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A B S T R A C T

Data envelopment analysis (DEA) is a popular method for evaluating a set of homogeneous decision-making
units (DMUs). One of the main shortcomings of DEA is the weights flexibility where each unit can take its
desirable weights. Several methods have been developed for finding a common set of weights (CSWs) and
overcoming this drawback. The CSWs methods are used to evaluate the relative efficiency of the DMUs in a
single time-period. However, single period DEA models cannot handle organizational units performing in a
continuum of time. We propose a novel method for determining the CSWs in a multi-period DEA. Initially, the
CSWs problem is formulated as a multi-objective fractional programming problem. Subsequently, a multi-period
form of the problem is formulated and the mean efficiency of the DMUs is maximized while their efficiency
variances is minimized. A fuzzy set-based approach is used to solve the multi-period CSWs problem. We present a
real-world case study to demonstrate applicability and exhibit the efficacy of the proposed method. The results
indicate a significant improvement in the discrimination power of the proposed multi-period method.

1. Introduction

Data envelopment analysis (DEA), introduced by Charnes et al. [12]
(known as the CCR model) is a well-known framework for evaluating
the relative efficiency of a set of homogeneous organizational units,
known as decision making units (DMUs). DEA illustrates the efficiency
of the process that transforms inputs into outputs by applying an m-
dimensional input vector to produce an s-dimensional output vector.
DEA does not make any assumption about the system structure [7]. Liu
et al. [41] and later Emrouznejad and Yang [21] surveyed several ap-
plications of DEA in different domains. In addition, a comprehensive
review on the theoretical foundations of DEA can be found in Cooper
et al. [16].

Beyond their advantages and strengths, the classic DEA models are
confronted with some shortcomings. Dyson et al. [19] has identified the
homogeneity assumption, full flexibility of weights, and weight re-
strictions as the main pitfalls of DEA. Since its initial introduction,

researchers have focused on resolving these shortcomings by extending
new research directions. Liu et al. [42] have shown that the main re-
search topics in DEA are focused on: (1) bootstrapping and two-stage
analysis, (2) undesirable factors, (3) cross-efficiency and ranking, and
(4) network DEA, dynamic DEA, and SBM.

The aim of research in cross-efficiency and ranking problems is in-
creasing the discrimination power of classic DEA models in which,
DMUs are classified into efficient and inefficient classes. The common
set of weights (CSWs) problem is a popular research stream in DEA
dealing with full flexibility of weights. DEA models provide a flexible
condition for the DMUs to take their desirable weights of inputs and
outputs and maximize the relative efficiency of the considered DMU.
Solving the DEA model for n DMUs requires a set of n different weight
vectors for the DMUs. The efficiency calculated with this weighting
scheme will overestimate the real-world efficiency of each DMU. This
type of weighting has some problems as described in [17]. To overcome
these problems, the CSW seeks to find a set of common weights for the
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DMUs. Roll et al. [54] and Roll and Golany [55] were among the first
researchers to work on the CSW problem.

Kao and Hung [35] proposed a compromise solution approach for
generating common weights under the DEA framework to rank the
DMUs with the same scale. Furthermore, Ramon et al. [50] proposed a
DEA approach aimed at deriving a CSWs to be used to obtain the
ranking of the DMUs. Additionally, Qi and Guo [49] presented a
methodology by combining the CSWs with the Shannon’s entropy. Ja-
hanshahloo et al. [31] also defined an ideal line and determined a CSWs
for the efficient DMUs and used the new efficiency scores obtained to
rank them. In addition, they developed a special line and ranked the
efficient DMUs by comparing them with this line. Wang et al. [64]
proposed a new methodology based on regression analysis to find CSWs
that are easy to estimate and can produce a full ranking of the DMUs.
They used the most favorable weights to obtain the DEA efficiencies.

Given the large number of DMUs in real applications, the compu-
tational and conceptual complexities are considerable with weights that
are potentially zero-valued or incommensurable across units. In this
regard, Saati et al. [56] proposed a two-phase algorithm to address this
situation. Similarly, [17] proposed an innovative method using a CSWs
leading to solving a linear programming problem. Their method de-
termines the efficiency score of all DMUs and ranks them simulta-
neously. Moreover, Ching et al. [15] proposed a context-dependent
DEA model to address the shortcomings resulting from redundant re-
straints on the weights of an efficient DMU and converted the optimal
weight to analyze the influences of redundant restraints on weights.
Hosseinzadeh Lotfi et al. [28] proposed an allocation mechanism using
common dual weights approach and applied it to allocate the fixed
resources to the units. Razavi Hajiagha et al. [51] formulated the CSW
problem as a multiple objective fractional programming model and
then applied the Dutta et al. [20] method for solving this problem. Wu
et al. [65] proposed a method of finding CSWs based on a DMU’s sa-
tisfaction degree with respect to common weights. Their model con-
tained a min–max model and two approaches were proposed for solving
this model.

Considering uncertain situations, Omrani [47] introduced a robust
optimization approach to find common weights in DEA models with
uncertain data. They considered uncertainty in inputs and outputs and
developed a suitable robust counterpart for the DEA model. In addition,
Tavana et al. [61] illustrated a CSW model for ranking the DMUs with
the stochastic data and the ideal point concept. Their proposed method
minimizes the distance between the evaluated DMUs and the ideal
DMU. Recently, Dong et al. [18] provided a DEA-based approach for
obtaining DMUs’ efficiencies by assuming the DMUs as a collection of
rational units and maximizing an objective for satisfaction degrees of
the DMUs. They also provided a maxim model and two corresponding
algorithms for generating the CSWs. Furthermore, Hatami-Marbini
et al. [27] introduced an alternative DEA model for centrally imposed
resource or output reduction across the reference set. They determined
the amount of input and output reduction needed for each DMU to
increase the efficiency score of all the DMUs.

Another research direction in DEA is the problem of multi-period
efficiency evaluation, known as dynamic DEA. While classical DEA
models are considered as cross-sectional or single point evaluation,
comparison of DMUs performance over several periods of time can be
considerable as time series DEA [11,53] or multi-period (dynamic)
DEA. In this context, each individual input or output measure is cap-
tured in the form of a time series which reflects the level of that mea-
sure in different time periods. Thus, a method is required for dealing
with fluctuation. Using the concept of Debreu-Farrell technical effi-
ciency, Park and Park [48] proposed the multi-period DEA model that
found the efficiency of DMUs in different periods. They call a DMU
fully-efficient if it gains full efficiency in all periods. Sengupta [58]
introduced the concept of dynamic DEA to consider inputs and outputs
change over time.

Amirteimoori and Kordrostami [5] defined the aggregate efficiency

of a DMU as convex combination of its periodic efficiencies and pro-
posed a method for finding the aggregated and periodic efficiencies.
Kao [34] proposed a model in which the complement of the system
efficiency is a linear combination of period efficiencies. Similarly, Kao
and Liu [37] defined the overall efficiency of a DMU as a weighted
average of its individual periodic efficiencies. Razavi Hajiagha et al.
[52] used the concept of Chebyshev inequality bounds for finding the
confidence intervals of inputs and outputs and transformed the multi-
period DEA problem into an equivalent interval DEA problem. They
evaluated the multi-period efficiency of DMUs in the form of interval
efficiencies. Kou et al. [40] extended the idea of Kao [34] to find the
multi-period efficiency of a multi-division network. Kordrostami and
Jahani Sayyad Noveiri [39] proposed a method based on fuzzy ex-
pected value for determining the overall and period efficiencies of
DMUs in a multi-period problem. Jahani Sayyad Noveiri et al. [30]
proposed a DEA-based procedure to estimate the multi-period efficiency
of systems with desirable and undesirable outputs. They defined the
overall efficiency of units as a weighted average of the efficiencies of
the periods and approximated the efficiency changes between two
periods. Multi-period DEA models are applied in commercial banks
[37,52], insurance companies [36], international airports [4], uni-
versities [24], and regional R&D efficiency [33].

The aim of this paper is to bring together these two fields of study.
Considering the above-mentioned researches, it is notable that while a
great deal of attention is paid to solve multi-period or dynamic DEA
problems, the research on finding CSWs for measuring the efficiency of
DMUs performed over several periods of time is very rare. In this study,
we develop a mathematical model for determining the best CSWs for
DMUs performing in multiple periods of time. The considered
quandary, known as multi-period CSWs problem, is useful for those
managers who seek a general weighting scheme to evaluate organiza-
tional units in a time horizon. To this end; first, the CSWs problem is
formulated and after modification, it is extended to determine the
multi-period CSWs.

The reminder of the paper is organized as follows. After the in-
troduction, the problem considered in this study is described in Section
2. The mathematical formulation of this problem is presented in Section
3. In Section 4, we propose the solution procedure and in Section 5, we
present a real-world case study to demonstrate the applicability and
exhibit the efficacy of the proposed model. Finally, the paper is con-
cluded in Section 6.

2. Problem description

In this section, a description of multi-period CSWs problem is given.
Suppose that there are a set of n DMUs, = …DMU j n, 1, 2, ,j , that are
evaluated in a time horizon consisting of T time periods. At each period

= …t t T, 1, 2, , , DMU0 receives the input vector = …X x x x( , , , )t t t
m
t

0 10 20 0
and produces the output vector = …Y y y y( , , , )t t t

s
t

0 10 20 0 . This situation is
illustrated in Fig. 1.

The relative efficiency of DMU0 at any time-period t can be assessed
using classic DEA models. Solving the individual DMU's model, the
relative efficiency of ∈ …DMU n, 0 {1, 2, , }0 at time-period t is de-
termined. This is a single-period evaluation of relative efficiency, gen-
erally called as cross-sectional efficiency. The aim of multi-period DEA
models is to determine a single measure of relative efficiency for DMUs
that perform like Fig. 1.

On the other hand, solving the above model for each DMU, different
weights are obtained for inputs and outputs at each time-period. The
aim of the multi-period CSWs problem is to find a CSWs

= …u r s, 1, 2, ,r and = …v i m, 1, 2, ,i that,

a. Evaluate the relative efficiency of DMUs at a multi-period manner;
b. Determine the common weights of inputs and outputs as a general

baseline to evaluate efficiencies;
c. Enhance the comparability of relative efficiencies among DMUs.
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For any input measure = … = …X i m j n, 1, 2, , ; 1, 2, ,ij a mean
= ∑ =X x T¯ /ij t

T
ij
t

1 and variance = ∑ − −=σ x X T( ¯ ) /( 1)ij t
T

ij
t

ij
2

1
2 is computable.

Similarly, for output vector = … = …Y r s j n, 1, 2, , ; 1, 2, ,rj , the mean
= ∑ =Y y T¯ /rj t

T
rj
t

1 and variance = ∑ − −=δ y Y T( ¯ )/ 1rj t
T

rj
t

rj
2

1 are calculated.

3. Mathematical formulation

The problem formulation is performed in two stages. Initially, a
model is developed to find the CSWs and then a multi-period model is
extended. Fig. 2 illustrates an algorithmic scheme of the proposed
method.

3.1. Common set of weights modelling

In this stage, a model is developed to find the CSWs. Assuming given
time-period t, we consider the aforementioned notation of DMUs and
their corresponding inputs and outputs, and develop the following
problem, called the input-oriented CCR model:

=
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⩾ = …
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=
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1

1

(1)

For each DMU, the relative efficiency of ∈ …DMU n, 0 {1, 2, , }0 is
determined for a single period (time-period t) using a cross-sectional
efficiency model. Solving the above model for each DMU, different

values are obtained for = …u r s, 1, 2, ,r
t and = …v i m, 1, 2, ,i

t . The goal
is to find a CSWs; = …u r s, 1, 2, ,r

tc and = …v i m, 1, 2, ,i
tc , as real

weights of inputs and outputs. Accordingly, the CSWs problem is for-
mulated as a vector maximum problem, with the following objective:

…Max E E E{ , , , }tc tc
n
tc

1 2 (2)

where = …E j n, 1, 2, ,j
tc , i.e. the relative efficiency of the jth DMU at

time-period t by using the common weights, is defined as:

=
∑

∑
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The extended form of Model (2), with its corresponding constraints
is constructed as follows:
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(4)

Model (4) is a multi-objective fractional linear programming pro-
blem producing the CSWs in each time-period t.

4. Solution approach

In this section, we develop a fuzzy approach for solving the CSWs
problem in the multi-objective fractional linear programming problem
(4). The proposed approach to solve the above problem is based on the
idea of Dutta et al. [20] in solving multi-objective fractional program-
ming problems that later is extended by Razavi Hajiagha et al. [51] to
solve the DEA common set of weights problem. In this method, a
membership function is developed for both the nominator and de-
nominator of the objectives and then the sum of these membership
functions is maximized.

Razavi Hajiagha et al. [51] proposed the above method for finding
CSWs of a single-period DEA problem. Comparing the results of their
model with three models of Kao and Hung [35] and Makui et al. [67],
the proposed method of Razavi Hajiagha et al. [51] illustrated a high

Fig. 1. Multi-period DMU performance measurement.

Fig. 2. Algorithmic scheme of multi-period CSWs calculation.
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level of correlation with the classic CCR model and provided a great
discriminant power among the DMUs. Therefore, in this paper, the
method of finding CSWs is extended to multi-period conditions.

Considering the CCR Model (1), suppose a decision maker de-
termines his/her satisfaction regard to input-oriented efficiency of
DMUj according to the following membership function:

=

⎧

⎨
⎪

⎩
⎪

> ∑

⩽ ∑ ⩽

=
∑ −

−
=
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t
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s
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r
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r
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r
s

r
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l

1

(5)

Eq. (5) shows the input-oriented efficiency is in the range of θ[ , 1]l ,
where θl is a DMU-independent threshold determined by the decision
maker. In the case that this efficiency is lower than θl, its acceptance by
the decision maker is zero. For efficiency scores between θl and 1, the
acceptance is increased as a monotone increasing function. At the ef-
ficiency score of 1, the satisfaction degree will reach 1. It is notable that
since input-oriented efficiency is always lower than one, the case of
∑ <= u y 1r

s
r
tc

rj
tc

1 is not considered in Eq. (5). The output-oriented effi-
ciency also can be defined in the interval of ϕ[1, ]u , where ϕu is an upper-
bound threshold determined by the decision maker. In the case of the
CCR model considered here, =ϕ θ1/u l, i.e. when the output-oriented
efficiency is greater than ϕu, its acceptance is zero, while when it is
between 1 and ϕu, its acceptance is decreased linearly according to Eq.
(6):
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(6)

The thresholds θl and ϕu are required to normalize the membership
functions and becoming commensurable to proceed with the algorithm.
In addition, since the nominators and denominators of the fractions in
Eq. (4) are not in one direction, it is necessary to transform them into
the above membership functions to put them in one direction and be-
come commensurable, as is required. In Eq. (6), since the output-or-
iented efficiency is always greater than one, the case of ∑ <= v x 1i

m
i
tc

ij
tc

1
is not considered. Hence, the fractional programming problem in Eq.
(1) is transformed into the following membership function maximiza-
tion problem:
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(7)

Eq. (7) is a fuzzy approach to solve Eq. (1). The fractional con-
straints of Eq. (1) are transformed to linear constraints (iii). Two sets of
constraints (i) and (ii) are also obtained from the fact that the con-
structed membership functions, Eqs. (5) and (6), must be greater than
zero and lower than one for all DMUs.

If the definition of μI
t
j
in Eq. (5) is replaced in the first constraint of

Eq. (7), then ∑ ⩽= u y 1r
s

r rj
t

1 . Equivalently, for μO
t

j
in Eq. (6), by

substituting it in the second constraint of Eq. (7), an inequality of the

form − ∑ ⩽ −
=

v x 1
i

m

i ij
t

1
is obtained. Adding these two inequalities, the in-

equality ∑ − ∑ ⩽
= =

u y v x 0
r

s

r rj
t

i

m

i ij
t

1 1
is obtained. Since the latter inequality is

the linear combination of the above inequalities, it is a redundant
constraint that can be eliminated [8]. Therefore, two sets of constraints
(i) and (ii) imply the constraints of (iii) and thus, the sets of constraints
(iii) are redundant. Dutta et al. [20] and Stanco-Minasian and Pop [60]
have proved the efficiency of the results obtained by solving the fuzzy
equivalent (Eq. (7)) of the fractional programming problems (Eq. (1)).
Therefore, solving Eq. (7) is equivalent to solving Eq. (1).

Eq. (7) is an ordinary linear programming problem that can be
solved without difficulty. For finding the CSWs using Model (4), the
summation of membership functions is maximized as suggested by [66]
and Tiwari et al. [62]. It is notable that according to Chen and Tsai
[13], the sum of the achievement degrees in a max-sum (additive)
model is greater than in the ordinal max–min model of Bellman and
Zadeh [9]; thus, this operator is selected in this paper. Consequently,
the CSWs problem of model (4) transforms as follows by ignoring the
constant values of the objective function:
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(8)

The CSWs for a given time-period t are determined by solving Eq.
(8). As mentioned earlier, we seek to find a set of CSWs for a multi-
period of times. Considering the time series nature of inputs and out-
puts in multiple periods, the deliberated problem will be a stochastic
optimization problem, i.e. its parameters are determined as time series
with unknown distributions. Consider any of the DMUs, e.g. DMU0, and
its ith input measure. This input variable takes different values in each
time-period, i.e. …x x, , ,i i0

1
0
2 and xi

T
0. These values form a time series

∼ = …x x x x( , , , )i i i i
T

10 0
1

0
2

0 . In fact, ∼xi0 is a random variable with an unknown
statistical distribution and its values differ over time periods. The multi-
period CSWs problem is formulated as follows by substituting these
random variables:
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(9)

The above problem is a stochastic programming model. Considering
the objective function of Eq. (9), this stochastic objective function is
transformed into a bi-objective problem of maximizing its mean and
simultaneously minimizing its variance. Therefore:
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The variance relation in Eq. (10) is obtained considering in-
dependence of inputs and outputs in the objective function of Eq. (9).
Usually, original DEA models assume complete independence of inputs
and outputs [26,32]. If the assumption of independence holds, the
above relation can be used since the covariance of the variables is zero.
However, if the variables are correlated, methods like principal com-
ponent analysis (PCA) or independent component analysis (ICA) can be
used to produce uncorrelated linear combination of original inputs and
outputs [1–3,38,32]. The above relation can be used to produce in-
dependent inputs and outputs using PCA or ICA.

The stochastic model is then transformed into a bi-objective model
using the mean–variance concept taken from the theory of portfolio
management developed by Markowitz [44]. Now, consider the sto-
chastic inequality shown in constraint (i) of Eq. (9). There is no easy
way to handle this inequality since this constraint is stochastic. In this
paper, the stochastic constraints are transformed into linear constraints
using the concept of Chebyshev inequality bounds.

Suppose that X is a random variable with mean µ and standard
deviation σ, and that its statistical distribution is unknown. Chebyshev
inequality bounds state that with a probability of at least − k1 1/ 2, this
random variable lies in the interval of − +μ kσ μ kσ( , ). For =k α1/ , an
approximation of the −α100(1 )% confidence interval of X can be ob-
tained. Now, for the random variable ∼yrj with mean ȳrj and standard
deviation δrj, its approximation of the −α100(1 )% confidence interval is
obtained as − +y kδ y kδ( ¯ , ¯ )rj rj rj rj . This interval contains the random value
of ∼yrj, and by substituting these confidence intervals in the considered
constraint, its interval equivalent is obtained as follows with a prob-
ability of at least −α100(1 )%:

∑ − + ⩽ = …
=

u y kδ y kδ j n( ¯ , ¯ ) 1, 1, 2, ,
r

s

r
c

rj rj rj rj
1 (11)

Now, using interval numbers arithmetic [46], the above inequality
is converted into:

∑ ∑⎛

⎝
⎜ − + ⎞

⎠
⎟ ⩽ = …

= =

u y kδ u y kδ j n( ¯ ), ( ¯ ) 1, 1, 2, ,
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r
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rj rj
r

s

r
c

rj rj
1 1 (12)

Ishibuchi and Tanaka [29] has proposed an ordering relation among
interval numbers. If =A a b[ , ]1 1 and =A a b[ , ]2 2 , they state that ⩽A B
if ⩽b b1 2 and + ⩽ +a b a b( /2) ( /2)1 1 2 2 . Applying this ordering relation
to Eq. (12), the following inequalities can be obtained:
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The constraints (ii) are reduced to the following interval constraints
by using a similar reasoning:

⎧
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Applying Eqs. (10), (13), and (14), and using the mean–variance
idea of Markowitz [44] that later was extended by Amoozad Mahdiraji
et al. [6] to solve multi-objective stochastic programming problems, the
stochastic multi-period CSWs problem in Eq. (9) is transformed into the
following non-linear bi-objective problem:
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Considering constraints (i.1) and (i.2) in Eq. (15), it is evident that
∑ ⩽ ∑ + ⩽= =u y u y kδ¯ ( ¯ ) 1r

s
r
c

rj r
s

r
c

rj rj1 1 . Correspondingly, (i.2) is a subset of
(i.1); thus, the (i.2) constraints are redundant. With a similar argument,
the (ii.2) constraints are likewise redundant and can be eliminated. In
this model, x̄ij and ȳrj, along with σij and δrj act as fixed parameters,
where

∑=
=

y y T¯ /rj
t
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rj
t

1
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while vi
c and ur

c are decision variables. As a result, the model is
derived as:
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This non-linear bi-objective problem is also solved via a fuzzy ap-
proach. Since M and V are incommensurable criteria, they are trans-
formed into membership functions to allow their summation in a single
objective. To find the membership functions of M and V as objectives of
the problem; initially, these two problems presented below are solved:

=

∈

+M M
s t
u v S

max
. .

( , ) (17a)

=

∈

−V V
s t
u v S

max
. .

( , ) (17b)

Model (17a) represents the ideal value of the mean, where greater is
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better, while Model (17b) represents the nadir ideal value of the var-
iance, where smaller is better. Additionally, −M which is the nadir ideal
value of the mean objective is considered equal to zero, as its worst
case, while the ideal value of the variance, i.e. +V , as its lowest value is
considered equal to zero (since variance is always positive). It is notable
that since the objective function V is a polynomial of second order and
considering the convexity of S (since it is constructed of convex linear
constraints), +V and −V will be global optima. Consequently, the M
objective function is transformed into the following membership func-
tion:

= ⎧
⎨⎩

<
⩽ ⩽ +

+
μ

M
M M

0, if 0
, if 0M M

M (18)

This membership function is illustrated in Fig. 3.
In the same manner, the V objective is transformed into the fol-

lowing membership function:

= ⎧
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>
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− −−
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V V

i V V
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, f 0V V V
V (19)

This membership function is illustrated in Fig. 4.
Along these lines, the final multi-period CSWs problem model is

formulated as follows:
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Where the first and second constraints results from the fact that
⩽μ μ, 1M V . Note that in the above formulation, it is expected that the

lower bounds of inputs take some negative values, i.e. for some
∈ …i m{1, 2, , }, the values of −x kσ( ¯ )ij ij can be negative. In this case, the

method of handling negative inputs by their absolute values, proposed
by Cheng et al. [14] is applicable.

The above problem is to maximize a non-linear programming pro-
blem consisting of non-linear variables u( )r

c 2 and v( )i
c 2. To prove the

concavity of the objective function, considering the maximization

objective, and the vector of variables … …u u v v( , , , , , )c
r
c c

m
c

1 1 respectively,
the Hessian matrix of the objective function can be calculated as:
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This is a diagonal matrix with negative diagonal elements and
therefore is a negative definite matrix. Thus, the objective function is
concave. Since the constraints of the problem are linear, their convexity
is straightforward. Therefore, Eq. (20) is to maximize a concave func-
tion over a convex feasible space and its global optimum can be de-
termined easily using optimization packages such as Lingo or MATLAB.
Furthermore, the following theorem illustrates that the model in Eq.
(20) is unit invariant.

Theorem1.. Rescaling the inputs and outputs do not change the optimal
solution of the model in Eq. (20).

Proof.. See Appendix A. □

Since the inputs and outputs random variables are transformed into
interval numbers, using confidence intervals, the resulted efficiency
scores are therefore interval numbers. According to the ordering rela-
tions of Ishibuchi and Tanaka [29], for two interval numbers

=
−

E E E[ , ¯ ]1 1 1 and =
−

E E E[ , ¯ ]2 2 2 , <E E1 2 if <E E¯ ¯1 2 and <E Ec c1 2 , where
E1c is the mean value of E1. Consequently, after finding the optimal
weights ur

c and vi
c, the mean relative efficiency of DMU0 is evaluated as:
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And its upper bound efficiency is calculated as:
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Now, the multi-period CSWs based efficiency of DMUs can be
compared and ranked based on Eqs. (21) and (22). It is worth noting
here that considering the randomness of the CSWs multi-period pro-
blem, due to inputs and outputs variance, it is logical to find a non-crisp
solution for this problem, since reaching a crisp solution with uncertain
data seems unrealistic.

This can be summarized in the following steps to facilitate appli-
cation of the above described procedure for evaluating the multi-period
efficiency of the DMUs based on a CSWs:

• Step 1. Identify decision making units, input and output measures,
time periods in which the DMUs are evaluated, and threshold values

1 

0 

Fig. 3. Membership function of the first objective in the multi-period problem.

1 

0 

Fig. 4. Membership function of the second objective in the multi-period pro-
blem.
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of θl and ϕu.

• Step 2. If inputs and outputs are rationally independent, then go to
step 4, otherwise if there are signs of dependence among inputs and/
or outputs, go to Step 3.

• Step 3. Using PCA or ICA, transform the dependent inputs and/or
outputs into a set of independent components in each time-period
and go to Step 4.

• Step 4. Compute the mean and variance matrices of inputs and
outputs for the DMUs over the considered time periods.

• Step 5. Formulate and solve problems in Eqs. (17a) and (17b) to
determine the optimal values of +M and −V .

• Step 6. Formulate and solve the problem in Eq. (20) to find the
CSWs … …v v v u u u( , , , , , , , )c c

m
c c c

s
c

1 2 1 2 .

• Step 7. Determine the mean and upper bound relative efficiency of
the DMUs, using Eqs. (21) and (22).

5. Case study

HCI bank is a medium-size bank founded in Iran in 2008. As its
competitors are mainly well-established banks, HCI needs to operate
more efficiently (i.e. reduce its expenses and increase its productivity)
to compete. DEA has been used widely in the banking industry to
measure efficiency [41,21]. In this study, we consider a six-month time
horizon and apply the guidelines proposed by Berger and Humphrey
[10] and [43] and select personnel costs (I1), general and adminis-
trative costs (I2), account-related costs (I3), and rental expenses (I4) as
inputs and sum of deposits (O1), loans (O2), securities (O3), and branch
income (O4) as outputs as shown in Table 1.

Considering a six-month period, for four inputs and four outputs at
125 branches, a database with 6804 records is constructed to capture
monthly transactions. It is necessary to determine M+ and V− using
Eqs. (17a) and (17b) when applying Model (20). The senior managers
estimated =θ 0.3l (i.e. the desirability of the input-oriented efficiency
score below 0.3 is 0) and therefore, ∅ = 3.33u (i.e. the desirability of the
output-oriented efficiency score above 3.33 is 0). These values were
determined through in-depth discussions with senior management and
the amount of 0.3 was obtained as they believed that there is no jus-
tification for a branch to act with an efficiency below threshold value.
However, the model can be deployed with any other value for θl. Sol-
ving models (17a) and (17b), the values are obtained as:

= =− +M M0 and 66.5339

= =− +V V1.263402 and 0

The values of −M and +M are found easily using the MATLAB
Linprog command, while −V and +V are determined using the MATLAB
Optimtool toolbox. Next, the problem in Eq. (20) is formulated and
solved using the sequential quadratic programming approach of the
MATLAB Optimtool. To avoid some inputs or outputs being dominated
by other, the following assurance region type constraints [11] are used:

⩽ = ≠u
u

r p r p3, , 1, 2, 3, 4,r

p

and

⩽ = ≠v
v

i k i k3, , 1, 2, 3, 4,i

k

These constraints are added to the constraints in Model (20) and the

obtained CSWs are summarized in Table 2.
Applying these weights in models (21) and (22), the multi-period

CSWs based mean and upper bound relative efficiency of DMUs are
illustrated in Table 3. For instance, considering the mean
input–output vector of DMU1099 as =x x x x( ¯ , ¯ , ¯ , ¯ )11099 21099 31099 41099
(599, 121, 15957, 0) and =y y y y( ¯ , ¯ , ¯ , ¯ )11099 21099 31099 41099 (732604, 652260,
241243, 61146), the mean efficiency is calculated as:

= + + +
+ + +

= =

−

−E [1.32(732604) 2.70(652260) 4.37(241243) 0.901(61146)]10
[6.87(599) 17.10(121) 5.69(15957) 5.69(0)]10

3.84
9.69

0.40

c1
6

4

Similarly, considering the input vector −x σ( ¯ 3.16 ,11099 11099
− − − =x σ x σ x σ¯ 3.16 , ¯ 3.16 , ¯ 3.16 )21099 21099 31099 31099 41099 41099 (396, 195, 17501,

0) and the output vector + +y δ y δ( ¯ 3.16 , ¯ 3.16 ,11099 11099 21099 21099
+ + =y δ y δ¯ 3.16 , ¯ 3.16 )31099 31099 41099 41099 (1285416, 786765

, 637349, 211443), the upper bound efficiency is calculated as:

= + + +
+ + +

=

=

−

−Ē [1.32(1285416) 2.70(786765) 4.37(2637349) 0.901(211443)]10
[6.87(396) 17.1(195) 5.69(17501) 5.69(0)]10

6.8
10.6

0.64

1
6

4

Table 3 also present the results of the aggregated and network
connected models of Kao and Liu [37]. Since none of the existing
methods can determine the CSWs in multi-period problems, required
comparisons are examined between the proposed method with some
existing multi-period models to exhibit the improvement of the dis-
crimination power.

Improvement in the discrimination power of the CSWs model can be
seen by comparing the proposed CSW’s based results with the ag-
gregated and network connected models. The aggregated model in-
cludes 7 DMUs with efficiency of 1, while this number is observed by 16
DMUs in the network connected model. Admittedly, the aggregated
model classifies 5.6% of the DMUs as efficient without any dis-
crimination between them. Compared with the network connected
model, 12.8% of the DMUS are classified as efficient (representing a
weak discrimination power). On the other hand, there is only a single
DMU with an upper bound efficiency of 1 by the proposed method, i.e.
only 0.8% of the DMUs are indiscriminable.

Another feature of the proposed method is that there is a DMU with
an upper efficiency of 1 (fully efficient), which is a general requirement
for CSWs problems as argued by Roll et al. [54] and Golany and Yu
[25].

Fig. 5 illustrates the scatter diagram of mean efficiencies in the
proposed CSWs model with the results of multi-period efficiencies.
Fig. 5a compares the mean and upper bound efficiencies with the ag-
gregated model, while Fig. 5b illustrates the comparison with the net-
work connected model.

This figure reveals a decrease in the mean efficiencies. Hence, it can
be argued that the proposed CSWs model dramatically increases the
discrimination power of the multi-period efficiency appraisal. Usually,
the aim of CSWs is to find a CSWs to evaluate the DMUs’ efficiencies.
These CSWs will increase the differentiation of the DMUs’ efficiencies.
The low efficiency scores of DMUs in this case may be due to the weak
performance of DMUs in inputs and outputs and the strict approach of
CSWs in evaluating the DMUs’ efficiencies with respect to ordinal multi-
period DEA models which improve the model’s discrimination among
the DMUs. Table 4 summarizes the Spearman rank correlations among

Table 1
Input and output measures.

Inputs Outputs

Personnel costs (I1) Sum of deposits (O1)
General and administrative costs (I2) Loans (O2)
Account-related costs (I3) Securities (O3)
Rental expenses (I4) Branch income (O4)

Table 2
Input and output measures for the CSWs.

Inputs Outputs

I1 687(10−6) O1 1.32(10−6)
I2 1710(10−6) O2 2.70(10−6)
I3 569(10−6) O3 4.37(10−6)
I4 569(10−6) O4 0.901(10−6)
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different efficiencies reported in Table 3. The third column shows the
obtained p-values of significance of correlations.

As shown in Table 4, all pairwise rank correlations are significant at
a significance level of 95%. On the other hand, as it is expected, the
greatest correlation of about 81% is between the mean and upper-
bound efficiencies in the proposed method. Then, there is a correlation
of 70.3% between the aggregated and connected network models of
Kao and Liu [37]. The correlations in Table 4 show both the mean and
upper-bound efficiencies have greater correlation with the aggregated
model, which is more evidence for greater discrimination power in the
aggregated model. For more explanation on results, Table 5 illustrates
the hypothesis tested on significance of differences among mean

Table 3
Multi-period CSWs based relative efficiencies.

DMU Proposed CSWs based
efficiencies

Kao and Liu [37]

E c0 Ē0 Aggregated model Connected network
model

1099 0.40 0.64 1.00 1.00
1101 0.06 0.09 1.00 1.00
1102 0.45 1.00 1.00 1.00
1103 0.29 0.59 0.94 1.00
1104 0.05 0.11 0.33 0.45
1105 0.12 0.15 0.37 0.58
1106 0.14 0.15 0.45 0.87
1107 0.10 0.14 0.32 0.45
1108 0.06 0.24 0.53 1.00
1109 0.05 0.06 0.22 0.24
1110 0.11 0.14 0.34 0.64
1111 0.17 0.36 0.56 0.84
1112 0.44 1.00 1.00 1.00
1113 0.06 0.18 0.24 0.35
1201 0.07 0.10 0.30 0.41
1202 0.11 0.17 0.44 0.49
1203 0.07 0.08 0.68 0.99
1204 0.14 0.18 0.99 1.00
1206 0.11 0.16 0.42 0.61
1207 0.06 0.09 0.20 0.22
1208 0.14 0.20 0.35 0.78
1209 0.14 0.26 0.36 0.51
1210 0.32 0.59 1.00 1.00
1211 0.05 0.12 0.29 0.33
1212 0.03 0.12 0.17 1.00
1213 0.01 0.03 0.10 0.13
1214 0.00 0.01 1.00 0.00
1301 0.05 0.10 0.23 0.31
1302 0.10 0.15 0.28 0.96
1303 0.06 0.08 0.27 0.48
1304 0.06 0.07 0.23 0.38
1305 0.11 0.12 0.41 0.76
1306 0.06 0.06 0.23 0.76
1307 0.09 0.08 0.36 1.00
1308 0.05 0.08 0.18 0.20
1309 0.09 0.07 0.32 1.00
1310 0.09 0.07 0.32 0.88
1311 0.08 0.07 0.31 0.65
1312 0.07 0.10 0.28 0.40
1313 0.03 0.10 0.15 0.15
1401 0.04 0.07 0.18 0.20
1402 0.08 0.11 0.24 0.37
1403 0.04 0.05 0.16 0.29
1404 0.05 0.07 0.18 0.23
1405 0.08 0.14 0.25 0.44
1408 0.04 0.10 0.33 0.38
1501 0.09 0.11 0.30 0.45
1502 0.07 0.12 0.17 0.29
1503 0.08 0.09 0.27 0.40
1504 0.09 0.33 0.28 0.41
1505 0.06 0.10 0.35 0.41
1506 0.12 0.12 0.34 0.38
1507 0.10 0.14 0.21 0.23
1508 0.05 0.07 0.44 0.64
1509 0.10 0.12 0.28 0.47
1601 0.08 0.12 0.23 0.24
1602 0.10 0.13 0.28 0.65
1603 0.15 0.17 0.32 0.48
1604 0.15 0.33 0.30 0.53
1605 0.10 0.14 0.47 0.91
1606 0.05 0.08 0.44 0.47
1406 0.08 0.26 0.44 0.54
1407 0.11 0.18 0.21 0.25
1701 0.11 0.19 0.60 1.00
1702 0.07 0.08 0.19 0.75
1703 0.10 0.13 0.30 0.60
1704 0.08 0.10 0.29 0.55
1705 0.07 0.08 0.24 0.49
1706 0.03 0.04 0.15 0.59
1707 0.08 0.05 0.25 0.45

Table 3 (continued)

DMU Proposed CSWs based
efficiencies

Kao and Liu [37]

E c0 Ē0 Aggregated model Connected network
model

1708 0.09 0.12 0.29 0.43
1709 0.13 0.16 0.38 0.78
1710 0.02 0.03 0.11 0.51
1711 0.03 0.07 0.20 0.27
1712 0.01 0.02 0.06 0.07
1713 0.02 0.04 0.12 0.17
1801 0.10 0.14 0.26 0.48
1802 0.12 0.14 0.49 0.56
1803 0.05 0.07 0.26 0.47
1804 0.25 0.20 0.69 1.00
1805 0.10 0.13 0.31 0.54
1806 0.09 0.14 0.36 0.72
1807 0.09 0.12 0.34 0.92
1808 0.05 0.04 0.25 1.00
1809 0.08 0.11 0.28 0.92
1901 0.07 0.11 0.28 0.37
1902 0.05 0.10 0.23 0.26
1903 0.12 0.18 0.45 0.50
1904 0.09 0.12 0.31 0.34
1905 0.05 0.06 0.22 0.38
1906 0.14 0.18 0.48 0.65
1907 0.07 0.09 0.32 0.63
1908 0.31 0.47 1.00 1.00
1909 0.13 0.28 0.50 0.68
1910 0.08 0.11 0.26 0.29
1911 0.07 0.10 0.26 0.28
1912 0.07 0.12 0.38 0.45
2001 0.04 0.05 0.16 0.22
2002 0.08 0.09 0.28 0.52
2003 0.08 0.10 0.27 0.40
2004 0.08 0.11 0.27 0.40
2005 0.04 0.08 0.17 0.21
2006 0.04 0.17 0.22 0.48
2007 0.05 0.10 0.21 0.24
2009 0.04 0.06 0.18 0.22
2010 0.05 0.03 0.25 0.50
2011 0.06 0.07 0.26 0.44
2012 0.04 0.06 0.17 0.22
2101 0.08 0.12 0.36 0.42
2102 0.11 0.13 0.33 0.55
2103 0.13 0.21 0.46 0.71
2104 0.09 0.14 0.32 0.40
2105 0.11 0.19 0.37 0.56
2106 0.06 0.11 0.25 0.30
2107 0.05 0.08 0.22 0.27
2108 0.10 0.18 0.32 0.43
2201 0.05 0.06 0.82 1.00
2202 0.09 0.11 0.28 0.36
2203 0.06 0.09 0.23 0.30
2204 0.05 0.08 0.17 0.28
2205 0.05 0.07 0.23 0.26
2206 0.07 0.08 0.46 0.53
2207 0.09 0.09 0.35 0.73
2208 0.08 0.11 0.26 0.36
2209 0.14 0.21 0.36 0.56
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efficiencies of different methods.
The results show significant differences between the means of per-

formance efficiency scores obtained by the paired methods in all rows.
Also, the upper and lower boundaries establishing “the intervals of the

differences” show negative figures. The interval related to E c0 –
Connected method results (−0.49273, −0.38439) suggests that the
efficiencies obtained by the network connected model are 38–49 per-
cent above the efficiencies obtained by the mean efficiency scores of the
proposed method. The network connected model also obtains effi-
ciencies about 32–44 percent above the upper-bound efficiencies. This
can be interpreted as the optimistic behavior of the network connected
model, as it might overestimate the efficiencies. These differences are
lower for the aggregated model.

Considering Tables 4 and 5, it can be argued that the proposed
method has an acceptable correlation with other methods, while it
produces more warily estimation of efficiencies as it is more compatible
with the uncertainty of multi-period problems.

The final point regarding the results is about the low values of ef-
ficiency for some DMUs. The obtained results mainly illustrate the
pattern of inputs and outputs. Consider the trends of the inputs and
outputs for DMU1121 in Fig. 6. Fig. 6a–d are related to I1, I2, I3, and I4,
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Fig. 5. Scatter diagram of mean efficiencies.

Table 4
Spearman rank correlation among results.

Pairs compared Spearman rank
correlation

Significance (P-
value)

E0c∼ Ē0 0.809 3.58E−30
E c0 ∼Aggregated model 0.678 3.52E−18
E c0 ∼ Connected network 0.579 1.44E−12
Ē0 ∼Aggregated model 0.588 5.81E−13

Ē0 ∼ Connected network 0.431 5.36E−7
Aggregated model∼ Connected

network
0.703 6.75E−20
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and Fig. 6e–h are related to O1, O2, O3, and O4, respectively.
The cases above are illustrated based on data related to DMU 1211

whose efficiency is calculated about 0.05. Concentrating on the inputs,
it is inferred that the increasing slopes of the inputs range from 50 to
856; while, the increasing slopes of the outputs range from 0.39 to 0.51
suggests diversity in the ascending trend. Next, the above figure is

repeated for data related to DMU 1102 with an efficiency score of 0.45.
In this figure again, Fig. 7a–d are related to inputs and Fig. 7e–h are
related to outputs.

As shown in Fig. 7, the slopes of the outputs differ from 44,914 to
407,234 compared with slopes of the inputs (32–1895). This hundreds
of times difference completely emphasizes the effect of the proposed

Table 5
Paired t-test of mean differences among different methods.

Pairs Paired Differences t df Sig. (2-tailed)

Mean Std. Deviation Std. Error Mean 99% Confidence Interval of the Difference

Lower Upper

−E Ēc0 0 −0.05384 0.08588 0.00768 −0.07393 −0.03375 −7.009 124 0.000
−E Aggregatedc0 −0.26040 0.16964 0.01517 −0.30009 −0.22071 −17.162 124 0.000
−E Connectedc0 −0.43856 0.23150 0.02071 −0.49273 −0.38439 −21.180 124 0.000

−Ē Aggregated0 −0.20656 0.15941 0.01426 −0.24386 −0.16926 −14.487 124 0.000

−Ē Connected0 −0.38472 0.23686 0.02119 −0.44014 −0.32930 −18.160 124 0.000
Aggregated – Connected −0.17816 0.21050 0.01883 −0.22741 −0.12891 −9.463 124 0.000

Fig. 6. Inputs/outputs trend for DMU1121 during the considered time period.
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method, especially concerning the branches of the HCI Bank with a
poor performance.

6. Conclusion

Most managers in large companies must deal with the challenging
problem of performance evaluation from time to time. As Simons [59]
believed, a good performance evaluation system transforms informa-
tion, is established based on rational and formal disciplines, usable by
managers, and determines directions for performance improvement.
DEA is an accepted method for approximating the best production
frontier and evaluating the business units according to their distance
from this frontier. Beyond its acceptability, DEA is primarily applied in
a single time-period, while organizations operate over several con-
tinuous time periods. Several researchers have proposed different
methods for multi-period DEA which often produce efficiency scores

with low discrimination power. With the goal of enhancing the dis-
crimination power of DEA models in a multi-period mode, we propose a
method for finding CSWs for DMUs performing over several time per-
iods. To achieve this goal, initially the CSWs problem is formulated as a
multi-objective fractional programming. Then, this formulation is ex-
tended to several time periods. Following the mean–variance criteria of
Markowitz, the problem is formulated to maximize the mean efficiency
of all DMUs over the time horizon and simultaneously minimize its
variance. Afterwards, the constraints of the problem are handled by
using the notion of confidence intervals and interval numbers ranking
order. Application of the proposed method is examined in a case of 125
bank branches that are evaluated in six months’ time periods. The ob-
tained results show that the proposed model increases the discrimina-
tion power of the multi-period DEA model.

This result is clear considering the obtained results that only one of
the DMUs reaches a full efficiency in its upper bound. The main features

Fig. 7. Inputs/outputs trend for DMU1102 during the considered time period.

S.H. Razavi Hajiagha et al. Measurement 129 (2018) 569–581

579



of the proposed method can be summarized as (1) using mean–variance
logic to find CSWs in a multi-period DEA problem, (2) using a fuzzy
membership based approach for solving the obtained bi-objective non-
linear CSWs model, (3) increasing the discrimination power of the
model compared with the ordinal multi-period method, (4) the pro-
posed method determines an interval for the efficiency of DMUs that is
much more consistent with the uncertainty of a multi-period efficiency
appraisal problem. These findings can also be extended to the case of
fuzzy multi-period DEA problems, where some inputs and outputs are
defined as fuzzy numbers and extending the model by finding CSWs

when the DMUs are designed as a network of activities.
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Appendix A

Proof of theorem 1.
To prove this theorem let us first transform the nonlinear problem of Eq. (20) into an equivalent linear problem. Let =u U( )r

c
r
c2 and =v V( )i

c
i
c2

The linearized model is obtained as:
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The dual model of above linear model can be obtained as:
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Now, suppose that an output is rescaled, e.g. ′ →y a yr r r . Substituting this rescaled variable in the first constraint, if follows that;
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Since ′ =y a y¯ ¯r r r and ′ =δ a δr r r , then
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This inequality can be simplified as:
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This indicates the initial inequality. Correspondingly, this feature is satisfied when an input is rescaled, e.g. ′ →x b xi i r . Hence, the model is unit
invariant.
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