.

(9a)

Adjacent-period time

Dp
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(r̃p)T ỹpo] ≤ (r̃q)T Ỹ qλ,

θ [(c̃p)T x̃po] ≥ (c̃q)T X̃qλ,
λ ≥ 0.

(9b)

Here, c̃p(c̃q) and r̃p(r̃q) are the fuzzy input and fuzzy output price vectors, respectively, for DMUj (j = 1, . . . , n) at times
p(q), where they are non-negative fuzzy numbers. It is important to note that all DMUs in (9a) and (9b) have the same fuzzy
price vectors pT = (c̃p, r̃p).

In this paper, we use the fuzzy ranking approach to defuzzify models (9a) and (9b) into crisp models (see also [21,44,45,
22,32]). Hence, we use Definition 12 and transform models (9a) and (9b) into models (10a) and (10b), respectively:

Dp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. d((r̃p)T Ỹ pλ, ϕ[(r̃p)T ỹpo]) ≥ 0
d((c̃p)T X̃pλ, θ[(c̃p)T x̃po]) ≤ 0,
λ ≥ 0.

(10a)

Dp
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. d((r̃q)T Ỹ qλ, ϕ[(r̃p)T ỹpo]) ≥ 0,
d((c̃q)T X̃qλ, θ[(c̃p)T x̃po]) ≤ 0,
λ ≥ 0.

(10b)

Next, we transform models (10a) and (10b) into crisp models (11a) and (11b), respectively:

Dp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t.
∫ 1

0
s(α)[[(r̃p)TY pλ]

L
α + [(r̃p)TY pλ]

U
α − [ϕ[(r̃p)Typo]]

L
α − [ϕ[(r̃p)Typo]]

U
α ]dα ≥ 0∫ 1

0
s(α)[[(c̃p)TXpλ]

L
α + [(c̃p)TXpλ]

U
α − [θ [(c̃p)T xpo]]

L
α − [θ [(c̃p)T xpo]]

U
α ]dα ≤ 0

λ ≥ 0.

(11a)

Dp
o(x

p
o, y

p
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t.
∫ 1

0
s(α)[[(r̃q)TY qλ]

L
α + [(r̃q)TY qλ]

U
α − [ϕ[(r̃p)Typo]]

L
α − [ϕ[(r̃p)Typo]]

U
α ]dα ≥ 0∫ 1

0
s(α)[[(c̃q)TXqλ]

L
α + [(c̃q)TXqλ]

U
α − [θ [(c̃p)T xpo]]

L
α − [θ [(c̃p)T xpo]]

U
α ]dα ≤ 0

λ ≥ 0.

(11b)

Next, we assume that s(α) = α, and introduce the following variables to simplify the above models:

Y
p

=

∫ 1

0
α[(r̃p)TY p

]
U
αdα Y

q
=

∫ 1

0
α[(r̃q)TY q

]
U
αdα

Y p
=

∫ 1

0
α[(r̃p)TY p

]
L
αdα Y q

=

∫ 1

0
α[(r̃q)TY q

]
L
αdα

X
p

=

∫ 1

0
α[(c̃)TXp

]
U
αdα X

q
=

∫ 1

0
α[(c̃)TXq

]
U
αdα

Xp
=

∫ 1

0
α[(c̃p)TXp

]
L
αdα Xq

=

∫ 1

0
α[(c̃q)TXq

]
L
αdα.

(12)

Finally, we use the above variables and transform models (11a) and (11b) to the linear programming models (13a) and
(13b) given below:
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Dp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ(Y p
o + Y

p
o) ≤ λ(Y p

+ Y
p
),

θ(Xp
o + X

p
o) ≥ λ(Xp

+ X
p
),

λ ≥ 0.

(13a)

Dp
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ(Y p
o + Y

p
o) ≤ λ(Y q

+ Y
q
),

θ(Xp
o + X

p
o) ≥ λ(Xq

+ X
q
),

λ ≥ 0.

(13b)

Definition 14. Using Definitions 3, 4 and models (13a) and (13b), the overall profit MPI for DMUo is calculated as

Mo =


ρt
o(x

t+1
o , yt+1

o )

ρt
o(xto, yto)

×
ρt+1
o (xt+1

o , yt+1
o )

ρt+1
o (xto, yto)

.

(i) Mo > 1, increase productivity and observe progress.
(ii) Mo < 1, decrease productivity and observe regress.
(iii) Mo = 1, no change in productivity at time t + 1 in comparison to t .

Note that models (3a) and (3b) with crisp data are special cases of models (13a) and (13b), respectively.

5. Overall profit Malmquist with interval data

Let us proceed with our earlier assumption that there are n DMUs under consideration. For each DMUj, j = 1, . . . , n, we
introduce the following models to measure the overall profit MPI and capture the uncertainty in models (3a) and (3b) with
interval data.

Within-period time

Bp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(r̃pj )
T ỹpo] ≤ (r̃pj )

T Ỹ pλ, ∀j,

θ [(c̃pj )
T x̃po] ≥ (c̃pj )

T X̃pλ, ∀j,
λ ≥ 0.

(14a)

Adjacent-period time

Bp
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(r̃pj )
T ỹpo] ≤ (r̃qj )

T Ỹ qλ, ∀j,

θ [(c̃pj )
T x̃po] ≥ (c̃qj )

T X̃qλ, ∀j,
λ ≥ 0.

(14b)

Here, X̃ ∈ [X, X], Ỹ ∈ [Y , Y ], r̃Tj ∈ [rTj , r
T
j ] and c̃Tj ∈ [cTj , c

T
j ] are thematrix of interval inputs, thematrix of outputs, the input

price vector, and the output price vector, respectively. In this case, the efficiency of each DMU can be an interval denoted as
[B

p
j , B

p
j ]. The upper and lower bounds of the interval overall profit efficiency of the DMUo are obtained from the pessimistic

and optimistic viewpoints, respectively, using the following pair of LP models [(15a), (15b) and (16a), (16b)].

Optimistic viewpoint in the within-period time (upper bound)

B
p
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(rpj )
Typo] ≤ (rpj )

TY pλ, ∀j,

θ [(cpj )
T xpo] ≥ (cpj )

TX
p
λ, ∀j,

λ ≥ 0.

(15a)



2834 A. Emrouznejad et al. / Mathematical and Computer Modelling 54 (2011) 2827–2838

Pessimistic viewpoint in the within-period time (lower bound)

Bp
o(x

p
o, y

p
o|p = t, t + 1) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(rpj )
Typ

o
] ≤ (rpj )

TY
p
λ, ∀j,

θ [(cpj )
T xpo] ≥ (cpj )

TXpλ, ∀j,
λ ≥ 0.

(15b)

Optimistic viewpoint in the adjacent-period time (upper bound)

B
p
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(rpj )
Typo] ≤ (rqj )

TY qλ, ∀j,

θ [(cpj )
T xpo] ≥ (cqj )

TX
q
λ, ∀j,

λ ≥ 0.

(16a)

Pessimistic viewpoint in the adjacent-period time (lower bound)

Bp
o(x

q
o, y

q
o|p, q = t, t + 1, p ≠ q) = max

ϕ,θ,λ
ϕ − θ

s.t. ϕ[(rpj )
Typ

o
] ≤ (rqj )

TY
q
λ, ∀j,

θ [(cpj )
T xpo] ≥ (cqj )

TXqλ, ∀j,
λ ≥ 0.

(16b)

Theorem 3. a: Let (ϕ, θ, λ), (ϕ̂, θ̂ , λ̂), and (ϕ∗, θ∗, λ∗) be the optimal solutions for (14a), (15a) and (15b), respectively, when
p = t. Then, B

t
o ≤ Bt

o ≤ Bt
o.

b: Let (ϕ, θ, λ), (ϕ̂, θ̂ , λ̂), and (ϕ∗, θ∗, λ∗) be the optimal solutions for (14a), (15a) and (15b), respectively, when p = t + 1.
Then, B

t+1
o ≤ Bt+1

o ≤ Bt+1
o .

c: Let (ϕ, θ, λ), (ϕ̂, θ̂ , λ̂), and (ϕ∗, θ∗, λ∗) be the optimal solutions for (14b), (16a) and (16b), respectively, when p = t + 1
and q = t. Then, B

t+1
o ≤ Bt+1

o ≤ Bt+1
o .

d: Let (ϕ, θ, λ), (ϕ̂, θ̂ , λ̂), and (ϕ∗, θ∗, λ∗) be the optimal solutions for (14b), (16a) and (16b), respectively, when p = t and
q = t + 1. Then, B

t
o ≤ Bt

o ≤ Bt
o.

Proof. a: (ϕ, θ, λ) is a feasible solution for model (15b) when p = t , since

ϕ[(r tj )
Tyt

o
] ≤ ϕ[(r̃ tj )

Tyt
o
] ≤ ϕ[(r̃ tj )

T ỹto] ≤ (r̃ tj )
T Ỹ tλ ≤ (r tj )

T Ỹ tλ ≤ (r tj )
TY

t
λ,

θ [(ctj )
T xto] ≥ θ [(c̃tj )

T xto] ≥ θ [(c̃tj )
T x̃to] ≥ (c̃tj )

T X̃ tλ ≥ (ctj )
T X̃ tλ ≥ (ctj )

TX tλ.

Thus, we obtain Bt
o ≤ Bt

o.
Furthermore, (ϕ̂, θ̂ , λ̂) is the feasible solution for model (14a) when p = t , since

ϕ̂[(r̃ tj )
T ỹto] ≤ ϕ̂[(r tj )

T ỹto] ≤ ϕ̂[(r tj )
Tyto] ≤ (r tj )

TY t λ̂ ≤ (r̃ tj )
TY t λ̂ ≤ (r̃ tj )

T Ỹ t λ̂,

θ̂ [(c̃tj )
T x̃to] ≥ θ̂ [(ctj )

T x̃to] ≥ θ̂ [(ctj )
T xto] ≥ (cpj )

TX
p
λ̂ ≥ (c̃pj )

TX
p
λ̂ ≥ (c̃pj )

T X̃pλ̂.

Hence, B
t
t ≤ Bt

t .
The proofs of b, c, and d are similar to the proof of a. �

Definition 15. The lower and upper bounds of the overall profit MPI are obtained as follows

M =

ρt+1
t

ρt
t

×
ρt+1
t+1

ρt
t+1

,

M =


ρt+1
t

ρt
t

×

ρt+1
t+1

ρt
t+1

.

Note thatρp
p(ρ

p
p
), p = t, t+1, represents the optimistic (pessimistic) efficiency in thewithin-period time, andρp

q(ρ
p
q
), p, q =

t, t + 1, p ≠ q, represents the optimistic (pessimistic) efficiency in the adjacent-period time.
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Table 1
The input and output data for the five DMUs in Example 1 at time t and time t + 1.

DMUj (xL1j, x
U
1j) (xL2j, x

U
2j) (yL1j, y

U
1j) (yL2j, y

U
2j)

t t + 1 t t + 1 t t + 1 t t + 1

1 (12, 15) (10, 14) (0.21, 0.48) (0.32, 0.5) (138, 144) (130, 140) (21, 22) (20, 23)
2 (10, 17) (11, 15) (0.1, 0.7) (0.21, 0.4) (143, 159) (137, 150) (28, 35) (24, 30)
3 (4, 5) (3, 7) (0.16, 0.35) (0.22, 0.42) (157, 198) (146, 160) (21, 29) (20, 30)
4 (19, 22) (14, 23) (0.12, 0.19) (0.31, 0.39) (158, 181) (159, 170) (21, 25) (25, 32)
5 (14, 15) (17, 18) (0.06, 0.09) (0.1, 0.17) (157, 180) (160, 189) (28, 40) (18, 35)

Theorem 4. Any M ≤ M ≤ M can be considered as the overall profit Malmquist for DMUo.

Proof. Since ρt+1
t+1 ≥ ρt+1

t+1 and ρt
t ≥ ρt

t
,

ρt+1
t+1
ρt
t

≥
ρt+1
t+1
ρt
t
, and since ρt+1

t ≥ ρt+1
t and ρt

t+1 ≥ ρt
t+1

,
ρt+1
t+1
ρt
t

≥
ρt+1
t

ρt
t+1

. Hence, we have

M ≤ M .
Similarly, we can show thatM ≤ M . This completes the proof. �

Considering that the overall PMI of any DMU lies in an interval, the DMUs can be divided into one of the six following
classes.

• The no change in productivity class. This class includes all the DMUs with constant productivity; that is, E0
= {DMUj :

M j = M j = 1}.
• The fully increasing productivity class. This class includes all the DMUswith increasing productivity and observed progress

in the pessimistic viewpoint; that is, E++
= {DMUj : 1 < M j ≤ M j}.

• The fully decreasing productivity class. This class includes all the DMUs with decreasing productivity and observed regress
in the optimistic viewpoint; that is, E−−

= {DMUj : M j ≤ M j < 1}.
• The partially increasing productivity class. This class includes all the DMUs with increasing productivity in the optimistic

viewpoint and no change in productivity in the pessimistic viewpoint; that is, E+
= {DMUj : M j = 1,M j > 1}.

• The partially decreasing productivity class. This class includes all the DMUswith decreasing productivity in the pessimistic
viewpoint and no change in productivity in the optimistic viewpoint; that is, E−

= {DMUj : M j < 1,M j = 1}.
• The partially increasing–decreasing productivity class. This class includes all the DMUs with increasing productivity in the

optimistic viewpoint and decreasing productivity in the pessimistic viewpoint; that is, E = {DMUj : M j < 1 < M j}.
Assuming that aj = M j − 1 and bj = 1 − M j, this class can be divided into three subclasses, as follows.

1. E00
= {DMUj : aj = bj}. This subclass is an equilibrium between the optimistic and pessimistic viewpoints.

2. E+−
= {DMUj : aj > bj}. In this subclass, the productivity increase in the optimistic viewpoint is stronger than the

productivity decrease in the pessimistic viewpoint.
3. E−+

= {DMUj : bj > aj}. In this subclass, the productivity decrease in the pessimistic viewpoint is stronger than the
productivity increase in the optimistic viewpoint.

Next, we present two numerical examples to demonstrate the applicability of the proposed methods.

6. Numerical examples

In the following two examples we solved above model under VRS by adding convexity constraint (1λ = 1) to all models,
however we did not report scale efficiency changes, as it is not the aim in this paper.

6.1. Example 1: A case of overall profit MPI with interval data

We consider five DMUs with two interval input variables and two interval output variables, as shown in Table 1. Table 2
shows the interval price vectors at time t and time t + 1. Using models 15 and 16, the efficiencies and the overall profit
MPI are as given in Table 3. As shown in Table 3, all DMUs are classified in the partially increasing–decreasing productivity
class, and in all cases the productivity increase in the optimistic viewpoint is stronger than the productivity decrease in the
pessimistic viewpoint. DMU3 has the highest productivity progress of 2.306 in the optimistic viewpoint, and DMU3 has the
highest productivity decrease of 0.237. According to the optimistic viewpoint, we can rank the DMUs by their progress in
productivity in the order DMU3 ≻ DMU1 ≻ DMU2 ≻ DMU4 ≻ DMU5. However, according to the pessimistic viewpoint,
the productivity regress is in the order DMU3 ≻ DMU2 ≻ DMU5 ≻ DMU1 ≻ DMU4. Obviously the order in productivity
increase may be different than the order in productivity decrease.
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Table 2
The price vector data for the five DMUs in Example 1 at time t and time t + 1.

DMUj (r j1, r j1) (r j2, r j2) (c j1, c j1) (c j2, c j2)

t t + 1 t t + 1 t t + 1 t t + 1

1 (10, 12) (11, 15) (30, 35) (23, 30) (100, 110) (110, 115) (50, 55) (40, 50)
2 (9, 10) (8, 9) (27, 28) (24, 29) (110, 115) (114, 117) (40, 44) (42, 45)
3 (8, 9) (5, 9) (25, 27) (25, 26) (105, 110) (102, 109) (42, 45) (42, 50)
4 (9, 11) (7, 12) (29, 31) (23, 26) (107, 115) (114, 115) (50, 57) (49, 52)
5 (10, 11) (10, 14) (28, 31) (24, 30) (111, 117) (110, 114) (47, 62) (42, 52)

Table 3
The efficiencies and overall profit Malmquist of the five DMUs in Example 1.

DMUj (B
t
j (x

t
j , y

t
j ), B

t
j (x

t
j , y

t
j )) (B

t+1
j (xt+1

j , yt+1
j ), Bt+1

j (xt+1
j , yt+1

j )) (B
t
j (x

t+1
j , yt+1

j ), Bt
j (x

t+1
j , yt+1

j )) (B
t+1
j (xtj , y

t
j ), B

t+1
j (xtj , y

t
j )) M j M j

1 (0.4104, 1.2877) (0.1081, 1.3041) (0.2411, 1.5158) (0.0316, 1.0748) 0.4855 2.0588
2 (0.1358, 1.1418) (0.1189, 1.1795) (0.1981, 1.3183) (0.3042, 0.9532) 0.4150 1.9770
3 (0.7464, 0.1271) (1.9381, 0.9742) (1.1280, 1.0333) (1.5450, 0.0428) 0.2366 2.3064
4 (0.4234, 1.2279) (0.0280, 1.1016) (0.2342, 1.2323) (0.1005, 1.0220) 0.5778 1.9372
5 (0.2122, 1.0290) (0.0153, 1.1796) (0.2408, 1.2932) (0.1332, 0.8603) 0.4624 1.7312

Table 4
The fuzzy input and output data for the six DMUs in Example 2 at time t and time t + 1.

DMUj Period t Period t + 1
I1 I2 O1 I1 I2 O1

1 (5, 6, 7) (100, 110, 115) (20, 21, 23) (4, 6, 8) (99, 101, 103) (18, 20, 23)
2 (4, 5, 7) (121, 123, 129) (19, 20, 24) (2, 4, 5) (123, 125, 127) (20, 21, 23)
3 (3, 5, 9) (140, 141, 143) (17, 20, 21) (10, 11, 12) (135, 142, 143) (16, 19, 22)
4 (8, 10, 11) (90, 93, 97) (19, 23, 25) (8, 9, 10) (92, 93, 95) (20, 23, 24)
5 (11, 12, 13) (95, 99, 100) (18, 25, 27) (7, 8, 10) (93, 95, 101) (17, 22, 27)
6 (7, 9, 10) (80, 90, 100) (14, 19, 27) (9, 11, 13) (82, 85, 90) (13, 17, 24)

Table 5
The efficiencies and the overall profit Malmquist for the six DMUs in Example 2.

DMUj Dt
j (x

t
j , y

t
j ) Dt+1

j (xt+1
j , yt+1

j ) Dt
j (x

t+1
j , yt+1

j ) Dt+1
j (xtj , y

t
j ) Overall profit Malmquist

1 10.8297 2.6555 3.8689 0.2917 0.9261
2 8.8324 0.1438 0.7570 0.7358 1.6788
3 0.8000 0.4666 0.9150 0.2616 0.8991
4 10.0937 0.3314 0.7534 4.5893 5.1571
5 9.6349 0 0.6943 0.0167 2.4859
6 0 0.6335 1.0219 1.8441 0.3260

6.2. Example 2: A case of overall profit MPI with fuzzy data

Consider six DMUs with two fuzzy inputs and a single fuzzy output, as shown in Table 4. Further, assume that the prices
are fuzzy vectors at times t and t + 1, as follows:

r t1 = (50, 51, 52), r t+1
1 = (45, 49, 52),

ct1 = (120, 121, 123), ct+1
1 = (112, 115, 116),

ct2 = (30, 31, 32), ct+1
2 = (32, 33, 35).

Using Definition 10, we first calculate the lower and upper bounds of input/output variables at times t and t + 1 for each
DMU.We then use models (3a) and (3b) to obtain the efficiencies and the overall profit MPI. The results are given in Table 5.

As shown in Table 5, the overall profit MPI for DMU2,DMU4, and DMU5 are greater than 1, so productivity progress is
observed. In addition, DMU4 has the best progress, and the overall profit MPI values for DMU1, DMU3, and DMU6 are less
than 1, so there is decrease in productivity and observed regress. DMU6 has the highest regress.

7. Conclusions and future research directions

In addition to comparing the relative performance of a set of DMUs at a specific period, conventional DEA can also be
used to calculate the productivity change of a DMU over time with the profit MPI model. While precise data are often
used in conventional DEA, real-world data are sometimes imprecise and vague. Furthermore, it is very expensive for
organizations to collect precise data for efficiency analysis. Consequently, there is a strong impetus for developing cost-
effective methodologies to capture imprecision in productivity and efficiency analysis.
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The conventional profit MPI model lacks the flexibility to deal with imprecise or vague data. These imprecise or vague
data can be suitably characterized with fuzzy and interval methods. In this paper, we reformulated the conventional profit
MPI model as an imprecise DEA model and proposed two novel methods for measuring the overall profit MPI when the
inputs, outputs, and price vectors are fuzzy or vary in intervals. We developed a fuzzy version of the conventional MPI
model by using a ranking method and solved the model with a commercial off-the-shelf DEA software package. In addition,
we defined an interval for the overall profit MPI of each DMU and classified the DMUs into six groups according to the
intervals obtained for their overall profit efficiency and MPIs. We also presented two numerical examples to demonstrate
the applicability of the proposed frameworks.

The contribution of this paper is fourfold: (1) we considered ambiguous, uncertain, and imprecise data in theMPI model;
(2) we characterized these imprecise and vague data with fuzzy and interval methods; (3) we proposed two novel methods
for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy or vary in intervals; and (4) we
demonstrated the practical aspects of our model with two numerical examples.

From a future research point of view, we suggest that researchers develop similarmodels formeasuring the overall profit
MPI with fuzzy and interval data for non-radial DEA models such as additive and slack-based measures. We also suggest to
those who are interested to extend the proposedmethods in this paper for variable returns to scale model that would allow
us to measure the scale efficiency change with fuzzy and interval data. Finally, we plan to implement the proposed method
in the real world and write a follow-up paper demonstrating the practical implications of our models in real-life problems.
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