
STOCHASTIC ANALYSIS AND APPLICATIONS
, VOL. , NO. , –
http://dx.doi.org/./..

A redundancy detection algorithm for fuzzy stochastic
multi-objective linear fractional programming problems

Rashed Khanjani Shiraza, Vincent Charlesb, Madjid Tavanac,d, and Debora Di Caprioe,f

aSchool of Mathematics Science, University of Tabriz, Tabriz, Iran; bBuckingham Business School, University of
Buckingham, Buckingham, UK; cBusiness Systems and Analytics Department, Distinguished Chair of Business
Analytics, La Salle University, Philadelphia, Pennsylvania, USA; dBusiness Information Systems Department,
Faculty of Business Administration and Economics, University of Paderborn, Paderborn, Germany; eDepartment
of Mathematics and Statistics, York University, Toronto, Canada; fPolo Tecnologico IISS G. Galilei, Bolzano, Italy

ARTICLE HISTORY
Received  September 
Accepted  October 

KEYWORDS
Redundancy detection;
fuzzy; stochastic;
multi-objective; fractional
programming

MATHEMATICS SUBJECT
CLASSIFICATION
C; C; C; C

ABSTRACT
The computational complexity of linear and nonlinear programming
problems depends on the number of objective functions and con-
straints involved and solving a large problem often becomes a difficult
task. Redundancy detection and elimination provides a suitable tool
for reducing this complexity and simplifying a linear or nonlinear pro-
gramming problem while maintaining the essential properties of the
original system. Although a large number of redundancy detection
methods have been proposed to simplify linear and nonlinear stochas-
tic programming problems, very little research has been developed for
fuzzy stochastic (FS) fractional programming problems. We propose an
algorithm that allows to simultaneously detect both redundant objec-
tive function(s) and redundant constraint(s) in FS multi-objective lin-
ear fractional programming problems. More precisely, our algorithm
reduces the number of linear fuzzy fractional objective functions by
transforming them in probabilistic–possibilistic constraints character-
ized by predetermined confidence levels. We present two numerical
examples to demonstrate the applicability of the proposed algorithm
and exhibit its efficacy.

1. Introduction

In mathematical programming, a constraint or a variable is redundant if it does not define
the solution space, that is, removing the constraint or the variable, the set of feasible solu-
tions remains unaltered. Even though the presence of redundant constraints/variables does
not alter the optimal solutions, they usually involve extra computational effort. Thus, redun-
dancy allows to reduce a programming problem to a simpler one from the computational
viewpoint without losing any relevant information or property.

Redundancy may occur in the modeling phase of a programming problem and is
mostly due to errors in the data input or to the attempt of not omitting any relevant con-
straints/variables. As a consequence, redundancy is quite common in practical mathematical
programming model which makes the development of redundancy detection algorithms a
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crucial tool in order to obtain efficient solutions to real-life problems. Indeed, redundancy
detection algorithms apply to several branches of mathematical programming including lin-
ear, integer, nonlinear, and stochastic fractional programming, which have become one of
the main planning tools in engineering, business, finance and economics among other dis-
ciplines [2, 10, 23]. In particular, fractional programming and stochastic programming have
been used tomodel problems related to investment portfolio, strategic investments, riskman-
agement, production planning and scheduling, supply chain optimization, manpower plan-
ning, electricity generation capacity, energy planning, environmental and pollution control,
telecommunications, and so on [1, 36, 41].

We include below a short excursus of the main approaches that have been proposed to
identify and remove redundant constraints/variables inmathematical programming, from LP
to stochastic fractional programming.

In themid 1970s, Gal [17] presented a note on redundancy and linear parametric program-
ming, followed by Gal and Laberling [18], who presented an algorithm to identify redundant
objective functions in a linear vector maximization problem. Later on, Uthariaraj et al. [42]
and Jacob et al. [22] proposed algorithms to identify a priori redundant constraints when
solving LP problems.

Fractional programming has been studied by many researchers, including Charnes and
Cooper [6], Schaible [35], Pal and Basu [32], and Pal et al. [33], among others. Fractional
programming deals with the optimization of one or more ratios of functions subject to con-
straints. Each objective function takes the form of a ratio whose numerator and denominator
are both linear. Linear fractional objectives have many applications in financial planning.

In themid-1950s, Dantzig [14] andCharnes andCooper [7] first proposed to use stochastic
programming to deal with uncertainty in optimization problems. Uncertainty in stochastic
programming is usually characterized by the fact that the parameters have known probability
distributions. The literature on this topic has been increasingly enriched by the contributions
of different disciplines such as operations research and probability theory ([3, 4, 16, 37]). A
classification of stochastic programming problems is given by Liu [27], who introduces the
following three groups: 1) the expected value models; 2) chance-constrained programming
(CCP)models ([5, 19, 20, 31, 38]); and 3) dependent-chance programmingmodels ([26, 28]).

Recently, some more results have been achieved in stochastic fractional programming.
Charles and Dutta [9] proposed an algorithm that identifies redundant objective functions
in multi-objective stochastic fractional programming problems, while Charles et al. [10]
provided an algorithm that identifies redundant objective function(s) and redundant con-
straint(s) simultaneously in multi-objective nonlinear stochastic fractional programming
problems.

Despite the large literature existing on linear and nonlinear stochastic fractional program-
ming, not much attention has been paid to fuzzy stochastic (FS) fractional programming
problems.

Ever since its introduction by Zadeh [40], fuzzy set theory has been developing very rapidly
and has been applied to a wide variety of real problems. In particular, the possibility theory
described by Zadeh [39] and herein related to fuzzy sets and systems provides a homogeneous
framework for the representation of both imprecise and uncertain information. This aspect
has been subsequently developed by many researchers; see, among others, [12, 13].

A parallel approach to fuzziness, often considered, is represented by randomness. Indeed,
in many complex real-world problems, decision makers (DMs) may encounter a hybrid
uncertain environment where fuzziness coexists with randomness. The observed values of
data in real-world situations are often inexact, incomplete, vague, ambiguous, or imprecise.
Several researchers have combined fuzziness and randomness to model uncertainty. As a
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consequence, many notions such as those of the probability of fuzzy events [39], linguistic
probabilities [11], fuzzy random (FR) variables [24, 25, 29], and probabilistic sets [21] have
been introduced in the literature. In particular, the concept of a FR variable provides a useful
tool to model phenomena where both fuzziness and randomness play a role simultaneously.

In this article, we consider situations where the parameters are estimated by fuzzy vari-
ables whose means are Gaussian random variables and, hence, can be represented by FR vari-
ables. We build on the redundancy detection algorithms defined by Charles and Dutta [9]
and Charles et al. [10] for stochastic fractional programming problems to develop an algo-
rithm that allows to identify and remove redundant objective functions in multi-objective
linear FS fractional programming problems. We introduce a probabilistic–possibilistic con-
strained version of multi-objective fractional programming and rely on the properties of FR
variables to operate the necessary conversions of constraints and objective functions to deter-
ministic forms. Hence, the number of linear FS fractional objective functions is reduced by
transforming them in probabilistic–possibilistic constraints which are defined by predeter-
mined confidence levels.

The remainder of the paper is organized as follows. In section 2, we review some basic
concepts and definitions related to fuzzy variables and FR variables while, in section 3, we
describe the generic multi-objective fractional programming model and its FS version intro-
ducing the probabilistic–possibilisticmodel. In section 4, we describe how to obtain the deter-
ministic equivalents of probabilistic–possibilistic constraints and convert objective functions
into deterministic constraints. In section 5, we present the proposed redundancy detection
algorithm. In section 6, we present two numerical examples demonstrating the applicabil-
ity and the efficacy of the proposed redundancy detection algorithm. Finally, we present our
conclusions in section 7.

2. Background

Definition 1. LetX be a universal set andA ⊆ X . The fuzzy subset Ã ofX is defined bymeans
of a membership function μÃ : X → [0, 1] assigning to each element x ∈ X a real number
μÃ(x) ∈ [0, 1] which measures the degree of membership of x in A.

Definition 2 ([11]). A fuzzy interval of L−R type is a tuple of the form Ã = (α,m1 , m2, β)LR,
where α, β,m1,m2 are nonnegative real values, whose membership function is defined as
follows:

μÃ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
(
m1 − x
α

)
, if m1 − α < x < m1

1, if m1 ≤ x ≤ m2

R
(
x − m2

β

)
, if m2 < x < m2 + β

. (1)

The valuesα andβ are the left and right spreads, respectively, whilem1 andm2 are themean
values of Ã. The letters L and R stand for non-increasing continuous functions of [0, 1] into
[0, 1] such that L(0) = R(0) = 1 and L(1) = R(1) = 0, called the left and right functions,
respectively.

Henceforth, we will assume that

L(x) = R(x) =
{
1 − x, 0 ≤ x ≤ 1
0, otherwise.
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Figure . γ -cut of a generic L–R fuzzy number.

If, in particular, m1 = m2 = m, the fuzzy interval of L−R type Ã = (α,m, β)LR =
(α,m, β) is also called (triangular) fuzzy number.

Definition 3. Let Ã be a fuzzy interval of L−R type. The support of Ã is the crisp set
supp(Ã) = {x|μÃ(x) ≥ 0}. The γ -cut of Ã, denoted by Aγ , is the crisp set Aγ = {x|μÃ(x) ≥
γ }.

As shown in Figure 1, the γ -cut of a L−R fuzzy interval Ã = (α,m1,m2, β)LR, where γ ∈
[0, 1], is a closed interval defined as follows:

Aγ = {x|μÃ(x) ≥ γ } = [
AL
γ ,A

R
γ

] = [
m1 − αL−1(γ ), m2 + βR−1(γ )

]
,

where AL
γ and AR

γ are the left and right extreme points, respectively.

Definition 4 (Fuzzy Arithmetic) ([11]). Let Ã = (α,m, β)LR and B̃ = (ᾱ, m̄, β̄ )LR be two
positive fuzzy numbers. Then:

Addition : (α,m, β)LR + (ᾱ, m̄, β̄ )LR = (α + ᾱ,m + m̄, β + β̄ )LR

Subtraction : (α,m, β)LR − (ᾱ, m̄, β̄ )LR = (α + β̄,m − m̄, β + ᾱ)LR

Definition 5 (Extension Principle) ([42]). Assume that X is the Cartesian product of r uni-
verses (r is a real number), that is, X = X1 × · · · × Xr, and that Ã1, . . . , Ãr are r fuzzy sub-
sets of X1, . . . ,Xr, respectively. Let f be a mapping from X to a universe Y , that is, y =
f (x1, . . . , xr). The extension principle enables us to define a fuzzy subset B̃ of Y by using
the following membership function:

μB̃(y) =
⎧⎨
⎩

sup
(x1,...,xr )∈ f−1(y)

min
{
μÃ1

(x1), . . . , μÃr
(xr)

}
, f −1(y) �= ∅

0, otherwise
,

where f −1 denotes the inverse of f .
Dubois and Prade [11] modified the extension principle and used the algebraic sum and

product instead of sup and min, respectively.

Definition 6. A fuzzy variable ξ is a mapping from an abstract space onto the real line.



44 R. K. SHIRAZ ET AL.

Definition 7 ([39, 42]). Let (�, P(�), Pos) be a possibility space where� is a nonempty set
involving all possible events, and P(�) is the power set of �. For every A ∈ P(�), there is a
nonnegative number Pos(A), so-called a possibility measure, satisfying the following axioms:

(i) Pos(∅) = 0, Pos(�) = 1;
(ii) for every A, B∈ P(�), A ⊆ B implies Pos(A) ≤ Pos(B).
(iii) for every subset {Aw : w ∈ W} ⊆ P(�), Pos(∪wAw) = SupwPos(Aw).
The elements of P(�) are also called fuzzy events.

Definition 8. Let ξ be a fuzzy variable on the possibility space (�, P(�), Pos), μξ : 
 →
[0, 1] be the membership function of ξ and r be a real number. The possibility of the fuzzy
event {ξ ≥ r} is given by Pos{ξ ≥ r} = Supt≥r μξ (t ).

Definition 9 ([30]). A FR variable is a random variable ξ on a probability space (�,A, Pr)
whose values are fuzzy numbers.

Each value ξ (ω) (with ω ∈ �) taken by a FR variable has a membership μξ(ω). In partic-
ular, a FR variable of L−R type takes values in the set of all fuzzy numbers of L−R type. In
the following, we will consider only this kind of FR variables. The associated membership
functions are described below.

μξ(ω)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
(
m (ω)− x

α

)
, x ≤ m (ω) ,

1 x = m(ω),

R
(
x − m (ω)

β

)
, x ≥ m (ω) .

wherem(ω) is the normally distributed random variable.
Figure 2 shows a triangular FR variable, that is, a triangular fuzzy variable whose mean

value is a normally distributed random variable (m̄ ∼ N(μ, σ 2)).

Proposition 1 ([29]). Let ξ be a FR vector and, for every j = 1, 2, . . . , n, let g j be a real-
valued continuous function. Then, the possibility Pos{g j(ξ (ω)) ≤ 0, j = 1, . . . , n} is a random
variable.

Figure . A generic L–R type FR variable.
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Proposition 2 ([43]). Let Ã1 and Ã2 be two independent fuzzy numbers with continuous mem-
bership functions. For a given confidence level γ ∈ [0, 1], we have:

Pos
{
Ã1 ≥ Ã2

}
≥ γ ⇔ AR

1,γ ≥ AL
2,γ ,

where, for l = 1, 2, AL
l,γ and A

R
l,γ are the left and right extreme points of the γ -cut [AL

l,γ , A
R
l,γ ],

respectively. Pos{Ã1 ≥ Ã2} represents the degree of possibility that Ã1 ≥ Ã2.

3. Multi-objective fuzzy stochastic fractional programming

In this section, we develop an imprecise fractional programming formulation to deal with
the randomness of fuzzy parameters in a possibility space (�, P(�), Pos). First, we define a
generic multi-objective fractional programming model. Hence, we move to a multi-objective
FS fractional programming setting introducing the probability–possibility constrained pro-
gramming (PPCP) model. Note that, in the following, we will also use prob–pos for short.

The generic multi-objective fractional programming model is defined as follows:

Max

⎡
⎣∑n

j=1
˜̄c1 jx j + ˜̄α1∑n

j=1
˜̄d1 jx j + ˜̄

β1

,

∑n
j=1

˜̄c2 jx j + ˜̄α2∑n
j=1

˜̄d2 jx j + ˜̄
β2

, . . . ,

∑n
j=1

˜̄cmjx j + ˜̄αm∑n
j=1

˜̄dmjx j + ˜̄
βm

⎤
⎦

s.t.
n∑
j=1

˜̄a(1)r j x j ≤ ˜̄b(1)r , r = 1, 2, . . . , s,
n∑
j=1

a(2)r j x j ≤ b(2)r , r = 1, 2, . . . , s,

x j ≥ 0, j = 1, 2, . . . , n.

(2)

Where
• ˜̄ci j, ˜̄di j, ˜̄αi, ˜̄

βi ˜̄a(1)r j and ˜̄b(1)r are FR variables for every i = 1, . . . ,m, every j = 1, . . . , n and
every r = 1, . . . , s;
• a(2)r j and b(2)r are deterministic parameters for every j = 1, . . . , n and every r = 1, . . . , s.
Model (2) can be rewritten as amulti-objective FS fractional programming problem, which

we will refer to as PPCP model, as follows:

Max [λ1, λ2, ..., λm]

s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr

⎡
⎣Pos

⎡
⎣∑n

j=1
˜̄ci jx j + ˜̄αi∑n

j=1
˜̄di jx j + ˜̄

β i

≥ λi

⎤
⎦ ≥ δi

⎤
⎦ ≥ γi, i = 1, 2, . . . ,m,

Pr

[
Pos

[
n∑
j=1

˜̄a(1)r j x j ≤ ˜̄b(1)r

]
≥ ur

]
≥ pr, r = 1, 2, . . . , s,

n∑
j=1

a(2)r j x j ≤ b(2)r , r = 1, 2, . . . , s,

x j ≥ 0, j = 1, 2, . . . , n.

(3)
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Where
• ˜̄ci j, ˜̄di j, ˜̄αi, ˜̄

βi, ˜̄a(1)r j and ˜̄b(1)r are FR variables for every i = 1, . . . ,m, every j = 1, . . . , n
and every r = 1, . . . , s;
• a(2)r j and b(2)r are deterministic parameters for every j = 1, . . . , n and every r = 1, . . . , s;
• δi and γi, with i = 1, . . . , m, and ur and pr, with r = 1, 2, . . . , s, are the predetermined
confidence levels.

Note that:

S =
⎧⎨
⎩x = (x1, . . . , xn)|∀r = 1, . . . , s,

n∑
j=1

˜̄a(1)r j x j ≤ ˜̄b(1)r and

n∑
j=1

a(2)r j x j ≤ b(2)r , ∀ j = 1, . . . , n, x j ≥ 0

⎫⎬
⎭

is a nonempty, convex and compact subset of 
n.

Recall that Pos[·] denotes the possibility of the event described in [·], while Pr[·] denotes
the probability of the event in [·].

4. Deterministic equivalents and conversions

4.1. Deterministic equivalents of probabilistic–possibilistic constraints

One way to solve the prob–pos constrainedmulti-objective FS fractional programming prob-
lem described by model (3), that is, the PPCP model, is to convert its constraints into their
respective crisp equivalents.

For every j = 1, . . . , n and every r = 1, . . . , s, the variable ˜̄a(1)r j appearing in the second
set of constraints of PPCP model (3) is assumed to be a FR variable. Thus, ˜̄a(1)r j can be written
as ˜̄a(1)r j = (αr j, ā(1)r j , βr j)LR,where, for every j = 1, . . . , n and every r = 1, . . . , s, ā(1)r j , αr j and
βr j stand for the center value, the left tail and the right tail, respectively. In particular, ā(1)r j ∼
N(a(1)r j , σ

2
r j), where a

(1)
r j denotes the mean and σ 2

r j the variance.

Theorem1. Let ˜̄a j = (aαj , amj , a
β
j )LR, with j = 1, . . . , n, and ˜̄b = (bα, bm, bβ )LR be FRnum-

bers such that amj ∼ N(a j, σ
2
j ) and bm ∼ N(b, σ̂ 2) have a normal distribution. Let u and p be

two predetermined confidence levels. The following are equivalent:
(a) Pr [Pos[

∑n
j=1

˜̄a jx j ≤ ˜̄b] ≥ u] ≥ p

(b)
∑n

j=1 (a j − L−1(u)aαj ) x j +�−1(p)
√∑n

j=1 σ
2
j x2j + σ̂ 2 ≤ b+ R−1(u)bβ .

Proof. By Definition 2, we can assume the FR numbers ˜̄a j, with j = 1, . . . , n, and ˜̄b to be
characterized, respectively, by the following membership functions:

For every j = 1, . . . , n,

μ ˜̄a j (t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
L

(
amj − t
aαj

)
, if amj − aαj < t ≤ amj

R

(
t − amj
aβj

)
, if amj ≤ t < amj + aβj

(4)
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and

μ ˜̄b(t ) =

⎧⎪⎪⎨
⎪⎪⎩
L
(
bm − t
bα

)
, if bm − bα < t ≤ bm

R
(
t − bm

bβ

)
, if bm ≤ t < bm + bβ

(5)

�

Using the extension principle (see definition 5), the fuzzy number
∑n

j=1
˜̄a jx j, where x j ≥ 0

for every j = 1, . . . , n, can be associated with the following membership function:

μ∑n
j=1

˜̄a jx j (t ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L

(∑n
j=1 a

m
j x j − t∑n

j=1 aαj x j

)
, if

n∑
j=1

amj x j −
n∑
j=1

aαj x j < t ≤
n∑
j=1

amj x j

R

(
t − ∑n

j=1 a
m
j x j∑n

j=1 a
β
j x j

)
, if

n∑
j=1

amj x j ≤ t <
n∑
j=1

amj x j +
n∑
j=1

aβj x j

(6)

Therefore,
∑n

j=1
˜̄a jx j corresponds to the triple (

∑n
j=1 a

α
j x j,

∑n
j=1 a

m
j x j,

∑n
j=1 a

β
j x j)LR,

while the following intervals describe the u-cut (see Definition 3) of
∑n

j=1
˜̄a jx j and

˜̄b,
respectively:

⎡
⎣
⎛
⎝ n∑

j=1

˜̄a jx j

⎞
⎠

L

u

,

⎛
⎝ n∑

j=1

˜̄a jx j

⎞
⎠

R

u

⎤
⎦ =

⎡
⎣ n∑

j=1

amj x j − L−1(u)
n∑
j=1

aαj x j,

n∑
j=1

amj x j + R−1(u)
n∑
j=1

aβj x j

⎤
⎦

[( ˜̄b
)L
u
,
( ˜̄b
)R
u

]
= [

bm − L−1(u)bα, bm + R−1(u)bβ
]
.

By Proposition 2, the constraint Pr[Pos[
∑n

j=1
˜̄a jx j ≤ ˜̄b] ≥ u] ≥ p is equivalent to the

following:

Pr

⎡
⎣
⎛
⎝ n∑

j=1

˜̄a jx j

⎞
⎠

L

u

≤
( ˜̄b
)R
u

⎤
⎦ ≥ p,

which, in turn, is equivalent to:

Pr

⎡
⎣bm + R−1(u)bβ ≥

n∑
j=1

(
amj − L−1(u)aαj

)
x j

⎤
⎦ ≥ p.
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Letting h̃ = ∑n
j=1 (a

m
j − L−1(u)aαj )x j − bm − R−1(u)bβ , we have

Pr[h̃ ≤ 0] ≥ p.

Obviously, h̃ also has a normal distribution with:

μh̃ = E(h̃) =
n∑
j=1

(
a j − L−1(u)aαj

)
x j − b− R−1(u)bβ and σ 2

h̃
=

n∑
j=1

σ 2
j x

2
j + σ̂ 2.

Finally, we claim that:

Pr[h̃ ≤ 0] ≥ p ⇔ E[h̃] +�−1(p)σh̃ ≤ 0,

where�−1 is the inverse of the CDF.
In fact:

Pr[h̃ ≥ 0] = Pr

[
h̃ − E[h̃]
σh̃

≥ −E[h̃]
σh̃

]
= Pr

[
E[h̃] − h̃
σh̃

≤ E[h̃]
σh̃

]
= �

(
E[h̃]
σh̃

)
.

From which it follows that:

Pr[h̃ ≤ 0] ≥ p ⇔ 1−Pr[h̃ ≥ 0] ≥ p ⇔ Pr[h̃ ≥ 0] ≤ 1 − p ⇔ �

(
E[h̃]
σh̃

)
≤ 1 − p

⇔ E[h̃]
σh̃

≤ �−1(1 − p) ⇔ E[h̃]

≤ �−1(1 − p)σh̃ ⇔ E[h̃] −�−1(1 − p)σh̃ ≤ 0 ⇔ E[h̃]

+�−1(p)σh̃ ≤ 0.

Therefore, Pr[h̃ ≤ 0] ≥ p is equivalent to

n∑
j=1

(
a j − L−1(u)aαj

)
x j +�−1(p)

√√√√ n∑
j=1

σ 2
j x2j + σ̂ 2 ≤ b+ R−1(u)bβ.

4.2. Conversion of objective functions into deterministic constraints

In this section, we use proposition 2 and theorem 1 to obtain a deterministic programming
version of model (3). The main feature of the model is that it takes into account the proba-
bility distribution of the objective functions by maximizing the lower allowable limit of the
objective functions subject to chance constraints where both the numerator and denominator
coefficients are FR variables. As in section 4.1, we will work with the PPCP model (3), that
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is:

Max [λ1, λ2, ..., λm]

s.t. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr

⎡
⎢⎢⎢⎣Pos

⎡
⎢⎢⎢⎣
∑n

j=1
˜̄ci jx j + ˜̄αi

n∑
j=1

˜̄di jx j + ˜̄
β i

≥ λi

⎤
⎥⎥⎥⎦ ≥ δi

⎤
⎥⎥⎥⎦ ≥ γi, i = 1, 2, . . . , m,

Pr

[
Pos

[
n∑
j=1

˜̄a(1)r j x j ≤ ˜̄b(1)r j

]
≥ ur

]
≥ pr, r = 1, 2, . . . , s,

n∑
j=1

a(2)r j x j ≤ b(2)r , r = 1, 2, . . . , s,

x j ≥ 0, j = 1, 2, . . . , n,

(7)

Where
• ˜̄ci j, ˜̄di j, ˜̄αi, ˜̄

βi, ˜̄a(1)r j and ˜̄b(1)r are FR variables for every i = 1, . . . ,m, every j = 1, . . . , n
and every r = 1, . . . , s;
• a(2)r j and b(2)r are deterministic parameters for every j = 1, . . . , n and every r = 1, . . . , s.
More precisely, for every i = 1, . . . ,m and every j = 1, . . . , n, let

˜̄ci j =
(
cαi j, c

m
i j , c

β
i j

)
LR
,

˜̄di j =
(
dαi j, d

m
i j , d

β
i j

)
LR
, ˜̄αi =

(
ααi , α

m
i , α

β
i

)
LR
,

˜̄
βi =

(
βαi , β

m
i , β

β
i

)
LR
,

where cmi j , dm
i j , αm

i and βm
i are normally distributed, that is, cmi j ∼ N(ci j, σ 2

ci j) ,
dm
i j ∼ N(di j, σ 2

di j),α
m
i ∼ N(αi, σ 2

αi), and βm
i ∼ N(βi, σ 2

βi). Hence, ci j, αi (resp. di j, βi)
and σ 2

ci j, σ
2
αi(resp. σ 2

di j, σ
2
βi) are the mean and the variance of cmi j , αm

i (resp. dm
i j , β

m
i ),

respectively.
For every i = 1, . . . ,m, the unknown parameter λi, which is less than or equal to∑n
j=1

˜̄ci jx j+ ˜̄αi∑n
j=1

˜̄di jx j+ ˜̄
βi
, satisfies the following inequality:

n∑
j=1

˜̄ci jx j + ˜̄αi − λi

⎛
⎝ n∑

j=1

˜̄di jx j + ˜̄
β i

⎞
⎠ ≥ 0.

By proposition 2, the ith inequality of the first set of constraints in model (7) is equivalent
to the following inequality:

Pos

⎡
⎣ n∑

j=1

˜̄ci jx j + ˜̄αi − λi

⎛
⎝ n∑

j=1

˜̄di jx j + ˜̄
β i

⎞
⎠ ≥ 0

⎤
⎦ ≥ δi

⇔ λi

⎡
⎣ n∑

j=1

(
dm
i j − L−1 (δi) dαi j

)
x j + βm

i − L−1 (δi) β
α
i

⎤
⎦

−
n∑
j=1

(
cmi j + R−1 (δi) cβi j

)
x j ≤ αm

i + R−1 (δi) α
β
i .
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For every i = 1, . . . ,m, let

f̃i = λi

⎡
⎣ n∑

j=1

(
dm
i j − L−1 (δi) dαi j

)
x j + βm

i − L−1 (δi) β
α
i

⎤
⎦

−
n∑
j=1

(
cmi j + R−1 (δi) cβi j

)
x j − αm

i − R−1 (δi) α
β
i .

The expected value and variance of f̃i are obtained as follows:

E[ f̃i] = E

⎡
⎣λi

⎡
⎣ n∑

j=1

(
dm
i j − L−1 (δi) dαi j

)
x j + βm

i − L−1 (δi) β
α
i

⎤
⎦

−
n∑
j=1

(
cmi j + R−1 (δi) cβi j

)
x j − αm

i − R−1 (δi) α
β
i

⎤
⎦

= λi

⎡
⎣ n∑

j=1

(
di j − L−1 (δi) dαi j

)
x j + βi − L−1 (δi) β

α
i

⎤
⎦

−
n∑
j=1

(
ci j + R−1 (δi) cβi j

)
x j − αi − R−1 (δi) α

β
i

Var[ f̃i = Var

⎡
⎣λi

⎡
⎣ n∑

j=1

(
dm
i j − L−1 (δi) dαi j

)
x j + βm

i − L−1 (δi) β
α
i

⎤
⎦

−
⎛
⎝ n∑

j=1

(
cmi j + R−1 (δi) cβi j

)
x j + αm

i + R−1 (δi) α
β
i

⎞
⎠
⎤
⎦

= λ2i

n∑
j=1

σ 2
di jx

2
j + λ2i σ

2
βi +

n∑
j=1

σ 2
ci jx

2
j + σ 2

αi.

Reasoning as in the proof of theorem 1 (see claim at the end of the proof), we have:

Pr[ f̃i ≤ 0] ≥ γi ⇔ E[ f̃i] +�−1(γi)σ f̃i
≤ 0.

Thus, the ith prob–pos constraint is converted into the following:

Pr

⎡
⎣Pos

⎡
⎣ n∑

j=1

˜̄ci jx j + ˜̄αi − λi

⎡
⎣ n∑

j=1

˜̄di jx j + ˜̄
β i

⎤
⎦ ≥ 0

⎤
⎦ ≥ δi

⎤
⎦ ≥ γi ⇔ Pr

[
f̃i ≤ 0

] ≥ γi

⇔ λi

⎡
⎣ n∑

j=1

(
di j − L−1 (δi) dαi j

)
x j + βi − L−1 (δi) β

α
i

⎤
⎦ −

n∑
j=1

(
ci j + R−1 (δi) cβi j

)
x j

+�−1(γi)

√√√√λ2i
n∑
j=1

σ 2
di jx

2
j + λ2i σ

2
βi +

n∑
j=1

σ 2
ci jx2j + σ 2

αi − αi − R−1(δi)α
β
i ≤ 0.



STOCHASTIC ANALYSIS AND APPLICATIONS 51

5. Redundancy detection algorithm

In this section, we build on the algorithms proposed by Charles et al. [9, 10], we present an
algorithm to identify redundant fractional objective functions in multi-objective linear FS
fractional programming problems. First, we need to recall the following definitions [9, 10].

Definition 10. Let λ be the following scalar:

λ = min

⎧⎨
⎩λi ≤

∑n
j=1

˜̄ci jx j + ˜̄αi∑n
j=1

˜̄di jx j + ˜̄
β i

|i = 1, 2, . . . ,m and (x1, x2, . . . , xn) is the unit vector of 
n

⎫⎬
⎭ .

The decision space relative to all the prob–pos constrained objective functions is defined
by the following set:

SO =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ 
n | λ
[

n∑
j=1

(
di j − L−1 (δi) dαi j

)
x j

]
−

n∑
j=1

(
ci j + R−1 (δi) cβi j

)
x j

+�−1 (γi)

√
λ2

n∑
j=1
σ 2
di jx

2
j + λ2σ 2

βi +
n∑
j=1
σ 2
ci jx2j + σ 2

αi

≤ αi + R−1 (δi) α
β
i − λ

(
βi − L−1 (δi) β

α
i
)
, i = 1, 2, . . . ,m, x j ≥ 0 for j = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
.

Forw = 1, 2, . . . , m, the decision space relative to all the prob–pos constrained objective
functions except the w-th one is defined as follows:

Sw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ 
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

[
n∑
j=1

(
di j − L−1 (δi) dαi j

)
x j

]
−

n∑
j=1

(
ci j + R−1 (δi) cβi j

)
x j

+�−1 (γi)

√
λ2

n∑
j=1
σ 2
di jx

2
j + λ2σ 2

βi +
n∑
j=1
σ 2
ci jx2j + σ 2

αi

≤ αi + R−1 (δi) α
β
i − λ

(
βi − L−1 (δi) β

α
i
)
,

i = 1, 2, . . . ,m, i �= w, x j ≥ 0 for j = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Definition 11. For everyw = 1, 2, . . . , m, the constrained form of the wth objective func-
tion is given by:

λ

⎡
⎣ n∑

j=1

(
dw j − L−1 (δw) dαw j

)
x j

⎤
⎦ −

n∑
j=1

(
cw j + R−1 (δw) cβw j

)
x j

+�−1 (γw)

√√√√λ2 n∑
j=1

σ 2
dw jx

2
j + λ2σ 2

βw +
n∑
j=1

σ 2
cw jx2j + σ 2

αw

≤ αw + R−1 (δw) α
β
w − λ

(
βw − L−1 (δw) β

α
w

)
.

This constrained form is called redundant in model (3) if S°= Sw.
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It follows from definition 11 that the constrained form of the wth objective function is
redundant if and only if, for all x ∈ Sw, we have:

λ

⎡
⎣ n∑

j=1

(
dw j − L−1 (δw) dαw j

)
x j

⎤
⎦ −

n∑
j=1

(
cw j + R−1 (δw) cβw j

)
x j

+�−1 (γw)

√√√√λ2 n∑
j=1

σ 2
dw jx

2
j + λ2σ 2

βw +
n∑
j=1

σ 2
cw jx2j + σ 2

αw ≤ αw + R−1 (δw) α
β
w

− λ (βw − L−1 (δw) β
α
w

)
(8)

Henceforth, we let:

sw(x) = αw + R−1(δw)α
β
w − λ

(
βw − L−1(δw)β

α
w

) − λ

⎡
⎣ n∑

j=1

(
dw j − L−1(δw)dαw j

)
x j

⎤
⎦

+
n∑
j=1

(
cw j + R−1 (δw ) cβw j

)
x j − �−1 (γw)

√√√√λ2 n∑
j=1

σ 2
dw jx

2
j + λ2σ 2

βw +
n∑
j=1

σ 2
cw jx2j + σ 2

αw

and

s̄w = min{sw(x)|x ∈ Sw}
Definition 12. The constrained form of thewth objective function (8) is redundant in model
(3) if s̄w ≥ 0.

Definition 13. The constrained form of the wth objective function (8) is strongly redun-
dant in model (3) if s̄w > 0. Note that the constraint can be redundant without being strongly
redundant.
Definition 14. The constrained form of the wth objective function (8) is weakly redundant
in model (3) if s̄w = 0.

Using sequential LP, we start by linearizing the constrained version of the fractional objec-
tive function as defined in section 4. In order to do so, we consider the constrained form of
the ith fractional objective function (see definition 11), with i = 1, 2, . . . , m, rewritten as
follows:

fi(x) = λ

⎡
⎣ n∑

j=1

(
di j − L−1(δi)dαi j

)
x j

⎤
⎦ −

n∑
j=1

(
ci j + R−1(δi)cβi j

)
x j

+�−1(γi)

√√√√λ2 n∑
j=1

σ 2
di jx

2
j + λ2σ 2

βi +
n∑
j=1

σ 2
ci jx2j + σ 2

αi

−
(
αi + R−1(δi)α

β
i

)
+ λ

(
βi − L−1(δi)β

α
i

) ≤ 0.

Using Taylor’s formula for a function of n variables, we have:

f̄i(x) = fi(x∗)+ ∇ fi(x∗) · (x − x∗)T ≤ 0,

where ∇ fi(x∗) is the gradient row vector of fi(x) at x∗ = (1, 1, . . . , 1).
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Since,

fi(x∗) = λ

⎡
⎣ n∑

j=1

(
di j − L−1(δi)dαi j

)⎤⎦ −
n∑
j=1

(
ci j + R−1(δi)cβi j

)

+�−1(γi)

√√√√λ2 n∑
j=1

σ 2
di j + λ2σ 2

βi +
n∑
j=1

σ 2
ci j + σ 2

αi

−
(
αi + R−1(δi)α

β
i

)
+ λ

(
βi − L−1(δi)β

α
i

)
and, for every j = 1, 2, . . . , n, the jth coordinate of the gradient vector∇ fi(x∗) is given by

∂ fi
∂x j

(x∗) = λ
(
di j − L−1(δi)dαi j

)
−
(
ci j + R−1(δi)cβi j

)

+�−1(γi)
λ2σ 2

di j + σ 2
ci j√

λ2
∑n

j=1 σ
2
di j + λ2σ 2

βi +
n∑
j=1
σ 2
ci j + σ 2

αi

,

we have:

∇ fi(x∗) · (x − x∗)T

=
(
∂ fi
∂x1

(x∗),
∂ fi
∂x2

(x∗), . . . ,
∂ fi
∂xn

(x∗)
)

· (x1 − 1, x2 − 1, . . . , xn − 1)T

= λ

⎡
⎣ n∑

j=1

(
di j − L−1(δi)dαi j

)
x j

⎤
⎦ −

n∑
j=1

(
ci j + R−1(δi)cβi j

)
x j

+�−1(γi)

∑n
j=1 λ

2σ 2
di jx j +

∑n
j=1 σ

2
ci jx j√

λ2
∑n

j=1 σ
2
di j + λ2σ 2

βi +
n∑
j=1
σ 2
ci j + σ 2

αi

− λ
⎡
⎣ n∑

j=1

(
di j − L−1(δi)dαi j

)⎤⎦ +
n∑
j=1

(
ci j + R−1(δi)cβi j

)

−�−1(γi)

∑n
j=1 λ

2σ 2
di j +

∑n
j=1 σ

2
ci j√

λ2
∑n

j=1 σ
2
di j + λ2σ 2

βi +
∑n

j=1 σ
2
ci j + σ 2

αi

and, hence,

f̄i(x) = fi(x∗)+ ∇ fi(x∗) · (x − x∗)T

= λ

⎡
⎣ n∑

j=1

(
di j − L−1(δi)dαi j

)
x j

⎤
⎦ −

n∑
j=1

(
ci j + R−1(δi)cβi j

)
x j
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+�−1(γi)
λ2σ 2

βi + σ 2
αi√

λ2
∑n

j=1 σ
2
di j + λ2σ 2

βi +
∑n

j=1 σ
2
ci j + σ 2

αi

+�−1(γi)

∑n
j=1 λ

2σ 2
di jx j +

∑n
j=1 σ

2
ci jx j√

λ2
∑n

j=1 σ
2
di j + λ2σ 2

βi +
∑n

j=1 σ
2
ci j + σ 2

αi

−
(
αi + R−1(δi)α

β
i

)

+ λ (βi − L−1(δi)β
α
i

) ≤ 0 (9)

We can rewrite inequality (9), for every i = 1, 2, . . . , m, as follows:

f̄i(x) ≤ (
αi + R−1(δi)α

β
i

) − λ
(
βi − L−1(δi)β

α
i

)
,

where x = (x1, x2, . . . , xn), with x j ≥ 0, for every j = 1, 2, . . . , n.
When i ranges from 1 to m, inequality (9) gives place to a system of inequalities that can

be interpreted in matrix form as follows:

F̄ · x ≤ α − λβ,

where F̄ ∈ 
m×n and α, β ∈ 
m are defined by:

α =
(
α1 + R−1(δ1)α

β
1 , . . . , αm + R−1(δm)α

β
m

)
β = (

β1 − L−1(δ1)β
α
1 , . . . , βm − L−1(δm)β

α
m

)
.

By adding slack variables to the constraints form of the m objective functions, pre-
multiplying by the inverse of an appropriate basis and redefining the variables (both slacks
and structural variables) as xNB

j (or) xBj according to their status (NB for non-basic, and B for
basic), we obtain the following equivalence system:[(

F̄NB
)−1 I

] [
xNB

xB

]
= η,

where xNB = (xNB
1 , . . . , xNB

kNB
) and xB = (xB1 , . . . , xBkB ) are such that xNB

j ≥ 0 for every j =
1, 2, . . . , kNB and xBj ≥ 0 for every j = 1, 2, . . . , kB.

The matrix (F̄NB)
−1 is usually referred to as the contracted simplex tableau ([15]). Let φi j

denote the i j th element of the matrix (F̄NB)
−1. Also, let η be the “updated right hand side,”

that is, (F̄NB)
−1(α − λβ).

Theorem 2 ([9,10]). A constrained form of the wth objective function is redundant if and only
if its associated slack variable sw has the property sw = xBt in a basic solution where ϕt j ≤ 0, for
every j = 1, 2, . . . , n, and ηt ≥ 0.

Proof. If: In a basic solution, xBt = ηt − ∑n
j=1 φi jx

B
j . Since in any feasible solution the value

of xNB
j will be at least zero, the sum is at least zero and, hence, sw = xBt ≥ ηt ≥ 0. Therefore,

s̄w ≥ 0.
Only If: Let us consider the tth row of the tableau as the objective function for the sequen-

tial LP s̄w = min{sw(x)|x ∈ Sw}. If s̄w ≥ 0, it follows that in the optimal solution ϕt j ≤ 0
for all j = 1, 2, . . . , n with ηt ≥ 0. Since this optimal solution is a feasible extreme point
of Sw, it is a basic feasible solution for the original set of constrained forms of the objective
functions. �

Note that, since in the theorem above s̄w = ηt , the constrained form of the wth objective
function is strongly redundant if ηt > 0 and weakly redundant if ηt = 0.
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Figure . Redundancy detection algorithm.

The proposed redundancy detection algorithm is composed of seven steps as depicted in
Figure 3:

1. Convert the FS fractional objective functions into constraints.
2. By using sequential LP (SLP), linearize the constrained form of the objective functions.
3. A matrix of intercept is constructed with decision and slack variables as rows and

columns, respectively. This matrix is of orderm × n.
If ηt ≥ 0, then

θ ji =
(
αi + R−1(δi)α

β
i

)
− λ

(
βi − L−1(δi)β

α
i

)
F̄i j

;

F̄i j ≥ 0; i = 1, 2, . . . , m; j = 1, 2, . . . , n

F̄i j denotes the i j th element of the matrix F̄
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Else

θ ji = (αi + R−1(δi)α
β
i )− λ(βi − L−1(δi)β

α
i )

F̄i j
;

F̄i j < 0; i = 1, 2, . . . , m; j = 1, 2, . . . , n

F̄i j denotes the i j th element of the matrix F̄
4. Identify the pivot element in each row.

If αi + R−1(δi)α
β
i ≤ 0, then

� j = max
i

{
θ ji
}
,

Else
� j = mini{θ ji}, for all j while the objective is maximum, vice versa.

5. Score out the row and column corresponding to the entering and leaving variables. If
a column has more than one maximum/minimum, score out those rows also.

6. Remove these redundant constrained forms of fractional objective functions from the
original model.

7. Solve the reduced multi-objective stochastic fractional programming problem to get
the optimal solution with any mathematical programming solver.

6. Numerical examples

In this section, two numerical examples (examples 1 and 2) are presented to both demonstrate
the applicability and exhibit the efficacy of the proposed redundancy algorithm for FS multi-
objective fractional programming problems.

6.1. Example 1

Max

[ ˜̄c11x1 + ˜̄c12x2 + ˜̄α1

˜̄d11x1 + ˜̄d12x2 + ˜̄
β1

,
˜̄c21x1 + ˜̄c22x2 + ˜̄α2

˜̄d21x1 + ˜̄d22x2 + ˜̄
β2

]

s.t.

Pr
[
Pos

[ ˜̄a1x1 + ˜̄a2x2 ≤ ˜̄b
]

≥ u
]

≥ p

5x1 + 2x2 ≤ 10

x1, x2 ≥ 0 (10)

where α1 = α2 = 0, β1 = β2 = 1 and the confidence levels u and p are given by u = 0.5 and
p = 0.90.

In example 1, we consider two objectives, where all the coefficients are assumed to be
FR numbers. Each of the FR coefficients has a symmetrical triangular membership function,
which is a special case of a trapezoidal membership function. In fact, if in equation (1) we let
α = β , then the triangular fuzzy number is a symmetrical triangular fuzzy number. Hence,
the membership functions for the coefficients in the example can be represented by pairs of
the form (m̄, α), wherem ∼ N(u, σ 2

m) and (m̄, α) is a symmetrical triangular fuzzy number.
Note that m̄ is the center and α is the spread. Table 1 provides the data used in example 1.
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Table . FR parameters and variables for Example .

Parameters Fuzzy variables

˜̄a1 (N(,),)

˜̄a2 (N(,),)

˜̄b (N(,),)

˜̄c11 (N(,),)

˜̄c12 (N(.,),)

˜̄c21 (N(,),)

˜̄c22 (N(,),)

˜̄d11 (N(,),)

˜̄d12 (N(,),)

˜̄d21 (N(.,),)

˜̄d22 (N(,),)

The deterministic equivalent of the constraint ˜̄a1x1 + ˜̄a2x2 ≤ ˜̄b is the following:

2x1 + 3x2 + 1.28
√
x21 + x22 + 1 ≤ 7.

The deterministic equivalent of the constrained form of the fractional objective functions
is described below. This description is based on the confidence levels γ1, γ2, δ1, and δ2, that
appear in the constrained form of the objective functions (i.e. the first set of constraints of
model (3)), defined by:

γ1 = 0.10, γ2 = 0.90 and δ1 = δ2 = 0.5.

6x1 + 3x2 − λ1 (5x1 + 2x2 + 1)+ 1.28
√(

2λ21 + 2
)
x21 + (

λ21 + 1
)
x22 ≥ 0, (11)

16x1 + 11x2 − λ2 (x1 + x2 + 1)− 1.28
√
λ22x21 + λ22x22 + x21 + x22 ≥ 0. (12)

Let λ = min{1.125, 9} = 1.125 at (x1, x2) = (1, 1) from equations (11–12). Therefore,
inequalities (11–12) reduce to (13–14):

0.375x1 + 0.750x2 + 1.28
√
4.531x21 + 2.266x22 ≥ 1.125, (13)

14.875x1 + 9.875x2 − 1.28
√
2.266x21 + 2.266x22 ≥ 1.125. (14)

Using the inequality (9) and SLP ([8, 9, 10]), the following linear constraints are obtained:

2.6x1 + 1.863x2 ≥ 1.125,

13.513x1 + 8.513x2 ≥ 1.125.

Byusing the proposed algorithm, it can be concluded fromTable 2 that the second objective
function is strongly redundant. Therefore, the problem can be solved by removing the second
objective function from the original problem. The bi-objective FS fractional programming
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Table . Matrix-of-intercept for Example .

Slacks

Decision variables s s Objective function value (ψ )

x . . .
x . . .

problem reduces to the following problem:

Max 0.90λ1

s.t.

6x1 + 3x2 − λ1 (5x1 + 2x2 + 1)+ 1.28
√(

2λ21 + 2
)
x21 + (

λ21 + 1
)
x22 ≥ 0,

2x1 + 3x2 + 1.28
√
x21 + x22 + 1 ≤ 7,

5x1 + 2x2 ≤ 10,

x1, x2 ≥ 0. (15)

The solution is obtained as follows: x1 = 1.547, x2 = 0.000 and λ1 = 2.384.

6.2. Example 2

Let us consider the previous example along with a third objective function. That is:

Max

[ ˜̄c11x1 + ˜̄c12x2 + ˜̄α1

˜̄d11x1 + ˜̄d12x2 + ˜̄
β1

,
˜̄c21x1 + ˜̄c22x2 + ˜̄α2

˜̄d21x1 + ˜̄d22x2 + ˜̄
β2

,
˜̄c31x1 + ˜̄c32x2 + ˜̄α3

˜̄d31x1 + ˜̄d32x2 + ˜̄
β3

]

s.t.

Pr
[
Pos

[ ˜̄a1x1 + ˜̄a2x2 ≤ ˜̄b
]

≥ u
]

≥ p

5x1 + 2x2 ≤ 10

x1, x2 ≥ 0 (16)

Table 3 provides the additional data used in Example 2.

Table . FR parameters and variables for Example .

Parameters Fuzzy variables

˜̄c11 (N(,),)
˜̄c12 (N(.,),)
˜̄c31 (N(,),)
˜̄c32 (N(,),)
˜̄d31 (N(,),)
˜̄d32 (N(,),)
˜̄α3 (N(,),)
˜̄β3 (N(,),)
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Let the confidence levels γ1, γ2, γ3, δ1, δ2, and δ3, that appear in the constrained form of the
objective functions (i.e., the first set of constraints of model (3)), be given by:

γ1 = 0.70, γ2 = 0.90, γ2 = 0.40 and δ1 = δ2 = δ3 = 0.5.

The deterministic equivalent of the constrained form of the fractional objective functions
is given below:

5x1 + 2x2 − λ1 (5x1 + 2x2 + 1)− 0.52
√(

2λ21 + 2
)
x21 + (

λ21 + 1
)
x22 ≥ 0, (17)

16x1 + 11x2 − λ2 (x1 + x2 + 1)− 1.28
√
λ22x21 + λ22x22 + x21 + x22 ≥ 0. (18)

11x1 + 13x2 − λ3 (5x1 + 2x2 + 1)+ 0.25
√
2λ23x21 + λ23x22 + 2x21 + x22 ≥ 4 (19)

Let λ = min{0.875, 9, 2.5} = 0.875 at (x1, x2) = (1, 1) from equations (17–19). There-
fore, inequalities (17–19) are converted to (20–22):

0.625x1 + 0.25x2 + 1.28
√
3.531x21 + 1.766x22 ≥ 0.875, (20)

15.125x1 + 10.125x2 − 1.28
√
1.766x21 + 1.766x22 ≥ 0.875, (21)

6.625x1 + 11.25x2 + 0.25
√
3.531x21 + 1.766x22 ≥ 4.875. (22)

By using SLP ([8, 9, 10]), the following linear constraints are obtained:

2.589x1 + 1.232x2 ≥ 0.875,

13.299x1 + 8.424x2 ≥ 0.875,

7.009x1 + 11.442x2 ≥ 4.875.

By using the proposed algorithm, from the Table 4 it can be concluded that the second
objective function is strongly redundant. Therefore, the problem is solved by removing the
second objective function from the original problem. The tri-objective FS fractional program-
ming problem can be converted into the following problem:

Max 0.30λ1 + 0.60λ3

5x1 + 2x2 − λ1 (5x1 + 2x2 + 1)+ 1.28
√(

2λ21 + 2
)
x21 + (

λ21 + 1
)
x22 ≥ 0,

16x1 + 11x2 − λ2 (x1 + x2 + 1)− 1.28
√
λ22x21 + λ22x22 + x21 + x22 ≥ 0,

11x1 + 13x2 − λ3 (5x1 + 2x2 + 1)+ 0.25
√
2λ23x21 + λ23x22 + 2x21 + x22 ≥ 4,

2x1 + 3x2 + 1.28
√
x21 + x22 + 1 ≤ 7,

Table . Matrix-of-intercept for Example .

Slacks

Decision variables s s s Objective function value (ψ )

x . . . .
x . . . .
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5x1 + 2x2 ≤ 10,

x1, x2 ≥ 0. (23)

The solution is obtained as follows: x1 = 0.000, x2 = 1.547, λ1 = 1.503 and λ3 = 4.444.

7. Conclusion

We considered the redundancy problem in a multi-objective linear FS fractional pro-
gramming setting. Detecting and, consequently, eliminating redundant objective func-
tions and/or constraints from the system under analysis is the key to avoid unneces-
sary calculations and reduce the computational complexity of the associated optimization
algorithm.

Our analysis has focused on the fuzzy component characterizing many of the real-life
situations where stochastic fractional programming can be applied and deliver significant
results.

Despite the considerable literature on linear and nonlinear stochastic fractional program-
ming, not much attention has been paid so far to FS fractional programming problems. The
present paper shades some light in this direction developing an algorithm that allows to
simultaneously identify redundant objective functions and redundant constraints in multi-
objective linear FS fractional programming problems. More precisely, the proposed algo-
rithm reduces the number of linear fuzzy fractional objective functions after transform-
ing them in probabilistic–possibilistic constraints with respect to predetermined confidence
levels.

The applicability of the proposed algorithm has been demonstrated by means of two
numerical examples, where the existing redundancy has been removed and the number of
linear fractional objective functions has been reduced accordingly.
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