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A B S T R A C T   

Degenerate optimal weights and uncertain data are two challenging problems in conventional data envelopment 
analysis (DEA). Cross-efficiency and robust optimization are commonly used to handle such problems. We 
develop two DEA adaptations to rank decision-making units (DMUs) characterized by uncertain data and un-
desirable outputs. The first adaptation is an interval approach, where we propose lower- and upper-bounds for 
the efficiency scores and apply a robust cross-efficiency model to avoid problems of non-unique optimal weights 
and uncertain data. We initially use the proposed interval approach and categorize DMUs into fully efficient, 
efficient, and inefficient groups. The second adaptation is a robust approach, where we rank the DMUs, with a 
measure of cross-efficiency that extends the traditional classification of efficient and inefficient units. Results 
show that we can obtain higher discriminatory power and higher-ranking stability compared with the interval 
models. We present an example from the literature and a real-world application in the banking industry to 
demonstrate this capability.   

1. Introduction 

Data envelopment analysis (DEA), originated by Charnes, Cooper, 
and Rhodes (1978), is a non-parametric data-driven mathematical 
method that has been developed for evaluating the efficiency of a set of 
similar decision-making units (DMUs) with multiple inputs and multiple 
outputs. The Charnes, Cooper, and Rhodes (CCR) model assesses the 
technical (radial) efficiencies of DMUs under the constant returns to 
scale assumption. Banker, Charnes, and Cooper (1984) formulated the 
BCC model as an extension of the CCR model to consider variable returns 
to scale. The conventional DEA models assign a weight for each input 
and output and measure the performance of a DMU, known as a unit 
under evaluation, as the ratio of the weighted sum of outputs (virtual 
output) to the weighted sum of inputs (virtual input). Each DMU is 
evaluated by a set of weights that have been optimized in favor of the 
DMU. 

Traditional DEA classifies DMUs as being efficient or inefficient but 
fails to discriminate between efficient DMUs. A common problem in DEA 
literature is to rank the DMUs linearly. A wide range of studies has been 
undertaken to address the ranking problem in DEA. Cook, Kress, and 
Seiford (1992) developed a prioritization approach for ranking efficient 
units in DEA by imposing various conditions on the weights (multipliers) 
in a DEA analysis. Andersen and Petersen (1993) introduced the super- 
efficiency model, where the DMU under evaluation is removed from the 
production possibility set. Liu and Peng (2008) extended a common- 
weight model to improve the discriminatory power of the ranking of 
the performance indices of efficient DMUs. To improve the discrimina-
tory power between efficient and inefficient DMUs, Charles, Aparicio, 
and Zhu (2019) have proposed a simple method using the well-known 
pure DEA model, which considers either inputs only or outputs only. 

Sexton, Silkman, and Hogan (1986) introduced the cross-efficiency 
concept in DEA, which allows the overall efficiency of a DMU to be 
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evaluated through self-evaluation or peer-evaluation. In contrast to 
conventional DEA, where a DMU is evaluated by its optimal weights 
(self-evaluation), cross-efficiency appraises a DMU by a set of weights 
that are optimally obtained in favor of all other DMUs (peer-evaluation). 
Optimal weights for efficient DMU are not always unique, which de-
creases the usefulness of cross-efficiency evaluation. However, different 
secondary goals, including aggressive and benevolent models, have been 
introduced to tackle this issue (Doyle & Green, 1994; Sexton et al., 
1986). Lin, Chen, and Xiong (2016) introduced an iterative method that 
provides a unique set of weights for positive input and output data, 
which decreases the number of zero weights without applying any prior 
weight restriction. Ruiz (2013) formulated a directional distance cross- 
efficiency model to assess the performance of 28 European, North 
American, and Asian–Australian airlines. Oral, Amin, and Oukil (2015) 
suggested a maximum resonated appreciative model to address the 
problem of multiple optimal solutions in the cross-efficiency approach. 
Lim (2012) suggested a pair of minimax and maximin formulations as 
aggressive and benevolent cross-efficiency DEA models, respectively. 

Li, Zhu, and Liang (2018) consider inconsistency and unbalancing in 
the cross-efficiency methods to (i) suggest a practical adjustment mea-
sure to rectify the traditional cross-efficiency and (ii) propose a game- 
like iterative procedure to obtain an optimal balanced cross-efficiency. 
Kao and Liu (2019) propose a decomposable cross-efficiency model to 
measure two basic structures of network systems (i.e., series and par-
allel). Seyedalizadeh Ganji, Rassafi, and Xu (2019) apply the standard 
and the inverted input-oriented CCR models and develop a novel double- 
frontier cross-efficiency scheme that accounts for both optimistic and 
pessimistic perspectives simultaneously. Abolghasem, Toloo, and 
Amézquita (2019) propose a cross-efficiency approach in the presence of 
flexible measures, which simultaneously plays the role of input and 
output, to evaluate the performance of healthcare systems in 120 
countries (for more details on the flexible measure, see Toloo, Kesha-
varz, & Hatami-Marbini, 2018). 

Some production processes have undesirable outputs whose reduc-
tion results in better performance. For instance, overdue debts are an 
undesirable output and should be reduced (not increased). In contrast to 
desirable inputs and outputs in conventional DEA, undesirable inputs 
and outputs should be increased and decreased, respectively. Färe, 
Grosskopf, Lovell, and Pasurka (1989) provided a non-linear DEA model 
to deal with desirable and undesirable outputs. Seiford and Zhu (2002) 
preserved convexity and linearity to devise an alternative method for 
considering undesirable factors in DEA under variable returns to scale. 
Liu, Meng, Li, and Zhang (2010) launched a systematic investigation 
into the construction of DEA models without transferring undesirable 
data. Liu, Chu, Yin, and Sun (2017) introduced a technique for DEA 
cross-efficiency evaluation in the presence of undesirable outputs and 
suggested an equitable evaluation model for efficiency evaluation. Toloo 
and Hančlová (2020) model real-world problems in which one may 
encounter multi-valued measures, which are measured by various stan-
dards, and only one of their values is to be selected. They formulate two 
individual and summative selective directional distance models in the 
presence of undesirable outputs, and they developed a pair of the 
multiplier- and envelopment-based selection approaches. 

The DEA method offers benefits compared to other statistical ap-
proaches for efficiency measurement. However, one crucial issue with 
DEA is its sensitivity to perturbation, and various uncertain methods 
have been proposed to address this concern. Non-deterministic DEA 
approaches can be classified into four general streams: (i) stochastic 
(Charles & Cornillier, 2017; Olesen & Petersen, 2016), (ii) fuzzy 
(Aghayi, 2016; Hatami-Marbini, Emrouznejad, & Tavana, 2011), (iii) 
interval (Despotis & Smirlis, 2002; Toloo, Aghayi, & Rostamy- 
Malkhalifeh, 2008), and (iv) robust optimization (RO) (Toloo & Men-
sah, 2019). We limit our focus on RO and interval approaches herein. 

An interval approach was developed by Cooper, Park, and Yu (1999) 
in which data lies within bounded intervals. One of the most challenging 
issues with this approach is that the evaluation of efficiency scores is 

based on the lower- and upper-bounds of the relative efficiencies of 
DMUs. Despite this problem, many researchers have focused on devel-
oping variations (e.g., Despotis & Smirlis, 2002; Entani, Maeda, & 
Tanaka, 2002; Wang, Greatbanks, & Yang, 2005; Kao, 2006). The 
objective of most interval approaches, such as Entani et al. (2002) and 
Despotis and Smirlis (2002), is to calculate lower- and upper-bounds of 
the relative efficiencies of the DMUs. Regardless of scale transformations 
on the data suggested in Cooper et al. (1999) study, Despotis and Smirlis 
(2002) drew on variable alterations and developed a new pair of DEA 
models to estimate lower- and upper limits of efficiency values. 
Considering Despotis and Smirlis (2002) and Wang et al. (2005), re-
searchers have proposed different radial and non-radial DEA models to 
handle uncertainty (e.g., Hatami-Marbini, Emrouznejad, & Agrell, 2014; 
Toloo et al., 2018; Hatami-Marbini, Ghelej Beigi, Hougaard, & Gholami, 
2018; Ebrahimi & Toloo, 2020; Ye, Yang, & Wang, 2019). 

RO provides an alternative approach to handle imprecise data, which 
assumes data belongs to an uncertainty set. Soyster (1973) introduced 
the RO approach and proposed a robust model for linear programming 
problems in which the constraints are satisfied under all possible per-
turbations of model parameters. Ben-Tal and Nemirovski (2000) revis-
ited RO and showed that a small perturbation on data might make the 
usual optimal solution completely meaningless and even infeasible. The 
authors suggested a new idea for modeling uncertain data based on 
ellipsoidal uncertainty sets and proposed a second-order cone pro-
gramming model. Bertsimas and Sim (2004) considered a polyhedral 
uncertainty set and proposed an RO approach whose level of robustness 
is adjustable. In comparison with the RO approaches, where the objec-
tive is to find solutions that are immune to all perturbations of the data 
in an uncertainty set, a branch of RO called adjustable RO has evolved 
where some of the decision variables are adjusted after some portion of 
the uncertain data reveals itself. Yanıkoğlu, Gorissen, and den Hertog 
(2018) provided a recent state-of-the-art literature review of the appli-
cations and theoretical/methodological aspects of adjustable RO. 

Robust DEA has drawn the attraction of a wide range of researchers. 
Sadjadi and Omrani (2008), for the first time, applied the RO approaches 
presented by Ben-Tal and Nemirovski (2000) and Bertsimas and Sim 
(2004) to develop a pair of DEA models for assessing the performance of 
electricity distribution companies under data uncertainty. Shokouhi, 
Hatami-Marbini, Tavana, and Saati (2010) presented a robust DEA 
model by applying the RO approach to Despotis and Smirlis (2002) in-
terval DEA models and analyzed the proposed model using Monte-Carlo 
simulation. Omrani (2013) introduced an RO approach for achieving a 
common set of weights in DEA with data uncertainty in inputs and 
outputs. Aghayi, Tavana, and Raayatpanah (2016) suggested a robust 
DEA model with a conventional common set of weights and different 
levels of conservatism and data uncertainty and used goal programming 
to calculate the relative efficiency scores of DMUs. To address the un-
certainty problem, Aghayi and Maleki (2016) combined an output- 
oriented version of the CCR model with the existing interval uncer-
tainty in both desirable and undesirable outputs, which resulted in two 
evaluation approaches. The RO approach also provides the basis for a 
study by Arabmaldar, Jablonsky, and Hosseinzadeh Saljooghi (2017), 
where two linear robust super-efficiency models are presented for 
ranking DMUs under uncertainty in both input and output spaces. 
Zahedi-seresht, Jahanshahloo, and Jablonsky (2017) present an 
approach for scenario-based RO by considering data uncertainty in DEA 
models. Ehrgott, Holder, and Nohadani (2018) propose an uncertain 
DEA model for which an optimal solution obtains the maximum possible 
efficiency score by considering the minimal amount of uncertainty 
required to achieve this efficiency score. 

Toloo and Mensah (2019) suggest a reduced robust DEA approach 
with nonnegative decision variables to decrease computational burden. 
Salahi, Toloo, and Hesabirad (2019) propose equivalent formulations of 
the robust Russell measure and its enhanced models under interval and 
ellipsoidal uncertainties in their best- and worst-cases. The authors show 
that the suggested formulations stay convex for both best- and worst- 
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cases under interval uncertainty as well as worst-case with ellipsoidal 
uncertainty. Lu, Tao, An, and Lai (2019) address the validity of perfor-
mance evaluation in the presence of imprecise and negative data and 
propose a second-order cone based robust DEA model. Yousefi, Aliza-
deh, Hayati, and Baghery (2018) review the shortcomings of the most 
widely used methods for health, safety, and environment management 
system, and propose an integrated robust DEA approach to evaluate and 
prioritize the health, safety, and environment management risks in 
various industries. Amirkhan, Didehkhani, Khalili-Damghani, and 
Hafezalkotob (2018) consider mixed fuzzy-robust uncertainties in DEA 
and propose scenario-based robust DEA models under different return to 
scale conditions. Salahi, Toloo, and Torabi (2020) develop the robust 
counterpart for the envelopment form of the CCR model using the 
Bertsimas and Sim (2004)’s robust approach and then extend the robust 
CCR solutions to find a robust common set of weights. Shirazi and 
Mohammadi (2020) develop a robust slacks-based measure in the 
presence of undesirable output and use it to evaluate the efficiency in the 
airline industry. 

We focus in this paper on ranking DMUs in the presence of interval 
input data, and we permit desirable and undesirable interval outputs 
through a cross-efficiency evaluation. However, DEA can have degen-
erate optimal weights, and we propose a model to circumvent this issue. 
Our model results in efficiency measurements from both optimistic and 
pessimistic viewpoints. The RO approach assesses DMUs for which the 
efficiency value is more certain than the interval approach. 

The main contributions of this study are twofold. First, we develop 
two DEA adaptations (an interval approach and a robust approach) to 
rank DMUs characterized by uncertain data and undesirable outputs. 
Second, we present an example from the literature and a real-world 
application to compare our method with an interval method. This 
example demonstrates the ability of our approach to improving dis-
cernibility among DMUs. 

The remainder of this paper is organized as follows. We review DEA 
models in the presence of undesirable outputs in Section 2. We propose a 
pair of interval models based on interval DEA approaches in the pres-
ence of imprecise data and undesirable outputs in Section 3. We also use 
cross-efficiency evaluation and develop a model for enhancing 
discrimination between DMUs. Section 4 introduces a new cross- 
efficiency evaluation method by integrating the proposed models in 
Section 3 with an RO approach. A case study and a comparative example 
are presented in Section 5 to illustrate the practical application of the 
proposed methods. Section 6 presents our conclusions and future 
research directions. 

2. DEA cross-efficiency evaluation considering the undesirable 
output 

We assume there are DMUs, indexed by j, each producing s semi- 
positive outputs, yrj(r = 1, ..., s), by using m semi-positive inputs, xij(i 
= 1, ...,m). The CCR model assesses the input-oriented technical effi-
ciency of the unit being evaluated, DMUd: 

Edd = max
∑s

r=1
urdyrd  

s.t.

∑m

i=1
vidxid = 1  

∑m

i=1
vidxij −

∑s

r=1
urdyrj ≥ 0, j = 1, ..., n (1)  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s 

where vid and μrd are the respective ith input and rth output weights. 
The value of Edd is the CCR-efficiency score of DMUd. 

Let 
(
v*

d, u
*
d
)
∈ Rm+s be an optimal solution of the CCR model (1), then 

the cross-efficiency score of DMUj corresponding to DMUd is: 

Edj =

∑s
r=1u*

rdyrj
∑m

i=1v*
idxij

(2) 

The CCR model does not allow undesirable outputs, and we divided 
outputs into those that are desirable, yrj(r = 1, ..., s), and those that are 
undesirable, btj(t = 1, ..., k). Liu et al. (2017) suggest the following 
model to evaluate the performance of DMUd in the presence of unde-
sirable outputs: 

Edd = max
∑s

r=1
urdyrd +

∑k

t=1
wtdb

−

td  

s.t.

∑m

i=1
vidxid = 1  

∑m

i=1
vidxij −

∑s

r=1
urdyrj −

∑k

t=1
wtdb

−

tj ≥ 0, j = 1, ..., n (3)  

∑s

r=1
urdyrd ≥ αε  

∑k

t=1
wtdb

−

td ≥ βε  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k,

where wtd is the weight assigned to the tth undesirable output and 

b
−

tj = − btj +w > 0, (t = 1, ..., k) is the tth undesirable output of DMUj(j =

1, ...,n). More specifically, at first, each undesirable output is multiplied 
by ( − 1). Then by finding the k-dimensional vector w = (w1, ...,wk), the 
tth negative undesirable outputs of DMUj is transformed into a positive 
value. We refer the reader to Seiford and Zhu (2002) for a more in-depth 
discussion of this transformation. The current study adopts a linear 
monotone, decreasing transformation for dealing with undesirable 
outputs in Model (3). Moreover, ε is the non-Archimedean infinitesimal 
that prevents each term of the objective function from being zero, and α 
and β denote the lowest percentages of ε that which are the lower- 
bounds for the weighted sum of desirable outputs and the weighted 
sum of undesirable outputs of the DMU under evaluation, respectively. 
In other words, α and β vary between 0 and 1. If one sets α = β = 0, then 
it means the model can assign zero value to some of the weights of 
desirable and undesirable outputs. In addition, α = β = 1 means that ε >

0 is a lower bound of the weighted sum of desirable outputs and the 
weighted sum of undesirable outputs of the unit under evaluation. Ap-
pendix A provides an approach for finding a suitable value for ε in Model 
(3). Running Model (A.1) for each DMU and ε* = min

{
ε*

1, ..., ε*
n
}

provides 
the most suitable value for epsilon. Moreover, the epsilon (ε) plays an 
important role in the selection-based problems, and therefore finding 
the best value for ε is essential in such problems (see Toloo, 2014). 
Mehrabian, Jahanshahloo, Alirezaee, and Amin (2000) introduced the 
assurance interval [0, ε*] and assurance value ε ∈ [0, ε*] in which the 
maximum ε* is a positive number such that the model is feasible for all 
ε ∈ [0, ε*] and is infeasible for all ε > ε*. In addition, choosing a small 
assurance value keeps the epsilon-based DEA models feasible (Amin & 
Toloo, 2004), and selecting a larger assurance value improves their 
discriminatory power (Cook, Kress, & Seiford, 1996). 

Model (3) prevents the weights of desirable and undesirable outputs 
from being zero. In other words, the model produces a set of strictly 
positive weights, which means all desirable and undesirable outputs 
have been considered in the evaluation process. Liu et al. (2017) (The-
orem 1, p. 880) proves Model (3) has strictly positive weights and better 
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discrimination power. These properties inspired us to use Model (3) and 
develop our models. 

Assume that 
(
v*

d, u
*
d,w

*
d
)
∈ Rm+s+k is an optimal solution of Model (3), 

then, the cross-efficiency of DMUj corresponding to DMUd is: 

Edj =

∑s
r=1u*

rdyrj +
∑k

t=1w*
tdb
−

tj
∑m

i=1v*
idxij

(4) 

The cross-efficiency score Ej measures the average of Edj(d = 1, ..., n).
Finally, the resulting cross-efficiency scores are defined as new effi-
ciency measures for all DMUs. 

3. Proposed cross-efficiency models with undesirable outputs 
based on interval approach 

Some DEA models have been extended to measure interval efficiency 
in the presence of interval data and undesirable outputs. We extend the 
methods proposed by Despotis and Smirlis (2002) and Liu et al. (2017) 
to measure cross-efficiency with undesirable outputs where the lower- 
bound of the weighted sum of desirable and the weighted sum of un-
desirable outputs of the unit under evaluation is maximized. 

Suppose uncertain inputs, desirable outputs, and undesirable outputs 
are known to lie within intervals [xL

ij, xU
ij ], [yL

rj, yU
rj ], and [bL

tj, bU
tj ], respec-

tively, where xL
ij ≥ 0, yL

rj ≥ 0, and bL
tj ≥ 0. Upper- and lower-bounds are 

suggested for the efficiency values of DMUs. The calculation of the 
upper-bound presents the DMU under evaluation in the best-case sce-
nario and the other DMUs in the worst-case scenario (optimistic 
perspective). So, we consider the lower-bound of inputs and the upper- 
bounds of desirable and undesirable outputs, and for the other DMUs, 
we consider the upper-bound of inputs and the lower-bounds of desir-
able and undesirable outputs. The lower-bound of the DMU under 
evaluation in the worst-case scenario and the other DMUs in the best- 
case scenario. So we consider the upper-bound of inputs and the 
lower-bounds of desirable and undesirable outputs for the DMU under 
evaluation, and the lower-bound of inputs and the upper-bounds of 
desirable and undesirable outputs for the other DMUs. We then extend 
the proposed method by Despotis and Smirlis (2002) and modify Model 
(3) to evaluate optimistic and pessimistic perspectives, respectively: 

eU
dd = max

∑s

r=1
urdyU

rd +
∑k

t=1
wtdb

− U

td  

s.t.

∑m

i=1
vidxL

id = 1  

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj ≥ 0, j = 1, ..., n, j ∕= d  

∑m

i=1
vidxL

id −
∑s

r=1
wrdyU

rd −
∑k

t=1
wtdb

− U

td ≥ 0 (5)  

∑s

r=1
urdyU

rd ≥ αε*U
d  

∑k

t=1
wtdb

− U

td ≥ βε*U
d  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k 

and 

eL
dd = max

∑s

r=1
urdyL

rd +
∑k

t=1
wtdb

− L

td  

s.t.

∑m

i=1
vidxU

id = 1  

∑m

i=1
vidxL

ij −
∑s

r=1
urdyU

rj −
∑k

t=1
wtdb

− U

tj ≥ 0, j = 1, ..., n, j ∕= d  

∑m

i=1
vidxU

id −
∑s

r=1
urdyL

rd −
∑k

t=1
wtdb

− L

td ≥ 0 (6)  

∑s

r=1
urdyL

rd ≥ αε*L
d  

∑k

t=1
wtdb

− L

td ≥ βε*L
d  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k 

Model (5) evaluates DMUd in favor of the unit and aggressively 

against the other units, i.e., DMUd = (xL
d, yU

d , b
− U

d ) and DMUj =
(

xU
j , yL

j , b
− L

j

)

∀j ∕= k. Conversely, in Model (6), the levels of inputs and 

outputs are adjusted unfavorably for the unit under evaluation and in 

favor of the other units, i.e., i.e. DMUd = (xU
d , yL

d, b
− L

d) and DMUj =
(

xL
j , yU

j , b
− U

j

)

∀j ∕= k. 

The efficiency score of DMUd from Models (5) and (6) is not certain 
and belongs to the interval 

[
eL

dd, e
U
dd
]
, and the DMUs are allocated to one 

of the following categories based on these intervals:  

• Fully efficient: E++ =
{
DMUj|eL

dd = 1
}
,  

• Efficient: E+ =
{
DMUj|eL

dd < 1, eU
dd = 1

}
, or  

• Inefficient: E− =
{
DMUj|eU

dd < 1
}
. 

Appendix B suggests a method for finding a suitable value for ε in 
Models (5) and (6). Since more than one DMU is likely to be identified as 
efficient by Model (5), we prefer to improve the discrimination power 
between DMUs. Let us assume that (v*

d, u
*
d,w

*
d) is an optimal solution to 

Model (5). Then the cross-efficiency of DMUj corresponding to DMUd is: 
calculated as follows: 

EU
dj =

∑s
r=1u*

rdyU
rj +

∑k
t=1w*

tdb
− U

tj
∑m

i=1v*
idxL

ij
, d = 1, ..., n. (7) 

The cross-efficiency score EU
j of each DMUj is then the average of 

EU
dj(d = 1, ..., n). Due to the existence of alternative optimal solutions of 

Model (5), the cross-efficiency score of DMUs may not be unique, but the 
following mixed binary linear programming model ranks the DMUs to 
increase our evaluation power: 

RU
d = min

∑n

j=1
zj  

s.t.

∑m

i=1
vidxL

id = 1  

∑s

r=1
urdyU

rd +
∑k

t=1
wtdb

− U

td = eU
dd  

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj ≥ 0, j = 1, ..., n, j ∕= d  

eU
dd

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj + sj = 0, j = 1, ..., n, j ∕= d  
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∑s

r=1
urdyU

rd ≥ αε*U
d (9)  

∑k

t=1
wtdb

− U

td ≥ βε*U
d  

sj ≤ Mzj, j = 1, ..., n  

vid, urd,wtd ≥ 0, i = 1, ...,m, r = 1, ..., s, t = 1, ..., k  

zj ∈ {0, 1}, j = 1, ..., n  

sjfree in sign, j = 1, ..., n 

The value of eU
dd is the upper-bound efficiency of DMUd from Model 

(5), and the value of M is arbitrarily large. The first two constraints 
imply that the upper-bound efficiency score of DMUd is preserved at its 
level resulting from Model (5). The first and second constraints also 
result in sd = 0. The third and seventh constraints ensure that all DMUs 
belong to the production possibility set. The fourth constraint ensures: 

eU
dd

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj = − sj, j = 1, ..., n, j ∕= d (9) 

Two cases arise from equation (9): 
(i) If sj > 0, then 

eU
dd

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj < 0, j = 1, ..., n, j ∕= d (10)  

eU
dd <

∑s
r=1urdyL

rj+
∑k

t=1wtdb
− L

tj
∑m

i=1vidxU
ij

≤

∑s
r=1urdyU

rj +
∑k

t=1wtdb
− U

tj
∑m

i=1vidxL
ij

=eU
dj,j=1,...,n,j∕=d 

In this case, the optimistic view of the cross-efficiency score of DMUj 

corresponding to DMUd is larger than the CCR-efficiency score of DMUd.

(ii) If sj ≤ 0, then 

eU
dd

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj ≥ 0, j = 1, ..., n, j ∕= d (11)  

∑s
r=1urdyL

rj+
∑k

t=1wtdb
− L

tj
∑m

i=1vidxU
ij

≤eU
dd ≤

∑s
r=1urdyU

rj +
∑k

t=1wtdb
− U

tj
∑m

i=1vidxL
ij

=eU
dj,j=1,...,n,j∕=d 

In this case, the cross efficiency of DMUj corresponding to DMUd is 
greater than the upper-bound efficiency of DMUd and the set of optimal 
weights selected by DMUd ranks DMUd behind DMUj. 

In Model (8), zj is a binary variable and therefore, from the seventh 
constraint, if zj = 0, then the constraint sj ≤ Mzj turns to sj ≤ 0 which 
shows eU

dd ≤ eU
dj. On the other hand, if zj = 1, then considering the fact 

that Model (8) minimizes 
∑n

j=1zj we can conclude that sj > 0. In this 
case, in fact, Model (8) minimizes the number of DMUs which rank 
before DMUd, i.e., eU

dd ≤ eU
dj. 

Model (8) determines the best ranking of DMUd based on its own 
optimal weights. If RU

d is the optimal objective function value of Model 
(8) corresponding to DMUd, then the best ranking for DMUd is RU

d + 1. 
Unfortunately, an optimal solution to Model (8) may not be unique. We 
solve this problem by considering the constraint 

∑n
j=1zj = RU

d . Notice 

that 
∑s

r=1urdyU
rd +

∑k
t=1wtdb

− U

td = eU
dd shows that the cross-efficiency score 

measured from the optimistic perspective is maintained. We subse-
quently calculate: 

RU
d = max

∑n

j=1
ξj  

s.t.

∑m

i=1
vidxL

id = 1  

∑s

r=1
urdyU

rd +
∑k

t=1
wtdb

− U

td = eU
dd  

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj − ξj = 0, j = 1, ..., n, j ∕= d  

eU
dd

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj + sj = 0, j = 1, ..., n, j ∕= d (12)  

∑s

r=1
urdyU

rd ≥ αε*U
d  

∑k

t=1
wtdb

− U

td ≥ βε*U
d  

sj ≤ Mzj, j = 1, ..., n  

∑n

j=1
zj = RU

d  

vid, urd,wtd ≥ 0, i = 1, ...,m, r = 1, ..., s, t = 1, ..., k  

ξj ≥ 0, j = 1, ..., n  

zj ∈ {0, 1}, j = 1, ..., n  

sj free in sign, j = 1, ..., n 

Model (12) reveals that the model is aggressive, meaning that it 
maintains the efficiency score of DMUd at its upper-bound preserves its 
best ranking. 

Assume that 
(
v*

d, u
*
d,w

*
d, z

*, s*) ∈ Rm+s+k+2n is an optimal solution 
obtained by solving Models (8) and (12), then, the cross-efficiency score 
of DMUj corresponding to DMUd can be calculated as follows: 

CEU
dj =

∑s
r=1u*

rdyU
rj −

∑k
t=1w*

tdb
− U

tj
∑m

i=1vidxL
ij

(13) 

and the cross-efficiency score CEU
j of each DMUj is the average of 

CEU
dj(d = 1, ..., n). Pessimistic counterparts are calculated similarly and 

are denoted with a superscript L. 

4. Cross-efficiency evaluation considering undesirable outputs 
and the RO approach 

We now propose a model based on the RO approach for ranking 
DMUs. Let us consider DMUj(j = 1, ..., n) with interval inputs. Assume 
that Ix

j , Og
j , and Ob

j respectively represent the set of inputs, desirable 
outputs, and undesirable outputs of DMUs that are subject to uncer-
tainty. Let us further consider parameters γx

j , γg
j , and γb

j (not necessarily 
integers) which are assumed to be valued in bounded intervals 

γx
j ∈

[
0,
⃒
⃒
⃒Ix

j

⃒
⃒
⃒

]
, γg

j ∈
[
0,
⃒
⃒
⃒Og

j

⃒
⃒
⃒

]
, and γb

j ∈
[
0,
⃒
⃒
⃒Ob

j

⃒
⃒
⃒

]
. The role of γx

j , γg
j , and γb

j 

is to adjust the demanded conservatism level in the proposed RO 
formulation. The level of conservatism is a user-selectable degree that 
identifies the high, medium, or low-risk groups. These numbers are 
applied to the upper bound on the number of uncertain parameters in 
which their worst-case values can be obtained. Here, we aim to ensure 

that the solution remains feasible against changes in all 
[
γx

j

]
, 
[
γg

j

]
, and 

[
γb

j

]
combinations, and changes in xtj , ytj , and btj are at most 

(
γx

j −
[
γx

j

] )(
xU

tj − xL
tj

)
, 
(

γg
j −
[
γg

j

] )(
yU

tj − yL
tj

)
and 

(
γb

j −
[
γb

j

] )(
bU

tj − bL
tj

)
, 

respectively. So we consider the conditions that only a subset of inputs, 
desirable outputs, and undesirable outputs should change to immunize 
the solution against the worst cases (Bertsimas & Sim, 2004). The robust 
cross-efficiency evaluation is: 

eR
dd = max

∑s

r=1
urdyU

rd +
∑k

t=1
wtd b̂

U
td − αg

d − αb
d 
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s.t.

∑m

i=1
vidxL

id + αx
d = 1  

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj − αx
j − αg

j − αb
j ≥ 0, j = 1, ..., n, j ∕= d  

∑m

i=1
vidxL

id −
∑s

r=1
urdyU

rd −
∑k

t=1
wtdb

− U

td +αx
d + αg

d +αb
d ≥ 0 (14)  

∑s

r=1
urdyU

rd − αg
d ≥ αε*R

d  

∑k

t=1
wtdb

− U

td − αb
d ≥ βε*R

d  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k 

The values of αx
j , α

g
j , and αb

j correspond with the uncertain inputs and 
outputs of DMUj, respectively, 

αx
j = max

cx
j

⎧
⎨

⎩

∑

i∈sx
j

vid

(
xU

ij − xL
ij

)
+
(

γx
j −
[
γx

j

] )
vtxj

(
xU

ij − xL
ij

)
⎫
⎬

⎭
,∀j  

αg
j = max

cg
j

⎧
⎨

⎩

∑

r∈sg
j

urd

(
yU

rj − yL
rj

)
+
(
γg

j −
[
γg

j
] )

utgj

(
yU

rj − yL
rj

)
⎫
⎬

⎭
, ∀j  

αb
j = max

cb
j

⎧
⎨

⎩

∑

k∈sb
d

wtd

(

b
− U

pj − b
− L

pj

)

+
(

γb
j −

[
γb

j

] )
wtbj

(

b
− U

tj − b
− L

tj

)
⎫
⎬

⎭
, ∀j, and 

where the maximums are defined over 

cx
j =

{
sx

j ∪
{

tx
j

}
|sx

j ⊆Ix
j ,

⃒
⃒
⃒sx

j

⃒
⃒
⃒ =

[
γx

j

]
, tx

j ∈
(

Ix
j − sx

j

)}
,∀j,

cg
j =

{
sg

j ∪
{

tg
j
}
|sg

j ⊆Og
j ,
⃒
⃒sg

j

⃒
⃒ =

[
γg

j
]
, tg

j ∈
(
Og

j − sg
j
) }

,∀j, and  

cb
j =

{
sb

j ∪
{

tb
j

}
|sb

j ⊆Ob
j ,

⃒
⃒
⃒sb

j

⃒
⃒
⃒ =

[
γb

j

]
, tb

j ∈
(

Ob
j − sb

j

)}
,∀j.

The set sj denotes the collection of uncertain data that can reach their 
maximum perturbations, while tj denotes another uncertain data set that 

perturbs in the amount of 
(

γx,g,b
j −

[
γx,g,b

j

] )
. Appendix C suggests a model 

for finding a suitable value for ε in Model (14). 
The RO approach serves as a basis for Model (14), where αx

j , αg
j , and αb

j 

are introduced to keep the constraints feasible, and move from the 
optimistic to the pessimistic point of view; it moves to a pessimistic view. 
Indeed, these variables are introduced to protect the constraints in Model 
(14) against existing uncertainty in inputs and outputs. If the values of 
γx

j , γg
j , and γb

j are integers, then αx
j , αg

j , and αb
j become: 

αx
j = max

cx
j

⎧
⎨

⎩

∑

i∈sx
j

vid

(
xU

ij − xL
ij

)
⎫
⎬

⎭
, cx

j =
{

sx
j |s

x
j ⊆Ix

j ,

⃒
⃒
⃒sx

j

⃒
⃒
⃒ =

[
γx

j

]}
,∀j,

αg
j = max

cg
j

⎧
⎨

⎩

∑

r∈sg
j

urd

(
yU

rj − yL
rj

)
⎫
⎬

⎭
, cg

j =
{

sg
j |s

g
j ⊆Og

j ,
⃒
⃒sg

j

⃒
⃒ =

[
γg

j
] }

,∀j, and  

αb
j = max

cb
j

⎧
⎨

⎩

∑

t∈sb
d

wtd

(

b
− U

tj − b
− L

tj

)
⎫
⎬

⎭
, cb

j =
{

sb
j |s

b
j ⊆Ob

j ,

⃒
⃒
⃒sb

j

⃒
⃒
⃒ =

[
γb

j

] }
,∀j 

If we assume that γx
j = γg

j = γb
j = 0, so that the inputs and outputs in 

Model (5) are fixed, then we obtain αx
j = αg

j = αb
j = 0 and Model (14) 

reduces to Model (5). Similarly, if γx
j =

⃒
⃒Ix

i

⃒
⃒, γg

j =

⃒
⃒
⃒Og

j

⃒
⃒
⃒, and γb

j =

⃒
⃒
⃒Ob

j

⃒
⃒
⃒, 

then αx
j =

∑m
i=1vid

(
xU

ij − xL
ij

)
, αg

j =
∑s

r=1urd

(
yU

rj − yL
rj

)
and αb

j =

∑k
t=1wtd

(

b̂
U
tj − b̂

L
tj

)

. Model (14) becomes Model (6). 

Varying γx
j , γg

j , and γb
j , within their intervals, adjust the degree of 

robustness in an optimal solution. Since Model (14) is non-linear, using 
the proposition of Bertsimas and Sim (2004), we can transform Model 
(14) into a linear model. To this end, consider the following definitions 
for the inputs, desirable outputs, and undesirable outputs, in the second 
group of constraints of Model (14): 

αx
j = max

cx
j

{
∑m

i=1
vid

(
xU

ij − xL
ij

)
+
(

γx
j −
[
γx

j

] )
vtxj

(
xU

ij − xL
ij

)
}

(15)  

s.t.

∑

j∈|Og
j |

ẑg
j ≤ γg

j  

0 ≤ ẑj ≤ 1  

αg
j = max

cg
j

{
∑s

r=1
urd

(
yU

rj − yL
rj

)
+
(
γg

j −
[
γg

j
] )

utgj

(
yU

rj − yL
rj

)
}

(16)  

s.t.

∑

j∈|Og
j |

ẑg
j ≤ γg

j  

0 ≤ ẑj ≤ 1  

αb
j = max

cb
j

{
∑k

t=1
wtd

(

b
− U

tj − b
− L

tj

)

+
(

γb
j −

[
γb

j

] )
wtbj

(

b
− U

tj − b
− L

tj

)}

(17)  

s.t.

∑

j∈|Ob
j |

ẑb
j ≤ γb

j  

0 ≤ ẑj ≤ 1 

where ̂zj indicates the total sum of data perturbations. By considering 
Rij, Prj, and qpjas dual variables for the constraints in Models (15), (16), 
and (17), the second constraint of Model (14) can be written as follows: 
∑m

i=1
vidxU

ij − ẑx
j γ

x
j −
∑m

i=1
Rij  

−
∑s

r=1
urdyL

rj − ẑg
j γg

j −
∑s

r=1
prj  

−
∑k

t=1
wtd b̂

L
tj − ẑb

j γb
j −
∑k

t=1
qtj ≥ 0, j = 1, ..., n, j ∕= d  

ẑx
j +Rij ≥ vid

(
xU

ij − xL
ij

)
, i = 1, ...,m, j = 1, ..., n  

ẑg
j +Prj ≥ urd

(
yU

rj − yL
rj

)
, r = 1, ..., s, j = 1, ..., n  

ẑb
j + qtj ≥ wtd

(

b
− U

tj − b
− L

tj

)

, t = 1, ..., k, j = 1, ..., n  

ẑx
j , ẑg

j , ẑb
j ≥ 0, j = 1, ..., n 
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Rij,Prj, qpj ≥ 0, ∀i, r, t, j  

vid, urd,wtd ≥ 0, i = 1, ...,m, r = 1, ..., s, t = 1, ..., k 

Models (15), (16), and (17) are feasible and bounded for all γx
j , γ

g
j , 

and γb
j . Therefore, the strong duality theorem guarantees their dual 

problems are feasible and bounded. Consequently, we can now rewrite 
Model (14) as a linear: 

ER
dd = max

∑s

r=1
urdyU

rd +
∑k

t=1
wtd b̂

U
td − ẑg

dγg
d −
∑s

r=1
prd − ẑb

dγb
d −
∑k

t=1
qtd,

(18)  

s.t.

∑m

i=1
vidxL

id + ẑx
dγx

d +
∑m

i=1
Rid = 1 (18a)    

∑

r=1

s

urdyU
rd − ẑg

dγg
d −
∑s

r=1
prd ≥ αε*U

d (18d)  

∑

t=1

k

wtdb
− U

td − ẑb
dγb

d −
∑k

t=1
qtd ≥ βε*U

d (18e)  

ẑx
j +Rij ≥ vid

(
xU

ij − xL
ij

)
, i = 1, ...,m, j = 1, ..., n (18f)  

ẑg
j +Prj ≥ urd

(
yU

rj − yL
rj

)
, r = 1, ..., s, j = 1, ..., n (18g)  

ẑb
j + qtj ≥ wtd

(

b
− U

tj − b
− L

tj

)

, t = 1, ..., k, j = 1, ..., n (18h)  

ẑx
j , ẑg

j , ẑb
j ≥ 0, j = 1, ..., n (18i)  

Rij,Prj, qtj ≥ 0, ∀i, r, t, j (18j)  

vid, urd,wtd ≥ 0, i = 1, ...,m, r = 1, ..., s, t = 1, ..., k (18k) 

Model (18) promotes a definition of robust-efficiency. 

Definition 2.. If ER
dd = 1, then DMUd is robust-efficient; otherwise, it is 

robust-inefficient. We use the following model to rank DMUs based on their 
robust efficiency scores. 

RR
d = min

∑n

j=1
zj (19) 

s.t.

(18a − 18k)

∑s

r=1
urdyU

rd +
∑k

p=1
wtdb

− U

td − ẑg
dγg

d −
∑s

r=1
prd − ẑb

dγb
d −
∑k

t=1
qtd =ER

dd (19a)    

sj ≤ Mzj, j = 1, ..., n (19d)  

zj ∈ {0, 1}, j = 1, ..., n (19e)  

sjfree in sign, j = 1, ..., n (19e) 

Model (19) preserves the robust efficiency of DMUd and maintains 
the most favorable efficiency rating for it. To explore the possible exis-
tence of alternative solutions to Model (19), we propose the following 
model: 

RR
d = max

∑n

j=1
ξj (20)  

s.t.

∑m

i=1
vidxU

ij − ẑx
j γx

j −
∑m

i=1
Rij −

∑s

r=1
urdyL

rj − ẑg
j γg

j −
∑s

r=1
prj −

∑k

t=1
wtdb

− L

tj − ẑb
j γb

j −
∑k

t=1
qtj ≥ 0, ∀j, j ∕= d (18b)  

∑m

i=1
vidxL

id + ẑx
dγx

d +
∑m

i=1
Rid −

∑s

r=1
urdyU

rd + ẑg
dγg

d +
∑s

r=1
prd −

∑k

t=1
wtdb

− U

td + ẑb
dγb

d +
∑k

p=1
qpd ≥ 0 (18c)   

ER
dd

(
∑m

i=1
vidxU

ij − ẑx
j γx

j −
∑m

i=1
Rij

)

−
∑s

r=1
urdyL

rj − ẑg
j γg

j −
∑s

r=1
prj −

∑k

t=1
wtdb

− L

tj − ẑb
j γb

j −
∑k

t=1
qtj + sj = 0, ∀j, j ∕= d (19b)  

ER
dd

(
∑m

i=1
vidxL

id + ẑx
dγx

d +
∑m

i=1
Rid

)

−
∑s

r=1
urdyU

rd + ẑg
dγg

d +
∑s

r=1
prd −

∑k

t=1
wtdb

− U

td + ẑb
dγb

d +
∑k

t=1
qtd + sd = 0 (19c)   

∑m

i=1
vidxU

ij − ẑx
j γx

j −
∑m

i=1
Rij −

∑s

r=1
urdyL

rj − ẑg
j γg

j −
∑s

r=1
prj −

∑k

t=1
wtdb

− L

tj − ẑb
j γb

j −
∑k

t=1
qtj − ξj = 0, ∀j, j ∕= d (20a)   
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(18a)

(18d − 18k)

(19a − 19f )

∑n

j=1
zj = RR

d (20b)  

sjfree in sign, j = 1, ..., n  

ξj ≥ 0, j = 1, ..., n 

Suppose that 
(
v*

d, u*
d,w*

d
)

is an optimal solution, then the cross- 
efficiency of DMUj corresponding to DMUd is: 

CER
dj =

∑s
r=1u*

rdyU
rd +

∑k
t=1w*

tdb
− U

td∑m
i=1v*

idxL
id

, d = 1, ..., n (21) 

The cross-efficiency score CER
j of each DMUj is defined as the average 

of CER
dj(d = 1, ..., n). Finally, the cross-efficiency scores obtained are 

defined as new efficiency measures (hereafter called RCE) for all DMUs. 
Appendix D provides two theorems for proving that Model (20) is 
feasible and RR

d ⩽RU
d . 

5. Experimental results 

We consider in this section a case study and a comparative example 
to demonstrate the applicability of the models proposed above. The first 
example in Subsection 5.1 deals with a case study of about 50 Iranian 

Fig. 1. Performance measures for the banking case study.  

Table 1 
Descriptive statistics of the interval inputs and outputs variables for 50 bank branches.  

Data Input Desirable outputs Undesirable output 
xL

1  xU
1  yL

1  yU
1  yL

2  yU
2  bL

1  bU
2  

Min  14191.00  17662.00  600754258.00  4522860624.00  316.00  2450.00  18351.00  20779.00 
Max  2038982.00  2039982.00  294507045133.00  326419360882.00  513181.00  636158.00  528121.00  656716.00 
Mean  112052.04  124455.40  18044229592.38  22705523858.58  19112.90  25767.54  72450.788  95216.26 
Std. Dev.  284059.92  284261.91  40953143627.59  45353419909.56  71773.42  88793.72  79388.28  98759.09  

Table 2 
The Efficiency and ranking of the banks based on Models (5), (6), and (20).  

Bank eL
dd  eU

dd  RCE Ranking Bank eL
dd  eU

dd  RCE Ranking 

1 0.4615 0.9473  0.2128 33 26  0.7103 1  0.3837 4 
2 0.4401 0.9122  0.3209 9 27  0.4519 0.9194  0.2663 18 
3 0.4189 0.8810  0.2986 12 28  0.3896 0.6902  0.2139 32 
4 0.3425 0.9236  0.3555 8 29  0.5353 0.8315  0.1482 44 
5 1 1  0.5502 2 30  0.3865 0.8930  0.2888 15 
6 0.7782 0.9500  0.3021 10 31  0.6178 0.8033  0.2064 35 
7 0.3521 0.7639  0.2602 19 32  0.7026 0.8859  0.2339 25 
8 0.4571 0.8078  0.2464 22 33  0.5813 0.7114  0.2335 27 
9 0.5326 1  0.2342 24 34  0.7332 1  0.5412 3 
10 0.5531 0.9524  0.2894 14 35  0.7549 0.8013  0.1530 43 
11 0.5400 0.8818  0.2206 29 36  0.4376 0.8975  0.1091 48 
12 0.5260 0.8379  0.2047 36 37  0.6204 0.7019  0.2184 30 
13 0.4459 1  0.3664 6 38  0.5589 0.8100  0.1170 46 
14 0.2393 0.9633  0.2873 16 39  0.6432 0.8469  0.2108 34 
15 0.5060 0.9343  0.2592 20 40  0.4570 0.8193  0.1704 40 
16 0.4238 0.8092  0.1873 39 41  0.5084 0.6535  0.1990 37 
17 0.4369 0.9012  0.2713 17 42  0.6251 0.7619  0.1598 42 
18 0.4761 0.8119  0.2441 23 43  0.5200 0.7935  0.0953 49 
19 0.2554 0.9275  0.2895 13 44  0.6545 0.6641  0.2165 31 
20 0.5024 0.8781  0.2484 21 45  0.5217 0.7062  0.1399 45 
21 1 1  0.5530 1 46  0.5643 0.7596  0.1111 47 
22 0.4226 1  0.2992 11 47  0.5232 0.6281  0.1891 38 
23 0.7121 1  0.3775 5 48  0.4861 0.8374  0.0805 50 
24 0.5660 1  0.3631 7 49  0.5737 0.6626  0.2246 28 
25 0.4015 0.8956  0.2337 26 50  0.4983 0.6708  0.1675 41  
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National Bank branches across the Ardabil province in Iran. Subsection 
5.2 describes a comparative example among the proposed models in this 
paper and with suggested methods in the relevant literature. 

5.1. Iranian National bank case study 

We consider real-world data from 50 Iranian National Bank branches 
across the Ardabil province over three years from 2011 to 2014. These 
bank branches consume one input, the balance of non-governmental 
deductions (x1), to produce two desirable outputs, the gross balance of 
non-governmental facilities (y1) and the profit of each branch (y2), and 
one undesirable output, the non-performing loans (b1) (see Fig. 1). 

The descriptive statistics of the interval inputs and outputs are pre-
sented in Table 1 shows the maximum, minimum, mean, and standard 

deviation values of the input, desirable outputs, and undesirable output 
variables for the 50 Iranian National bank branches from 2011 to 2014 
in Iranian Rials. 

We employ Models (5) and (6) to calculate the upper- and lower- 
bounds of efficiency at the bank branches. We also set w1 = 850000 
for transforming the data of undesirable output. Note that the value of ε 
in Model (20) is 6.5× 10− 4, which is obtained by solving Model (A.1). 
Model (20) obtains a deterministic robust-efficiency score for each bank 
branch for ranking the DMUs. 

Given the results of the second, third, seventh, and eighth columns in 
Table 1, some banks have an efficiency score upper-bound of one and a 
lower-bound less than one. So, their efficiencies and ranking cannot be 
determined precisely. The fourth and the ninth columns in Table 2 
include the means of cross-efficiency scores for Model (20). We calculate 

Fig. 2. The efficiency scores for models (5), (6), and (20) for Banks.  

Fig. 3. Cross-efficiency scores obtained by Model (20) for different γ’s levels.  
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these columns with γ ∈ [0,4] and a step length of 0.2 to solve (20). 
According to the three proposed classes in Section 2, Bank5 and 

Bank21 are in the first position order because these branches are in E++

and are efficient for all cases. Bank13, Bank22, Bank23, Bank24, Bank26, 
and Bank34 are E+. All other branches are in the E− . So we used robust 
Model (20) to identify the unknown ranking of the branches. Fig. 2 

Table 3 
Interval inputs and outputs of the combined-cycle power plants during the six-year study.  

DMU Input – Fuel (M3)  Desirable output - electricity power (1000kw/Hr) Undesirable output (Gas/Ton) 

xL
1j  xU

1j  yL
1j  yU

1j  NOx  SO2  CO2  SO3  

bL
1j  bU

1j  bL
2j  bU

2j  bL
3j  bU

3j  bL
4j  bU

4j  

1 1,002,243 1,534,381 4,663,820 5,948,123 3.6 5 1.8 6.6 2338 3015 0 0.1 
2 971,509 1,298,112 4,821,296 5,657,392 3.7 4.4 2.1 4.7 2367 2727 0 0.1 
3 1,331,457 1,831,098 7,220,851 7,699,512 5.3 5.8 2.8 6.7 3478 3631 0 0.1 
4 766,658 1,117,322 3,781,843 4,628,520 2.8 3.7 1.7 4.8 1779 2250 0 0.1 
5 24,213 1,060,942 356,963 3,184,631 0.6 3.2 0.4 2.2 318 2119 0 0 
6 1,045,455 1,283,541 5,339,780 5,975,686 3.8 4.4 1.3 3 2545 2806 0 0 
7 412,442 758,142 1,925,856 2,631,210 1.7 2.3 0.1 1.1 1052 1557 0 0 
8 446,094 1,017,339 1,836,793 4,289,004 1.8 3.6 1.1 4.2 1089 2229 0 0.1 
9 1,244,520 1,820,737 4,222,796 7,935,571 4.3 8 0.2 12.5 2806 4788 0 0.2 
10 1,056,182 1,410,680 5,126,256 6,213,138 3.4 4.4 0.2 3 2262 2802 0 0 
11 311,239 635,257 1,820,209 2,106,015 1.6 1.9 1 3.3 979 1091 0 0.1 
12 204 796,605 515 2,128,410 0 2.6 0 5 3209 1595 0 0.1 
13 1,234,922 2,303,468 4,500,169 9,886,102 5.2 8.3 4.1 11.4 1222 4993 0.1 0.2 
14 422,191 905,874 1,770,332 2,761,553 1.9 2.9 0.4 2.4 3546 1848 0 0 
15 147,683 2,769,634 5,008,772 1,030,008 5.5 8.5 3 9.2 985 5535 0 0.1 
16 161,614 928,637 1,258,570 2,678,996 1.9 4.5 1.4 7.7 3382 2661 0 0.1 
17 1,298,688 1,961,314 4,785,753 5,898,717 5.3 5.7 0.5 4 2338 3828 0 0.1  

Table 4 
Efficiency and ranking the power plants using Models θ*

L and θ*
U, and Models (5), (6) and (20).  

DMU θ*
L  θ*

U  Class eL
dd  eU

dd  Class RCE Rank 

1  0.000727 1 E+ 0.000291 0.7939 E− 0.9495 9 

2  0.000831 1 E+ 0.000356 0.7938 E− 0.9529 8 
3  0.000934 1 E+ 0.000378 0.7086 E− 0.8743 14 

4  0.000790 1 E+ 0.000324 0.8926 E− 0.9610 4 

5  0.000079 1 E+ 0.000037 1 E+ 0.9330 11 
6  0.000894 1 E+ 0.000399 0.5089 E− 0.8763 13 

7  0.000581 1 E+ 0.000243 0.5614 E− 0.9539 7 
8  0.000387 1 E+ 0.000173 1 E+ 0.9804 1 

9  0.000414 1 E+ 0.000222 1 E+ 0.8634 16 

10  0.000860 1 E+ 0.000348 0.4965 E− 0.8890 12 
11  0.000784 1 E+ 0.000275 1 E+ 0.9578 6 

12  0.000037 1 E+ 0.000007 1 E+ 0.9581 5 
13  0.000423 1 E+ 0.000187 1 E+ 0.8677 15 

14  0.000450 1 E+ 0.000187 0.6361 E− 0.9637 3 

15  0.000425 1 E+ 0.000173 1 E+ 0.9422 10 
16  0.000222 1 E+ 0.000144 1 E+ 0.9647 2 

17  0.000587 1 E+ 0.000234 0.6095 E− 0.8246 17  

Fig. 4. Performance measures for the combined-cycle power plant example.  
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presents the results for the pessimistic, optimistic, and robust cross- 
efficiency models. 

Fig. 3 illustrates the cross-efficiency scores of the 50 bank branches 
under evaluation for γ = 0,1,2,3, and4. The constraint γ = γx +γg +γb is 
added to Model (20) to control the uncertainties in the parameters since the 
complexity in Model (20) arises from the level of conservatism in input, 
desirable, and undesirable output data. We also add the constraints γx ≤ m, 
γg ≤ s and γb ≤ k to Model (20) to control the number of imprecise inputs, 
and desirable and undesirable outputs. Model (20) is a non-linear model 
solved by branch-and-reduce optimization navigator (BARON) through 
GAMS. We can separately specify the values of γx, γg and γbin large problems 
to keep the model linear. Fig. 3 shows that the cross-efficiency scores 
decrease as the level of γincreases. As a result, when we exchange the 
optimality with performance, the efficiency of bank branches reduces. 
Therefore, by increasing the perturbation of uncertain data from γ = 0 to 
γ = 4, the efficiency score of a few branches remains close to one. In the 
banking industry, when the uncertainty level increases, a higher price 
should be paid for robustness (Bertsimas & Sim, 2004). 

5.2. Tavanir example 

We now consider calculating efficiency metrics for 17 combined- 
cycle power plants (Khalili-Damghani, Tavana, & Haji-Saami, 2015). 
The input variable is fossil fuels (x1). The output variables are desirable 
electric power (y1), and undesirable SO2 gases (b1), SO3 gases (b2), CO2 
gases (b3), and the NOx gases (b4). Table 3 shows our data intervals for 
the 17 power plants during the six years of study. 

Khalili-Damghani et al. (2015) employ the envelopment form of DEA 
models, under non-increasing and non-decreasing assumptions to eval-
uate the performance of all DMUs in the presence of interval data and 
undesirable outputs. Since the proposed interval models in this paper are 
under the CRS assumption, we apply Models (5), (6), and (20) with a 
transformation vector (w1,w2,w3,w4) = (25,35,20000,0.8) to analyze 
the 17 power plants. Solving Model (A.1) leads to ε* = 1.5× 10− 5. We 
then compare the obtained results from our formulated models with 
those yielded by the interval CRS model l of Khalili-Damghani et al. 
(2015), denoted by 

[
θ*

L, θ
*
U
]
. Table 4 reports the obtained results by 

Models (5), (6), and (20). Fig. 4 illustrates the assumed structure of 

Fig. 5. Efficiency scores obtained from θ*
L and Model (6).  

Fig. 6. Efficiency scores obtained from the optimistic Models θ*
U, (5), and Model (20).  
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inputs and (un)desirable outputs in the application. 
Table 4 shows that the efficiency scores of Model (5) are equal to or 

smaller than those obtained from the optimistic CCR model (θ*
U). The 

efficiency scores for Model (6) are smaller than those for the pessimistic 
CCR model (θ*

L) as expected (see Fig. 5). Table 4 presents the results from 
the models used by Khalili-Damghani et al. (2015), i.e., θ*

L and θ*
U, and 

Models (5), (6), and (20) presented in this study. 
All 17 DMUs are classified as E+ by θ*

L and θ*
U, while using the pro-

posed interval of Models (5) and (6), 8 DMUs are classified as E+and 9 
DMUs are classified as E− . So Models (5) and (6) produce a finer clas-
sification than the model proposed by Khalili-Damghani et al. (2015). 

We rank the power plants with Model (20). We solved Model (20) for 
each γ with a step-length of 0.5 in γ ∈ [0, 6] to calculate the value of 
robust cross-efficiency scores for the DMUs presented in Table 4. 
Because there are six uncertain parameters involved in this assessment, 
we add constraint γ = γx +γg +γb to Model (20) to control the number of 
imprecise inputs, desirable and undesirable outputs. γ = 0 represents no 
data perturbation, and γ = 6 represents maximum data perturbation. 
Fig. 6 displays the efficiency scores of the DMUs under both optimistic 
and pessimistic scenarios along with the mean efficiency scores for each 
γ, corresponding to Models (5), (6), and (20). 

Table 4 shows that the proposed robust cross-efficiency Model (20) 
ranks DMU 8 as the top DMU, and hence we gain higher discriminatory 
power and higher-ranking stability over the interval models. Moreover, 
model (20) linearly ranks the DMUs. 

6. Conclusion and future research directions 

The RO approach provides a framework to study problems in oper-
ations research involving data uncertainty. DEA conventionally handles 
uncertainty differently. Another challenging problem in DEA is to solve 
the problem of the non-unique optimal weights. In this paper, we 
developed two DEA adaptations (an interval approach and a robust 
approach) to rank DMUs characterized by uncertain data and undesir-
able outputs. In addition, we presented an example from the literature 
and a real-world application to compare our method with an interval 
method. This example exhibited the ability of our approach to 
improving discernibility among DMUs. 

Using the interval approach, we proposed an interval DEA model and 
used the RO approach to propose a robust cross-efficiency model to 

handle undesirability and uncertainty problems. The robust cross- 
efficiency model is proposed by combining the three important con-
cepts in DEA, including interval models, cross-efficiency evaluation, and 
the RO approach. Initially, using the proposed interval model, we 
categorized the DMUs into three groups. However, we are not able to 
rank DMUs because in the interval approach, the efficiency value is not 
certain and lies in an interval. To solve this problem, we used the RO 
approach in the presence of uncertain data and undesirable output 
simultaneously. We then integrated the RO approach with cross- 
efficiency evaluation and solved the non-unique optimal weights, and 
presented a full ranking preference for of the DMUs. It should be noted 
that one of the most important advantages of the proposed robust model 
is the ability to control the number of uncertain data by adjusting the 
level of conservatism against the data uncertainty. A case study and a 
comparative example are presented to show the applicability of the 
proposed robust model. Developing robust DEA models in the presence 
of non-discretionary factors and uncertain data and applying the RO 
approach to handle negative data in DEA models can be considered for 
future works. 
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Appendix A 

The following model provides a suitable value for the epsilon in Model (3): 

ε*
d = maxεd  

s.t.
∑m

i=1
vidxid = 1  

∑s

r=1
urdyrj +

∑k

t=1
wtdb

−

tj −
∑m

i=1
vidxij ≤ 0, j = 1, ..., n  

εd −
∑s

r=1
urdyrd ≤ 0 (A1)  

εd −
∑k

t=1
wtdb

−

td ≤ 0  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k 
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Theorem A.1.. Model (A.1) has a positive and bounded optimal objective value. 

Proof.. Initially, we will show that Model (A.1) is feasible. It is easy to verify that (vd, ud,wd, εd) = (1/xcdec, 0,0, 0) is a feasible solution for Model 
(A.1) where xcd = max

i
xid and the vector ec has 1 in the cth position and 0 elsewhere. Now, we have to show that the objective value of Model (A.1) is 

positive. Suppose that ε*
d = 0 and consider the following dual problem of Model (A.1): 

θ* = minθ  

s.t.

∑n

j=1
λjxij ≤ θxid , i = 1, ...,m,

∑n

j=1
λjyrj ≥ μyrd, r = 1, ..., s,

∑n

j=1
λjb

−

tj ≥ πb
−

td, t = 1, ..., k,

μ+ π = 1, (A2)  

λj ≥ 0, j = 1, ..., n  

μ ≥ 0  

π ≥ 0 

where θ, λ, μ and π are the dual variables associated with the first four constraint set of Model (A.1), respectively. Reference to the strong duality 
theorem in linear programming, we obtain θ* = ε*

d = 0. Moreover, from the first constraint set of Model (A.2), we have λj = 0, ∀j = 1, ..., n, which 
taking the second and third constraint sets into consideration leads to μ = π = 0. However, this solution contradicts the last constraint μ+π = 1, and 
therefore an optimal objective value of Model (A.1) is positive. To show the boundedness of Model (A.1), consider the feasible solution λd = 1

2, λj∕=d =

0, j = 1, ..., n and θ = μ = π = 1
2 of the dual Model (A.2). Given the provided feasible solution for Model (A.2), which is a minimization problem, we 

have 0 < θ* ≤ 1
2 and accordingly, the model is feasible and bounded. Regarding the strong duality theorem, Model (A.1) has bounded optimal objective 

value, i.e., 0 < ε* ≤ 1
2 which completes the proof. □ 

Theorem A.2.. Model (3) is feasible if and only if ε ≤ ε*
d. 

Proof.. Let 
(

v
−

d, u
−

d,w
−

d, ε*
d

)

be an optimal solution of Model (A.1). Furthermore, let α− =

∑s
r=1

u
−

rdyrd

ε*
d 

and β
−

=

∑k
t=1

w
−

td b
−

td

ε*
d

. It is clear that 
(

α− , β
−

, v
−

d, u
−

d,w
−

d

)

is 
a feasible solution for Model (3) for all ε ≤ ε*

d. What is left is to prove that Model (3) is infeasible for ε > ε*
d. Suppose, contrary to our claim, (α, β, vd,

ud,wd) is a feasible solution for ε > ε*
d. Hence, (vd, ud,wd, ε) is a feasible solution for Model (A.1) with a larger objective value than 

(

v
−

d, u
−

d,w
−

d, ε*
d

)

, 

which contradicts the optimality condition. As a result, Model (3) is infeasible for ε > ε*
d, which completes the proof. □ 

Appendix B 

We formulate the following model for identifying a suitable value for ε*U
d in Model (5): 

ε*U
d = Max εU

d  

s.t.
∑m

i=1
vidxL

id = 1  

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj ≥ 0, j = 1, ..., n, j ∕= d  

∑m

i=1
vidxL

id −
∑s

r=1
urdyU

rd −
∑k

t=1
wtdb

− U

td ≥ 0 (B1)  

∑s

r=1
urdyU

rd − εU
d ≥ 0  

∑k

t=1
wtdb

− U

td − εU
d ≥ 0  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k 
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In Model (5), the existence of weight constraints 
∑s

r=1urdyU
rd ≥ αε*U

d and 
∑k

t=1wtdb
− U

td ≥ βε*U
d for DMUd in the upper-bound results in the corresponding 

weights assigned to desirable and undesirable outputs not being all equal to zero, and also reduces the differences between the weighted desirable and 
undesirable outputs. We have always ε*U

d > 0 and to obtain a set of {ε*U
1 , ...,ε*U

n }, Model (B.1) should be solved ntimes, once for each unit. Analogously, 
an epsilon model can be extended for Model (6). 

Appendix C 

We suggest the following model to find the epsilon in Model (14): 

ε*R
d = Max εR

d  

s.t.
∑m

i=1
vidxL

id + αx
d = 1  

∑m

i=1
vidxU

ij −
∑s

r=1
urdyL

rj −
∑k

t=1
wtdb

− L

tj − αx
j − αg

j − αb
j ≥ 0, j = 1, ..., n, j ∕= d  

∑m

i=1
vidxL

id −
∑s

r=1
urdyU

rd −
∑k

t=1
wtdb

− U

td +αx
d + αg

d +αb
d ≥ 0 (C1)  

∑s

r=1
urdyU

rd − αg
d − εR

d ≥ 0  

∑k

t=1
wtdb

− U

td − αb
d − εR

d ≥ 0  

vid ≥ 0, i = 1, ...,m  

urd ≥ 0, r = 1, ..., s  

wtd ≥ 0, t = 1, ..., k  

Appendix D 

Theorem D.1.. Model (20) is always feasible. 

Proof:. It is sufficient to introduce a feasible solution to the model. Let’s assume that ̂zx
j = ẑg

j = ẑb
j = 0(j = 1, ..., n). In this case, γx

j = γg
j = γb

j = 0(j 
= 1, ..., n), and Rij = prj = qtj = 0(∀i, r, t, j = 1,⋯., n). Furthermore, let’s assume that ωid = μrd = φtd = 0(∀i, r, t), for constraints related to j = 1, ...,
n, j ∕= d and suppose that vid = 1∑m

i=1
xL

id 
and urd = α∑s

r=1
yU

rd
,wtd =

β
∑k

t=1
b
− U

td

(∀i,∀r, ∀t) for the DMU under evaluation, i.e., d. Substituting these assumptions 

into Constraint (26a) yields: 

∑m

i=1

1
∑m

i=1xL
id

xL
id + 0 = 1 (D1) 

Which always holds. In such a setting, the Constraints (18d) and (18e) are satisfied as well. Besides, let’s assume that sj = ξj = zj = 0(∀j). With this 
assumption, Constraints (19d), (19e), and (20b) are established. Moreover, the provided solution satisfies the Constraints (19b) and (20a). From 
Constraint (19a), we have: 
∑s

r=1
urdyU

rd +
∑k

t=1
wtdb

− U

td = ER
dd (D3) 

Therefore, for Constraint (27c), we have: 

ER
dd

(
∑m

i=1
vidxL

id + 0

)

−
∑s

r=1
urdyU

rd − 0 −
∑k

t=1
wtdb

− U

td + 0 − ξd = 0 (D4) 

Substituting (D.3) in (D.4), Constraint (19c) is satisfied. Similarly, Constraint (20b) holds, and we have ξd = 1 − ER
dd. At this point, since γx

j = γg
j =

γb
j = 0(j = 1, ..., n), we can rewrite Constraints (18f), (18g) and (18h) as follows: 

xU
ij − xL

ij = 0, ∀i, j = 1, ..., n,

yU
rj − yL

rj = 0,∀r, j = 1, ..., n,

b
− U

tj − b
− L

tj = 0, ∀t, j = 1, ..., n 

Therefore, Constraints (18f), (18g) and (18h), also hold, and this completes the proof. □ 
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Theorem D.2.. The objective function value of the robust Model (20) is smaller than or equal to the objective function value of the optimistic Model (12). 

Proof:. Since the objective functions for both Models (12) and (20) are of the form max
∑n

j=1ξj, consider the third constraint in Model (12) as well as 
constraint (20a). Then, summing up the third constraint in Model (12), we have: 

∑n
j = 1
j ∕= d

ξj =
∑m

i=1
vid(
∑n

j = 1
j ∕= d

xU
ij ) −

∑s

r=1
urd(
∑n

j = 1
j ∕= d

yL
rj) −

∑k

t=1
wtd(

∑n
j = 1
j ∕= d

b
− L

tj) (D5) 

Moreover, summing up Constraint (20a), we have: 
∑n

j=1
j∕=d

ξj =
∑m

i=1
vid(
∑n

j=1
j∕=d

xU
ij )−

∑s

r=1
urd(
∑n

j=1
j∕=d

yL
rj)−

∑k

t=1
wtd(

∑n
j=1
j∕=d

b
− L

tj)− (
∑n

j=1
j∕=d

ẑx
j γx

j +
∑n

j=1
j∕=d

∑m

i=1
Rij+

∑n
j=1
j∕=d

ẑg
j γg

j +
∑n

j=1
j∕=d

∑s

r=1
prj 

+
∑n

j=1
j∕=d

ẑb
j γb

j +
∑n

j=1
j∕=d

∑k

t=1
qtj) (D6) 

Since Rij,prj,qtj, ẑ
x
j , ẑ

g
j , ẑ

b
j ,γx

j ,γ
g
j and γb

j ∀i,∀r,∀j∕=d all have positive values; clearly, Equation (D.6) is smaller than Equation (D.5). □ 
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