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Abstract

The primary driver for developing missions to send humans to other planets is to generate signi.cant new
scienti.c knowledge. NASA plans human planetary explorations with an acceptable level of risk consistent with
other manned operations. Space exploration risks cannot be completely eliminated. Therefore, an acceptable
level of cost, technical, safety, schedule, and political risks and bene.ts must be established for exploratory
missions. This study uses a multicriteria decision model to identify the risks and bene.ts associated with
three alternative mission architecture scenarios for the human exploration of Mars. The three alternatives
identi.ed by the Mission Operations Directorate at the Johnson Space Center include split, combo lander,
and dual scenarios. The model considers seven phases of the mission: (1) Earth vicinity/departure, (2) Mars
transfer, (3) Mars arrival, (4) planetary surface, (5) Mars vicinity/departure, (6) Earth transfer, and (7) Earth
arrival. Analytic hierarchy process, subjective probability estimation, and the entropy method are used to
capture experts’ beliefs concerning the risks and bene.ts of the three alternative scenarios through a series of
sequential, rational, and analytical processes.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Three days on the moon in the .nal Apollo mission in 1972 left astronaut Eugene Cernan exhausted
and .lthy with rock dust [1]. A 3-year trip to Mars exponentially increases the risks of space travel.
Scientist Michael Long [2] suggests a troubling scenario. Imagine a radiation-sick, sleep-deprived
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astronaut stepping on Mars all because of poorly selected mission architecture. Muscles and bones
weakened, immune system challenged, he sends out a call to mission control, “Houston we have
a problem.” Mars is an intriguing and exciting planet with many adventures and discoveries await
human explorers. However, human exploration of Mars requires extensive planning because of the
complexities of this undertaking. The crew will travel to and from Mars on a relatively fast transit
of approximately 6 months and will spend long periods of time (520–580 days) on the surface.
Shorter transit times reduce the time spent by the crew in zero gravity, allowing for more time to
explore this planet. In addition, a relatively fast transit will reduce the exposure to galactic cosmic
radiation and the probability of encountering solar particle events. This study presents a multicriteria
decision making (MCDM) model used by the exploration team (ET), a seven-member committee,
at the Johnson Space Center to evaluate the risks and bene.ts associated with three diGerent mission
architectures: split mission, combo lander, and dual scenarios.
Split Mission Scenario: In this scenario, the mission is split into two steps: pre-deployment of

mission assets to the planet surface, followed by the mission crew. During the assets deployment
step, the return habitat/ascent vehicle will be sent to Mars. Upon arriving in a Mars orbit, the return
habitat will stay in the orbit while the ascent vehicle lands on Mars and starts producing fuel. After
the mission equipment is con.gured and tested to be viable, the transit habitat/surface habitat vehicle
will be sent into Earth orbit. The crew will be transferred to the transit habitat/surface habitat vehicle
at a later date. Next, the transit habitat/surface habitat vehicle and the crew will be sent to Mars
to land near the ascent vehicle. After the completion of surface exploration, the ascent vehicle will
be used to transfer the crew to the return habitat vehicle, which will be orbiting Mars. The return
habitat vehicle will be used to return the crew to Earth.
Combo Lander Scenario: In this scenario, the mission assets will travel to and from Mars with the

crew. Initially, the transit habitat/surface habitat/ascent vehicle will be launched into Earth’s orbit.
The crew will be transferred to the transit habitat/surface habitat/ascent vehicle in Earth’s orbit at
a later date. Next, the transit habitat/surface habitat/ascent vehicle will be sent to Mars with the
crew. Upon arriving in a Mars’s orbit, the transit habitat vehicle will separate and remain in Mars’s
orbit while the crew uses the surface habitat/ascent vehicle to land on Mars. After the completion of
surface exploration, the ascent vehicle will be used to transfer the crew to the transit habitat vehicle,
which will return the crew to Earth.
Dual Scenario: In this scenario, the transit habitat/surface habitat/ascent vehicle/descent vehi-

cle will be launched into Earth’s orbit. The crew will be transferred to the transit habitat/surface
habitat/ascent vehicle/descent vehicle at a later date. Next, the transit habitat/surface habitat/ascent
vehicle/descent vehicle will be sent to Mars with the crew. Upon arriving in Mars’s orbit, the transit
habitat vehicle will stay in the orbit, the surface habitat vehicle will land on Mars unmanned, and
the crew will use the ascent/descent vehicle to land on Mars near the surface habitat. After the
completion of surface exploration, the ascent vehicle will be separated and used to transfer the crew
to the transit habitat vehicle, which will return the crew to Earth.

Over the last several decades, both intuitive and analytical models have been developed to assist
decision makers (DMs) in solving multicriteria decision problems. However, intuitive models do not
present a structured framework, while the analytical models are not intended to capture intuitive
preferences. These models have made de.nitive contributions to MCDM theory, but have not been
very successful in practice at integrating intuitive preferences of multiple DMs into a structured
and analytical framework. The model presented in this paper is used to capture experts’ beliefs



M. Tavana / Computers & Operations Research 31 (2004) 1147–1164 1149

concerning the risks and bene.ts of the three alternative mission architecture scenarios through a
series of sequential, rational, and analytical processes.

2. Theoretical justi�cations

Roy [3] argues that solving MCDM problems is not searching for some kind of optimal solution,
but rather helping DMs master the (often complex) data involved in their problems and advance
towards an acceptable solution. As often happens in applied mathematics, the development of mul-
ticriteria models is dictated by real-life problems. Therefore, it is not surprising that methods have
appeared in a rather diGuse way, without any clear general methodology or basic theory [4]. The
model presented here has evolved in an attempt to solve a complex space exploration problem at
the Johnson Space Center. It is a unique MCDM model with several features:

(i) Traditionally, MCDM frameworks fall into three categories: the multiobjective value analysis
[5], the outranking method [4], and the interactive methods [6]. The selection of a framework
depends on the type of the problem, the type of the choices (continuous or discrete), the type of
measurement scales, the type of importance weights, the type of dependency among the criteria,
and the type of uncertainty [4]. We show how the integration of several mathematically sound
techniques can reduce some of the diJculties in the selection of an appropriate framework.
Rather than molding the problem to .t into a framework, we integrate several techniques into
a framework to address problem requirements.

(ii) Finding the “best” MCDM framework is an elusive goal that may never be reached [7]. Pardalos
and Hearn [8] have argued that one of the major issues for future research in MCDM is to
explore ways of combining criteria aggregation methodologies to enable the development of
models that consider the DM’s preferential system in complex problems. Belton and Stewart [9]
also argue the need for integrating frameworks in MCDM. Our model has solved a complex and
judgmental multicriteria space exploration problem by suitably combining a set of well-known
and proven techniques in MCDM. This integration allows for the objective data and subjective
judgments to be used side by side in a mathematically sound decision model.

(iii) We have developed an alternative approach to traditional analytic hierarchy process (AHP)
problem structuring where hierarchies of decision criteria and alternatives are used to solve
MCDM problems. Our framework integrates AHP preferences of decision criteria with the
probability scores and entropy information. This structured framework aggregates the intuitive
preferences of multiple DMs to assess the overall performance of alternative scenarios using a
weighted sum model [7].

(iv) The generic nature of the model allows for subjective evaluation of a .nite number of decision
alternatives on a .nite number of performance criteria by a group of DMs. The mathemati-
cal and computational properties of the model are applicable to a wide range of real-world
decision-making problems in MCDM.

3. The procedure and mathematical notations

The model described here is a multicriteria decision model that integrates a series of intuitive
and analytical methods including AHP, subjective probabilities, and the entropy method to enhance
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the DMs’ intuition in evaluating three mission architecture scenarios for the human exploration of
Mars. To formulate an algebraic model, let Sm be the overall mission architecture score of the mth
scenario (m=1; 2; : : : ; M); Wi the importance weight of the ith mission phase (i=1; 2; : : : ; I), Fij the
importance weight of the jth criterion for the ith mission phase (i = 1; 2; : : : ; I and j = 1; 2; : : : ; J ),
�ij the impact factor of the jth criterion for the ith mission phase (i= 1; 2; : : : ; I and j= 1; 2; : : : ; J ).
�=−1 is assigned to risky criteria and �= +1 is assigned to bene4cial criteria, Pmij the probability
of accomplishment of the jth criterion (event) for the ith mission phase under the mth scenario
(m= 1; 2; : : : ; M ; i = 1; 2; : : : ; I ; and j = 1; 2; : : : ; J ), I the number of mission phases, J the number
of criteria for the ith mission phase and M the number of mission architecture scenarios.

Given the above notations, the overall score of the mth mission architecture scenario is

Sm =
I∑
i=1

Wi




J∑
j=1

Fij�ij(Pmij )


 (1)

where

�ij = −1 or + 1;

06Pmij6 1;

06Wi6 1;

1∑
i1=

Wi = 1;

06Fij6 1;

J∑
j=1

Fij = 1:

The proposed framework consists of .ve distinct steps.
(i) The ET identi4ed mission phases and determined their importance weight with AHP: In this

step, the ET conducted multiple interviews with many technical experts in many disciplines and
held brainstorming sessions to identify the mission phases necessary for the human exploration of
Mars. Based on these interviews and sessions, the team identi.ed seven phases of the Mars mission:
Earth vicinity/departure, Mars transfer, Mars arrival, planetary surface, Mars vicinity/departure, Earth
transfer, and Earth arrival. Next, each ET member used AHP to determine his/her importance weight
of the various mission phases by making trade-oGs among them. A group mean mission phase vector
was generated from these individual preferences and used in the model presented earlier.

The importance weights of the mission phases could have been elicited by other weighting pro-
cedures. The simplest way is weighting them directly by point allocation. Other value theory-based
weighting methods include SMART and SMARTER [10,11], SWING [12], and AHP [13,14]. In
SMART, ten points are given to the least important criterion. Then, more points are given to the
other criteria, depending on their relative importance. In SMARTER, the weights are elicited with
the centroid method of Solymosi and Dombi [15]. The SWING method is similar, but the procedure
starts from the most important criteria, keeping it as the reference.
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We chose to employ AHP for eliciting the importance weights of the phases. AHP uses a series
of pairwise comparisons. Saaty [14] argues that a DM naturally .nds it easier to compare two things
than to compare all the items in a list. AHP also evaluates the consistency of the DMs and allows
for the revision of their responses. AHP has been applied to many diverse decisions because of the
intuitive nature of the process and its power in resolving the complexity in a judgmental problem. A
comprehensive list of the major applications of AHP, along with a description of the method and its
axioms, can be found in Saaty [13,14], Weiss and Rao [16] and Zahedi [17]. AHP has proven to be
a popular technique for determining weights in multicriteria problems (Shim [18] and Zahedi [17]).
The importance of AHP and the use of pairwise comparisons in decision making are best illustrated
in the more than 1000 references cited in [14]. A mathematical summary of AHP is presented in
Appendix A.

Schoemaker and Waid [19] have compared several commonly used multicriteria decision making
techniques, including AHP, multiple regression, and the multiattribute utility approach of Keeney
and RaiGa [5]. These methods diGer in several ways. First, they require diGerent types of judgments;
second, they require diGerent response modes; and third, they have diGerent domains of applications.
Schoemaker and Waid [19] show that all three methods produce similar results, but each has ad-
vantages over the others under certain circumstances. In this study, AHP was employed because it
does not assume consistency among preferences, while the construction of a utility function by the
multiattribute utility approach requires a transitive preference relation. In addition, AHP produces
more detailed information on pairwise comparisons, and it is applicable to nonmeasurable criteria,
such as “loss of crew during direct entry” or “problems with rendezvous and docking.” Thus, AHP is
preferred to multiple regression for qualitative criteria because these criteria do not allow for an easy
derivation of measurable attributes. For repetitious decision-making situations, a multiattribute utility
approach is supposed to be more advantageous. However, an individual’s utility function changes
over time and has to be re-evaluated periodically. Thus, the multiple attribute utility approach does
operationally do better than AHP.

AHP has been a controversial technique in the Operations Research community. Harker and Vargas
[20] show that AHP does have an axiomatic foundation, the cardinal measurement of preferences is
fully represented by the eigenvector method, and the principles of hierarchical composition and rank
reversal are valid. On the other hand, Dyer [21,22] has questioned the theoretical basis underlying
AHP and argues that it can lead to preference reversals based on the alternative set being analyzed.
In response, Saaty [23] contends that rank reversal is a positive feature when new reference points
are introduced. In this study, in order to avoid the controversial rank reversal, we use the geometric
aggregation rule.

Each ET member used Expert Choice [24], an AHP-based software, individually to perform the
necessary pairwise comparisons. When the consistency ratio was unacceptable, the team member was
informed that the pairwise comparisons were logically inconsistent and was asked to revise his/her
Expert Choice judgments.

An average of the ET members’ importance weight for each mission phase, Wi, was calculated at
the end of this step. As it is shown in Table 1, Earth arrival was perceived as the most important
phase of the mission with a mean of 0.232, followed by Mars arrival (0.192), and planetary surface
(0.151).

(ii) The ET identi4ed the criteria to be considered within each mission phase and determined
their importance weights with AHP: The ET conducted additional interviews and brainstorming
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Table 1
Mission architecture phases and their average importance weight (Wi)

Mission phase Weight

1. Earth vicinity/departure 0.099
2. Mars transfer 0.086
3. Mars arrival 0.192
4. Planetary surface 0.151
5. Mars vicinity/departure 0.111
6. Earth transfer 0.129
7. Earth arrival 0.232

sessions and identi.ed a set of criteria within each mission phase to be used in the evaluation
process. We de.ned criteria in event-driven terms such as “stranded crew on Mars” or “loss of
payload.” In addition, the ET had to decide whether a criterion should be considered as a risk or
bene4t by assigning an impact factor, �ij. � = −1 was assigned to a risky criterion, while � = +1
was assigned to a bene.cial criterion. Once the criteria and their impacts were identi.ed, each team
member used AHP individually and identi.ed his/her importance weight of each criterion, wij. Once
again if consistency ratio were unacceptable, the individual was asked to revise his/her weight. At
the end of this step, a group mean criteria vector, wij, was generated based on the ET importance
weight of each criterion in each mission phase. Table 2 shows the criteria chosen by the ET for
the mission phases along with their impacts.

(iii) The ET identi4ed probabilities of occurrence of each criterion for each mission phase and all
mission architecture scenarios: Subjective probabilities are commonly used in multicriteria decision
making because they require no historical data [25–27]. Some researchers conclude that the diJculty
of obtaining relevant historical information on which to base probabilities inhibits their use. However,
probabilistic phrases such as “possible,” “likely,” “certain,” etc. provide an opportunity to elicit the
required information verbally and then convert these verbal phrases into numeric probabilities [28].
Other commonly used approaches include reasoning [29], scenario construction [25] and cross-impact
analysis [30]. Merkhofer [31] and Spetzler and Stael von Holstein [32] review probability elicitation
procedures that are used in practice.

This study utilized verbal probabilistic scales with probabilistic phrases, such as “possible,” “likely,”
and “certain” to elicit the required information. These verbal probabilistic phrases were then converted
into numeric probabilities using a numerical scale [28]. Alternatively, the ET could have used numeric
probabilities rather than the probabilistic phrases. The probabilities associated with the decision
criteria are assumed to be binomial. Binomial probabilities are commonly used in MCDM so that
the decision maker can simplify the problem by analyzing possible outcomes as either occurring or
not occurring. For example, Schoemaker [25] illustrated the assignment of binomial probabilities to
events such as “Dow Jones Industrial Average falling below 1500 mark by 1990” or “Election of a
Democrat as US president by 1990.” Vickers [27] assigned binomial probabilities to events such as
“Japanese car manufacturers gain at least 30% of the European market share” and “The incorporation
of East Europe into Europe by 1993” in order to examine the future of European automobile industry.
The main motivation for using binomial probabilities is to reduce the complexity of the model
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Table 2
Mission phase criteria (events) with their impact (�ij) and average subjective weight (wij)

Criteria Impact Weight

1. Earth vicinity/departure
EV1: TMI miss due to problems with vehicles −1 0.068
EV2: Loss of vehicle due to problems with TMI −1 0.216
EV3: Loss of crew due to problem with TMI −1 0.439
EV4: Post-TMI Earth-return abort options +1 0.153
EV5: Resource availability for full operations support for all exploration
vehicles during near Earth operation

+1 0.068

EV6: Unplanned shuttle mission to .x problem on MTV −1 0.056

2. Mars transfer
MT1: Need to perform nonsurface contingency EVA (Challenging EVA
suit design implications)

−1 0.205

MT2: Adequate in situ crew skill development (Computer-based pro.-
ciency training and failure simulations)

+1 0.214

MT3: Support crew activities (physical/mental health maintenance, protec-
tion from solar Sare/proton events)

+1 0.186

MT4: Ability of the crew/vehicle to resolve serious systems problems
without the help of the MCC

+1 0.325

MT5: Art. Gravity not being used (no spin-up), resulting in deconditioned
crew

−1 0.069

3. Mars arrival
MA1: Errors in the post-insertion orbit plane or altitude −1 0.073
MA2: Extended Mars vicinity phase −1 0.105
MA3: Errors in aerocapture leading to loss of crew −1 0.482
MA4: NO GO for surface descent −1 0.079
MA5: Crew forced to perform strenuous activities during CAP −1 0.046
MA6: Injury to crew during CAP −1 0.088
MA7: Descent problem to cause crew to abort back to Mars orbit −1 0.127

4. Planetary surface
PS1: Needing contingency surface EVA to restore ascent capability −1 0.128
PS2: Stranded crew on Mars −1 0.528
PS3: Bad weather or other anomaly which could delay ascent, and even
require extra EVAs to return to hab

−1 0.099

PS4: Early surface mission termination and ascent to Mars orbit −1 0.122
PS5: Meet surface mission constraints and schedule +1 0.044
PS6: Meet Go/No-Go criteria for EVA +1 0.079

5. Mars vicinity/departure
MV1: NO-GO for ascent −1 0.176
MV2: NO-GO for TEI −1 0.150
MV3: Crew stranded in Mars orbit −1 0.437
MV4: Ascent to lower-than-desired orbit, requiring the return vehicle com-
ing to rescue

−1 0.129

MV5: Problems with rendezvous and docking −1 0.077
MV6: Problems with transferring items to return vehicle −1 0.030
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Table 2 (continued)

Criteria Impact Weight

6. Earth transfer
ET1: Need to perform nonsurface contingency EVA −1 0.390
ET2: Crew’s ability to meet their physical .tness activities +1 0.261
ET3: Art. Gravity not being used (no spin-up), resulting in deconditioned crew −1 0.084
ET4: Problems with MCCs −1 0.264

7. Earth arrival
EA1: Loss of payload −1 0.037
EA2: Loss of crew during direct entry −1 0.342
EA3: Loss of crew during Earth orbit insertion and shuttle recovery −1 0.333
EA4: Address planetary protection issues +1 0.108
EA5: Problem ditching the NTR stage −1 0.086
EA6: Deconditioned crew having trouble during contingency recovery operations −1 0.093

and allow ET members to analyze event-driven criteria. Each team member assigned a probability
of occurrence to each criterion for each mission phase under each mission architecture scenario,
Pmij . Next, a group average of these probabilities was generated from the individual probability
judgments. Table 3 shows the average probabilities of occurrence of mission phase criteria for the
ET collectively.

(iv) The entropy method was used to revise the importance weight of the criteria identi4ed by the
ET in step ii: The entropy method is a commonly used method for calibrating the weights assigned
to diGerent decision criteria in MCDM [33,34]. A criterion does not inSuence the .nal choice much
when all the alternatives have similar value for that criterion. The entropy concept suggests that if a
criterion’s values are the same, the criterion can be eliminated from further consideration. Alternately,
the weight assigned to a criterion can be smaller if all alternatives have similar values for a criterion.
On the other hand, when the diGerences between a criterion’s values across particular alternatives
are greater, the criterion is viewed as more important. The entropy concept has been shown to be
particularly useful to investigate contrasts between sets of data.

The entropy method was used to revise the ET weight for each criterion (wij) developed in step ii
based on the information provided by the probabilities of occurrence. An Excel-based program and
the average probabilities presented in Table 3 were used to perform all the necessary calculations.
Each criterion is an information source. The more the information revealed by a criterion, the more
relevant the criterion is. Hwang and Yoon [33] and Zeleny [34] argue that this intrinsic information
must be used together with the initial weight assigned to various criteria by the DM. In other words,
the overall importance weight of a criterion, Fij, is directly related to the intrinsic weight, fij,
reSecting average intrinsic information developed by a set of mission architecture scenarios, and the
subjective weight, wij, rendered by the ET member. The probabilities of occurrence were used to
measure this average intrinsic information.

The greater the diGerence between the probabilities of a criterion for a set of mission architecture
scenarios, the larger is the contrast intensity of the criterion, and the greater is the amount of
information transmitted by that criterion. Assume that vector pij = (p1

ij ; : : : ; p
q
ij) characterizes the set
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Table 3
Group average of the probabilities of occurrence (Pmij )

Criteria SPLIT (%) COMBO (%) DUAL (%)

1. Earth vicinity/departure
EV1 32.86 45.71 47.14
EV2 28.57 31.43 27.14
EV3 12.86 22.86 34.29
EV4 47.14 38.57 50.00
EV5 48.57 35.71 41.43
EV6 21.43 41.43 30.00

2. Mars transfer
MT1 37.14 38.57 50.00
MT2 77.14 72.86 71.43
MT3 77.14 70.00 81.43
MT4 70.00 62.86 65.71
MT5 78.57 80.00 70.00

3. Mars arrival
MA1 24.29 25.71 31.43
MA2 34.29 30.00 27.14
MA3 37.14 32.86 34.29
MA4 24.29 25.71 28.57
MA5 31.43 30.00 32.86
MA6 25.71 24.29 24.29
MA7 27.14 21.43 20.00

4. Planetary surface
PS1 32.86 37.14 41.43
PS2 22.86 25.71 28.57
PS3 34.29 37.14 38.57
PS4 30.00 28.57 35.71
PS5 58.57 55.71 54.29
PS6 61.43 54.29 61.43

5. Mars vicinity/departure
MV1 32.86 30.00 22.86
MV2 24.29 28.57 34.29
MV3 27.14 24.29 25.71
MV4 22.86 25.71 20.00
MV5 25.71 20.00 40.00
MV6 30.00 27.14 20.00

6. Earth transfer
ET1 41.43 42.86 44.29
ET2 74.29 60.00 57.14
ET3 52.86 60.00 57.14
ET4 24.29 27.14 24.29

7. Earth arrival
EA1 27.14 21.43 15.71
EA2 12.86 27.14 37.14
EA3 18.57 22.86 24.29
EA4 84.29 57.14 58.57
EA5 27.14 31.43 40.00
EA6 50.00 42.86 78.57
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P in terms of the jth criterion for the ith mission phase:

Pij =
M∑
m=1

pmij (i = 1; 2; : : : ; I ; j = 1; 2; : : : ; J ; m= 1; 2; : : : ; M):

Then, the entropy measure of the jth criterion for the ith mission phase is

e(pij) = −K
M∑
m=1

pmij
Pij

ln
pmij
Pij
; (2)

where K ¿ 0, ln is the natural logarithm, 06pmij6 1, and e(pij)¿ 0. When all pmij are equal for a
given i and j, then pmij=Pij=1=M , and e(pij) assuming its maximum value, which is emax = lnM . By
setting K = 1=emax; 06 e(pij)6 1 can be achieved. This normalization is necessary for meaningful
comparisons. In addition, total entropy is de.ned as

E =
J∑
j=1

e(pij):

The smaller e(pij) is, the more information is transmitted by the jth criterion for the ith mission
phase and the larger e(pij), the less information is transmitted. When e(pij) = emax = lnM , the jth
criterion of the ith mission phase is not transmitting any useful information. The intrinsic weight of
the jth criterion of the ith phase is calculated as

fij =
1

I − E [1 − e(pij)]: (3)

Because fij is inversely related to e(pij); 1 − e(pij), is used instead of e(pij) and normalized to
make sure 06fij6 1 and

J∑
j=1

fij = 1:

The greater the diGerence between the probabilities of occurrences, pmij , the larger is the value
of fij, and hence, the more important is the jth criterion for the ith mission phase. When all the
probabilities of occurrence, pmij , are equal, then fij = 0. In order to calculate the overall importance
weight of the jth criterion for the ith mission phase, Fij, the intrinsic weight, fij, is multiplied by
the subjective weight, wij, and then the product is normalized:

Fij =
fijwij∑J
j=1 fijwij

: (4)

The overall importance weight of all criteria, Fij, along with the intrinsic weights, fij, and the
subjective weights, wij, for the ET are presented in Table 4.

(v) The model is used to provide a consensus ranking of the mission architecture scenarios: The
overall score of each mission architecture scenario (Sm) is calculated using the importance weight of
mission phases (Wi), the overall weight of the criteria (Fij), the impact factor of the criteria (�ij),
and the probabilities of occurrence of the criteria for diGerent scenarios (Pmij ). A Microsoft Excel
program based on the model presented earlier was used to perform all necessary calculations. Mission
architecture scenarios with higher overall scores are preferred to scenarios with lower overall scores.
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Table 4
The overall importance weight of mission phase criteria (Fij)

Criteria Subjective weight Intrinsic weight Overall weight
(wij) (%) (fij) (%) (Fij) (%)

1. Earth vicinity/departure
EV1 6.83 9.05 2.30
EV2 21.59 1.38 1.11
EV3 43.86 53.45 87.22
EV4 15.33 4.35 2.48
EV5 6.79 5.81 1.47
EV6 5.61 25.95 5.42

2. Mars transfer
MT1 20.53 64.06 67.41
MT2 21.40 3.76 4.12
MT3 18.63 13.46 12.85
MT4 32.54 6.84 11.42
MT5 6.90 11.88 4.20

3. Mars arrival
MA1 7.34 25.85 15.75
MA2 10.49 18.82 16.37
MA3 48.19 5.33 21.29
MA4 7.89 9.37 6.13
MA5 4.57 2.81 1.07
MA6 8.83 1.50 1.10
MA7 12.70 36.34 38.29

4. Planetary surface
PS1 12.84 26.72 15.89
PS2 52.76 24.77 60.52
PS3 9.90 7.14 3.27
PS4 12.21 28.46 16.10
PS5 4.43 3.01 0.62
PS6 7.86 9.91 3.60

5. Mars vicinity/departure
MV1 17.64 13.38 23.90
MV2 15.04 11.90 18.12
MV3 43.71 1.24 5.47
MV4 12.94 6.27 8.21
MV5 7.66 50.64 39.26
MV6 3.00 16.58 5.04

6. Earth transfer
ET1 39.04 3.75 6.04
ET2 26.13 68.37 73.71
ET3 8.39 13.64 4.72
ET4 26.44 14.24 15.53

7. Earth arrival
EA1 3.73 13.65 2.43
EA2 34.21 45.81 74.95
EA3 33.27 3.57 5.69
EA4 10.84 9.60 4.98
EA5 8.61 7.42 3.06
EA6 9.33 19.96 8.90
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The overall scores were calculated according to the ET consensus values. In this study, “consensus”
was assumed to mean collective opinion. Consensus was achieved by averaging the subjective weights
of the mission phases and their respective criteria and probabilities. Table 5 shows mission scenarios
and their overall score for the ET. As is shown, given the goal of maximizing the overall score,
the split scenario with an overall score of (−0:109) is the optimal choice, followed by the combo
lander scenario (−0:158) and the dual scenario (−0:212). While all these scores are negative, one
must realize that they are used for comparison purposes. In addition, we are assessing risks and
factors that mitigate those risks. On the whole, there remains certain amount of risk in any space
exploration and that is precisely what these negative numbers are revealing.

Although individual and group decision making are interrelated, there are no unique and com-
pelling solutions to group choice problems [35]. Dyer and Forman [36] discuss several approaches
to combining individual preferences into a joint representation of the group’s preferences. Using the
simple average method, mission architecture scenarios were ranked according to their average overall
scores of the individual ET member. Table 6 presents individual overall scores for each ET member,
assuming total independence and no integration of data throughout the process. Split Scenario was
the .rst choice for all ET members, with the exception of team members D and G. An overall mean
of the individual scores revealed results similar to the overall group scores presented in Table 5.
While this is a simple solution, it may not be necessarily desirable.

Beck and Lin [37] have proposed yet another straightforward method, the maximize agreement
heuristic, for approximating the optimal consensus rankings of a group of decision makers. The max-
imize agreement heuristic is easy to implement and provides excellent consensus ranking solutions
[38]. Given the rankings provided by individual ET members from the overall scores in Table 6, we
used the maximize agreement heuristic and found exactly the same consensus ordering that reSected
the collective ET agreement. In summary, the overall synthesis of results from the three aggregation
methods suggests the Split Scenario as the most attractive mission architecture scenario, followed
by the Combo Lander and Dual Scenarios.

4. Practical implications

Advances in computer technology and availability of data have made MCDM more complex and
more useful than ever. While intuition and simple rules are still favorite decision-making methods,
they may be dangerously inaccurate for complex decision problems. The model presented here can
help DMs improve their decision quality when they are confronted with complex decision problems.
Our model ensures consistency and completeness of the required information and synthesizes a vast
amount of information using a manageable and easy to understand structure, while incorporating the
use of human intuition and subjective analysis skills.

The analytical processes in our model help a DM decompose complex MCDM problems into
manageable steps, making this model accessible to a wide variety of DMs and situations. We use
AHP, subjective probabilities, the entropy method, and MAH to help DMs crystallize their thoughts
and reduce the inconsistencies associated with MCDM. Although technical details of the model may
be beyond the reach of some DMs, the basic concepts are not diJcult to understand or implement.
As such, the DMs can use available analytical tools and techniques with some assistance from the
experts [26].
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Table 5
Mission scenarios and their overall score (Sm) for the ET

Misson Mission Criteria Impact Subjective Intrinsic Overall SPLIT COMBO DUAL
phase phase I weight weight weight

importance �ij (wij) (%) (fij) (%) (Fij) (%) scenario (%) scenario (%) (scenario) (%)
weight (%)

EV 9.91 EV1 −1 6.83 9.05 2.30 32.86 45.71 47.14
EV2 −1 21.59 1.38 1.11 28.57 31.43 27.14
EV3 −1 43.86 53.45 87.22 12.86 22.86 34.29
EV4 +1 15.33 4.35 2.48 47.14 38.57 50.00
EV5 +1 6.79 5.81 1.47 48.57 35.71 41.43
EV6 −1 5.61 25.95 5.42 21.43 41.43 30.00

MT 8.56 MT1 −1 20.53 64.06 67.41 37.14 38.57 50.00
MT2 +1 21.40 3.76 4.12 77.14 72.86 71.43
MT3 +1 18.63 13.46 12.85 77.14 70.00 81.43
MT4 +1 32.54 6.84 11.42 70.00 62.86 65.71
MT5 −1 6.90 11.88 4.20 78.57 80.00 70.00

MA 19.20 MA1 −1 7.34 25.85 15.75 24.29 25.71 31.43
MA2 −1 10.49 18.82 16.37 34.29 30.00 27.14
MA3 −1 48.19 5.33 21.29 37.14 32.86 34.29
MA4 −1 7.89 9.37 6.13 24.29 25.71 28.57
MA5 −1 4.57 2.81 1.07 31.43 30.00 32.86
MA6 −1 8.83 1.50 1.10 25.71 24.29 24.29
MA7 −1 12.70 36.34 38.29 27.14 21.43 20.00

PS 15.14 PS1 −1 12.84 26.72 15.89 32.86 37.14 41.43
PS2 −1 52.76 24.77 60.52 22.86 25.71 28.57
PS3 −1 9.90 7.14 3.27 34.29 37.14 38.57
PS4 −1 12.21 28.46 16.10 30.00 28.57 35.71
PS5 +1 4.43 3.01 0.62 58.57 55.71 54.29
PS6 +1 7.86 9.91 3.60 61.43 54.29 61.43

MV 11.07 MV1 −1 17.64 13.38 23.90 32.86 30.00 22.86
MV2 −1 15.04 11.90 18.12 24.29 28.57 34.29
MV3 −1 43.71 1.24 5.47 27.14 24.29 25.71
MV4 −1 12.94 6.27 8.21 22.86 25.71 20.00
MV5 −1 7.66 50.64 39.26 25.71 20.00 40.00
MV6 −1 3.00 16.58 5.04 30.00 27.14 20.00

ET 12.91 ET1 −1 39.04 3.75 6.04 41.43 42.86 44.29
ET2 +1 26.13 68.37 73.71 74.29 60.00 57.14
ET3 −1 8.39 13.64 4.72 52.86 60.00 57.14
ET4 −1 26.44 14.24 15.53 24.29 27.14 24.29

EA 23.20 EA1 −1 3.73 13.65 2.43 27.14 21.43 15.71
EA2 −1 34.21 45.81 74.95 12.86 27.14 37.14
EA3 −1 33.27 3.57 5.69 18.57 22.86 24.29
EA4 +1 10.84 9.60 4.98 84.29 57.14 58.57
EA5 −1 8.61 7.42 3.06 27.14 31.43 40.00
EA6 −1 9.33 19.96 8.90 50.00 42.86 78.57

Overall Group Score −0:109 −0:158 −0:212
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Table 6
Mission scenarios and their overall score (Sm) for the ET members

Exploration team member SPLIT score COMBO score DUAL score

A −0:251 −0:353 −0:414
B −0:165 −0:222 −0:231
C −0:122 −0:128 −0:169
D −0:093 −0:074 −0:116
E −0:087 −0:139 −0:163
F −0:088 −0:183 −0:194
G −0:142 −0:120 −0:139

Overall ET mean −0:106 −0:129 −0:156

The structured framework presented in this study has some obvious attractive features:

(i) There are no limits to the number of alternatives and the number of criteria that can be
considered.

(ii) The information requirements of the model are strati.ed into a hierarchy (mission phases and
their respective criteria) that simpli.es information input and allows DMs to focus on a small
area of the large problem. This process is also useful for seeking input from diGerent experts
or levels of management in the organization.

(iii) Inconsistencies are inevitable when dealing with subjective information from diGerent DMs.
The built-in inconsistency checking mechanism of AHP helps to identify inconsistencies in
judgments at very early stages of the computation process.

(iv) Decision relevant information about the alternatives is transmitted through their risks and bene-
.ts. Traditionally, the problem is: Can the diGerences in the importance of risks and bene.ts be
captured fully by their weights, or are they better reSected in their probabilities of occurrence?
Our methodology helps bridge the two concepts by enabling DMs to assess the relative weight
of diGerent risks and bene.ts by the richness of their probability range. The more divergent
the probability range of a risk or bene.t, the more information is emitted by it, and the more
important it becomes in inSuencing the .nal choice.

(v) This approach can be implemented very easily on a PC because software packages for AHP
such as Expert Choice are readily available and the use of our framework in an interactive
format requires only some additional coding. Our current implementation does not have an
automatic interface with Expert Choice.

(vi) This model can be used in an interactive mode to deal with sensitivity analysis, giving DMs a
tool to evaluate alternatives in widely varied scenarios.

5. Conclusion and future research directions

The model presented in this study decomposes an MCDM problem into clearly de.ned components
in which all alternatives, criteria, weights, and probabilities are depicted. Next, objective information
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and subjective judgments of experts are integrated by utilizing several methods of problem structuring
and information processing. This study was not intended to replace human judgment in mission
architecture evaluation at NASA. In fact, human judgment has provided the basic input to this
study. The model helped the ET think systematically about the complex mission architecture selection
problem. It also helped improve the quality of resulting decisions by using a structured framework.
Objective data on the characteristics of most scenarios were limited because of inherent uncertainties
in space exploration. However, experienced ET members were reasonably con.dent in providing
estimates of values for these characteristics as a substitute for objective data. This study combined
these subjective values numerically and provided an overall score for each mission architecture
scenario. It is important to realize that human beings are imperfect information processors, and
their judgments and preferences about uncertainty can be limited. An awareness of human cognitive
limitations is critical in developing the necessary judgmental inputs. Also, the use of experts in the
.eld is essential to the success of this model, since only subject-matter experts have the necessary
estimates of values for the characteristics of the problem’s scenarios.

Furthermore, the eGectiveness of our model relies heavily on the DMs’ cognitive abilities to
provide valid judgments. We consider subjective estimation of probabilities and weights since there
is not enough empirical evidence in space exploration. Because these judgments can be inSuenced
by DMs’ individual biases, they should be used with caution. As with all the other decision calculus
models, it is vital that the researchers and practicing managers remain aware of the limits of subjective
estimates used in these models. When empirical analysis is feasible and makes economic sense, it
should be preferred [39]. This model should not be used to plug-in numbers and crank-out solutions.
Potentially, DMs can make bad judgments with this model as they do with any framework. Such
judgments can generate misleading results and, ultimately, poor decisions.

Finally, our methodology only addresses some of the problems inherent in the MCDM. Quanti.ca-
tion of all risks and bene.ts is a diJcult task. Storing information generated during a session for use
in future sessions along with information on actual performance of the selected alternative, can facil-
itate the process of learning from past mistakes. This may be done by interfacing our methodology
with knowledge-based systems for .ne-tuning weights and subjective probabilities by inductive rea-
soning. Neural networks may be another avenue for developing knowledge-based models in this area.

Acknowledgements

This research was supported by NASA grant number NAG 9-39. The author is grateful to An-
thony GriJth and Susan Torney, both of the Johnson Space Center, for their assistance with this
research project. The author also wishes to thank Professors Prafulla Joglekar, Dennis Kennedy, Anne
Marie Smith, the editor, and two anonymous reviewers for their critical comments and constructive
suggestions.

Appendix A. Mathematical summary of AHP

Assume team member i believes that c1; c2; : : : ; cI are the I mission phases that contribute to the
overall mission architecture selection problem. The team member’s next task is to assess the relative
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importance of these mission phases with AHP by comparing each possible pair of mission phases
cj, ck and indicating which phase is more important and by how much.

These judgments are represented by an I × I matrix:

A= (ajk) (j; k = 1; 2; : : : ; I)

if cj is judged to be of equal importance as ck , then ajk = 1,
if cj is judged to be more important than ck , then ajk ¿ 1,
if cj is judged to be less important than ck , then ajk ¡ 1,

ajk = 1=akj; ajk �= 0:

Thus, matrix A is a reciprocal matrix so that the entry ajk is the inverse of the entry akj. ajk reSects
the relative importance of cj compared with mission phase ck . For example, a12 = 1:25 indicates that
c1 was 1.25 times as important as c2.

The vector w representing the relative weights of each of the I mission phases was found by
computing the normalized eigenvector corresponding to the maximum eigenvalue of matrix A. An
eigenvalue of A is de.ned as � which satis.es the following matrix equation:

Aw = �w:

Saaty has shown that the best estimate of w is the one associated with the maximum eigenvalue
(�max) of the matrix A. Because the sum of the weights should be equal to 1.00, the normalized
eigenvector is used. Saaty’s algorithm for obtaining this w is incorporated in the software Expert
Choice (2000) utilized in this study.

One of the advantages of AHP is that it assesses the consistency of the team member’s pair-
wise comparisons. Saaty suggests a measure of consistency for the pairwise comparisons. When an
individual’s judgments are perfectly consistent, the maximum eigenvalue (�max) equals the number
of mission phases that are compared (I). Typically, the responses are not perfectly consistent, and
�max is greater than I . The larger the �max, the greater is the degree of inconsistency. Saaty de.nes
consistency index (CI) as (�max − I)=(I − 1) and provides a random index (RI) table for matrices
of order 3–10 (see table below). This RI is based on a simulation of a large number of randomly
generated weights. Saaty recommends the calculation of a consistency ratio (CR) that is the ratio of
CI to RI for the same order matrix. A CR of 0.10 or less is considered acceptable. When the CR is
unacceptable, individuals are alerted to that fact and requested to revise their weights to make them
more consistent.

n 3 4 5 6 7 8 9 10
RI 0.58 0.90 1.12 1.32 1.41 1.45 1.49 1.51
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