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In recent years, investment in solar energy has increased substantially across countries. Thus, selecting
convenient locations for solar farms has become a fundamental problem when determining the in-
vestment required due to differences in climatic factors, the type and availability of land, transportation
infrastructures, and the quality of power lines. Multi-Criteria Evaluation approaches based on crisp data
are generally used in the selection process of optimal locations. However, despite being crisp, the data
available when considering the evaluation criteria of the different alternatives constitute a discrete
approximation performed on a spatial grid of potential locations. Thus, we introduce a three-stage fuzzy
evaluation framework designed to account for the imprecision inherent to the evaluations when iden-
tifying the most convenient location for constructing solar power farms. First, we implement ANFIS
(Adaptive Neuro-Fuzzy Inference System) on the set of grid intersection crisp data points and derive a
coherent set of approximations per each potential discrete location and evaluation criterion. Then, the
fuzzy AHP (Analytic Hierarchy Process) method is used to determine the weights of the different criteria
considered from the linguistic evaluations provided by different experts. Finally, we define a set of if-then
rules combining the different ANFIS evaluation criteria and their weights within a FIS (Fuzzy Inference
System) whose output is used to determine the most convenient location for constructing a solar power
farm. The efficacy of the proposed evaluation framework is demonstrated through its application to the
Iranian regions of Kerman and Yazd.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

2007 to a potential amount of 104 million barrels per year by 2030
(8].

Energy is a key element of sustainable development, economic
growth and welfare [3]. Thus, the unequal distribution of oil re-
sources in the world may result in economic and political conflicts,
both now and in the future [36]. In addition, the world demand for
energy is expected to increase substantially in the coming years,
with oil consumption increasing from 86 million barrels per year in
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Energy resources can be divided into three groups: fossil fuels,
renewable and non-clean resources. While most of the world en-
ergy supply is based on fossil oil, it is widely known that fossil fuels
have a significant impact on the world ecology and climate. In this
regard, increasing concerns about environmental pollution have
resulted in an incremental use of renewable energies through the
21st century [43]. Moreover, the reduction in their reserves has led
the prices of oil and other fossil fuels to exhibit a consistently
increasing trend. Therefore, most of the world countries have
adopted new policies to reduce energy costs — together with the
resulting pollution — [18,21,24,28]. emphasized the importance
that key technologies have for the decarbonisation of the electricity
sector and the gain in the efficient provision of energy.
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Renewable energies — solar, wind, biomass and geothermal —
are clean resources with low environmental impacts characterized
by their low costs and almost unlimited supply [49,63]. In this re-
gard, solar energy has some advantages relative to the other types
of renewable energy, which range from environmental benefits and
government incentives to the availability of flexible locations [64].
Griffiths [26] presented a demand-supply model for solar energy
illustrating its commercial viability in several Middle East and
North Africa countries based on the improvement of relative costs
and the availability of solar resources. However, collaboration be-
tween the private and the public sector is generally needed in order
to overcome the budget constraints faced by poor countries and
provide them with access to different renewable energy services
[58].

The selection of locations for solar power plants is a complex
process due to the different security, economic, environmental, and
social requirements that must be considered [68]. Locations with
the best solar resources cannot always be selected and several other
factors play significant roles in selecting convenient locations.
These factors can be categorized into economic, environmental and
social classes [65]. Therefore, the use of multi-criteria decision
making models becomes necessary.

Several multi-criteria evaluation methods have been used in
problems involving the selection of locations. These positioning
methods are described in the literature review section below. It
should be emphasized that these studies generally focus on real-
valued criteria whose realizations, despite being crisp, constitute
a discrete approximation performed on a grid of potential locations.

That is, consider a grid mapping discretely a given set of po-
tential locations distributed on a continuous surface. A subjective
approximation must be applied by the experts when assigning
values to each discrete point per evaluation criterion. At the same
time, each criterion differs in relative importance and must there-
fore be ranked according to the subjective judgments of different
experts. The approximate nature of both evaluations must be
accounted for when selecting a location. In this regard, a Fuzzy
Inference System (FIS) based on a sufficiently large amount of if-
then inference rules can be implemented so as to smooth out the
inherent imprecision and provide a coherent final evaluation.

Therefore, in order to account for the imprecision inherent to
the realizations being evaluated, we introduce a three-stage fuzzy
decision support framework designed to identify the most conve-
nient location for constructing solar power farms.

a. In the first stage, a team of experts is selected to identify the
main decision criteria. After retrieving the data required from
different maps, ANFIS (Adaptive Neuro-Fuzzy Inference System)
is implemented on the set of grid intersection points defining
the regions being analyzed. ANFIS allows us to derive a coherent
set of approximations per each potential discrete location and
criterion.

b. Then, the fuzzy AHP (Analytic Hierarchy Process) method is
used for determining the weights of the different criteria from
the evaluations provided by different experts.

c. Finally, we define a set of if-then rules combining the values of
the different evaluation criteria obtained from ANFIS and their
weights within a FIS whose output is used to determine the
most convenient location for constructing a solar power farm.

The main contribution of the current model is defined by its
capacity to account for different types of imprecision while incor-
porating a FIS to smooth it out and provide a coherent evaluation.
This is in contrast with the general approach followed by the
models described in the literature review section, where ANFIS is
used as a final evaluation method and fuzzy AHP is incorporated

within multiple-criteria decision-making (MCDM) settings without
explicitly accounting for its approximate nature.

We validate the efficacy of the proposed evaluation framework
through its application to the Iranian regions of Kerman and Yazd.
However, it should be noted that due to their inherent imprecision,
the final evaluations obtained could differ if different experts were
contacted to select and weight the criteria or different if-then rules
would have been defined.

The remainder of the paper is organized as follows. Section 2
provides a short review of the related literature. Section 3 de-
scribes the ANFIS methodology, while Section 4 focuses on the FIS.
Section 5 illustrates the case study and the proposed method at
work. Section 6 concludes and suggests potential extensions of our
model.

2. Literature review

A basic review of the positioning literature that encompasses
several multi-criteria and decision support methods follows.

Farahani et al. [23] surveyed the literature on multi-criteria
location problems across three main categories including bi-
objective, multi-objective and multi-attribute problems. Standard
MCDM techniques are commonly used in the positioning literature.
For example [38], developed and tested different facility allocation
models based on efficiency measures obtained from data envel-
opment analysis (DEA). Achillas et al. [1] proposed a decision
support system for the optimal location of electrical and electronic
waste treatment plants using ELimination Et Choix Traduisant la
REalité (ELECTRE) IIl as a MCDM analysis technique. Tavana et al.
[62] presented a group decision support system based on the
Preference Ranking Organization Method for Enrichment Evalua-
tion (PROMETHEE) for the evaluation of alternative pipeline routes.
Similarly [20], integrated a geographical information system (GIS)
and the PROMETHEE IV method to locate shelters and emergency
services in urban evacuation planning.

Alternatives to the standard multi-criteria location techniques
can also be found in the literature. Dogan [19] proposed an inte-
grated approach that combined Bayesian networks and the total
cost of ownership to address the complexities involved in selecting
an international facility for a manufacturing plant. Datta [17]
designed a multi-criteria multi-facility methodology imple-
mented in Microsoft Excel to generate scenarios for locating facil-
ities in rural underdeveloped regions. Xu et al. [66] defined a multi-
criteria location model determined by the spatial coverage of the
alternatives that was used to solve the location problem of earth-
quake evacuation shelters.

Among the diverse methods applied, AHP has been consistently
implemented as a decision support tool when performing multi-
criteria spatial decision analyses [29]. In particular, AHP has been
used in MCDM location models to weight the importance of the
criteria considered by the corresponding GISs. Applications to
positioning problems include, among many others, the planning of
potential uses of land for agricultural development [5], the
assessment of land capability for spatial development [2], the
clearance of mine hazards [40], highway alignment [67] and the
evaluation of flood hazard potentials [51].

As noted by Ref. [44]; about three quarters of the papers pub-
lished on GIS multi-criteria location analysis between 1990 and
2004 focused on deterministic information. The literature has
recently started to increasingly incorporate multi-criteria methods
accounting for imprecision and fuzziness in GISs, since such a
feature was expected to improve their analytical capacity [35]. For
example [45], applied the concept of efficiency defined by DEA to
location-allocation models within a fuzzy environment.

Similarly to the crisp scenarios described above, AHP has been
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consistently implemented in fuzzy GIS-MCDM environments [7,13].
For instance [15], defined a MCDM based on fuzzy AHP to select
international tourist hotel locations, while [61] built a hybrid
MCDM method based on fuzzy AHP that considered tangible and
intangible factors in the selection of optimal locations. Fuzzy AHP
has prevailed as a commonly used methodology despite the initial
criticism received regarding the ambiguity of the questions
formulated and their lack of reference to the scales employed to
measure the different criteria [25].

Indeed, fuzzy approaches can provide better approximations
than crisp ones when evaluating the suitability of potential location
alternatives. Montgomery and Dragicevic¢ [46] noted that crisp GIS-
based multi-criteria evaluation methods may not be able to fully
capture the whole range of human reasoning and suggested
improved soft computing evaluation methods that exhibited an
improved performance.

Thus, given the linguistic evaluations received from the experts
in the current model, we will apply fuzzy AHP together with the
extent analysis method to derive the relative weights assigned to
the different decision criteria considered. We focus now on the
specific problem of positioning when dealing with the construction
of solar power plants.

2.1. Solar farm positioning

An extensive review of the literature on decision support
methods applied to renewable energy investments is provided by
Ref. [59]; while [60] review the recent literature on fuzzy decision
making in renewable energy systems.

The literature on solar farm positioning is characterized by the
use of crisp GISs to evaluate the different criteria determining the
relative optimality of a given set of potential locations. For example
[9], used a GIS to investigate the energy production capacity of
power plants in Spain and their optimal location. Similarly [34],
suggested convenient locations for solar farms in Colorado using
GIS modeling techniques. Dagdougui et al. [ 16] defined a GIS-based
decision making model to select convenient locations for con-
structing renewable hydrogen production systems. Pavlovi¢ et al.
[50] selected the most convenient among 23 potential locations in
Serbia using the efficacy of silicon solar cells and data on solar
irradiation. Besarati et al. [6] programmed a 5 MW solar power
plant for 50 alternative locations in Iran based on their power
generation, capacity factors, and annual greenhouse gas emissions.
Sanchez et al. [57] implemented a GIS-MCDM model that used AHP
to calculate the weights of the criteria and the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) to evaluate the
alternatives. Uyan [64] also incorporated AHP within a GIS in order
to select solar farm sites in Turkey.

Several other models implementing a variety of alternative
MCDM positioning techniques have also been defined in the liter-
ature. For example [4], applied a MCDM method to select an
optimal project for the construction of solar power plants in Bur-
kina Faso. Nguyen & Pearce [47] designed an algorithm that clas-
sifies each region of the world in terms of its capacity to develop
solar farms. In this regard [27], proposed a model to overcome the
alternations encountered in different time zones. Their method
considered optimal placements across broad geographical areas as
well as the size and ratio of production and saving capacity of each
place.

Suganthi et al. [60] highlighted the fact that fuzzy MCDM
techniques are generally considered to be complex due to their
computational requirements and therefore focus on model testing
through numerical analysis and simulation. Among the

contributions to the literature, we emphasize the following ones.
Salah et al. [56] defined a fuzzy algorithm that decided whether the
connection of domestic appliances in the north of Tunisia was made
to the electrical grid or a photovoltaic panel. Charabi and Gastil [10]
presented a geographical survey model based on fuzzy quantifiers
for positioning photovoltaic technologies in Oman. Ouammi et al.
[48] used artificial neural networks to predict monthly and annual
solar irradiance so as to identify the most convenient locations for
constructing solar power plants in Morocco.

Given the potential advantages described in the previous sec-
tion, fuzzy decision support methods have been increasingly
implemented when evaluating renewable energy systems. In this
regard, fuzzy AHP remains as one of the most common methods
applied [60], though not particularly when considering solar farm
positioning problems [42].

Finally Suganthi et al. [60], emphasized the substantial amount
of research on neuro-fuzzy and ANFIS models developed in recent
years and used extensively in solar photovoltaic control/smart grid
systems [12,37,41]. In these cases, ANFIS is neither included within
a more complex MCDM environment nor its approximate nature
accounted for when delivering the final evaluations. In the current
paper, we consider the uncertainty inherent to the ANFIS modeling
technique and implement a FIS based on 37 if-then inference rules
to generate a more reliable set of results.

3. ANFIS

Fuzzy systems are based on if-then rules that cannot be
analyzed using classical probability theories. In this regard, the aim
of fuzzy logic is to extract accurate results using a set of rules
defined by specialists. At the same time, neural networks are
capable of learning using the observed data and determine the
network parameters so that per each selected input a given output
can be obtained. However, and like fuzzy systems, neural networks
cannot deduce using linguistic expressions and require crisp values
to provide the required output [32].

As a result, the Adaptive Neuro-Fuzzy Inference Systems known
as ANFIS was introduced by Ref. [32] in order to improve the
learning capability of neural networks, obtain more accurate ap-
proximations and rely on a simpler structure. ANFIS combines the
learning capabilities of neural networks and the adaptive proper-
ties of fuzzy inference systems. In particular, ANFIS is a multilayer
neural network with the capacity to find every kind of nonlinear
mapping or model that can accurately relate inputs (primary
values) to outputs (predicted values). Its structure is described in
Fig. 1.

In this structure, input and output nodes refer to inputted and
predicted values, respectively. In order to simplify the description, a
two-input single-output network is considered. As can be seen in
Fig. 1, ANFIS is a 5-layered network where each layer has different
nodes and each node is located within a fixed or an adaptive layer.
The different layers and their corresponding nodes are described
below.

First layer: each node in this layer delivers a membership value
assigned to each of the non-fuzzy input variables of the model, x
and y, which are introduced in Layer zero. Output values are
determined based on the degree of membership of the inputs to the
fuzzy sets A; and B;, with i =1, 2. More precisely, A; and A,
represent fuzzy linguistic labels applied to input x, while By and B,
are associated with input y. Each one of the four nodes defining this
layer delivers a membership function associated with the different
linguistic labels that define the node.

That is, node i delivers the output Of ; for the input x in the layer



96 M. Tavana et al. / Energy Strategy Reviews 18 (2017) 93—105

5
=h

5|
S

I

Layer 0 Layer 1 Layers 2 and 3 Layer 4 Layer 5
Inputs IF-Part Rules + Norm THEN-Part Output
Fig. 1. ANFIS structure.
1: layer and r;, q;, and p; are linear consequent parameters.
) Fifth layer: the node composing this layer defines the value of
Oli=ma(x), i=12 (1) the overall ANFIS output as the sum of the outputs obtained from

and the output of node i for the input y, O{l is given by:
O, = up(y), i=1.2 2)

where uy and wp are the membership functions of A; and B;,
respectively.

Real-life systems with engineering applications deal with crisp
numerical variables, implying that in order to use a fuzzy system a
mapping between the crisp inputs of the system and a fuzzy set
should be created. To do so, ANFIS generally applies Gaussian fuz-
zifiers within its first layer.

Second layer: this layer is composed by nodes of rules, with
each node calculating the participation degree of a rule. O, ; defines
the output of the ith—node in the second layer, which equals the
product of the degrees of membership obtained in the first layer for
each input:

Oz = w; = ug, (X) pg,(¥), i=1,2 (3)

Third layer: this layer includes normalized nodes that calculate
the ratio of the participation degree of each rule to the sum of the
participation degrees of all rules. As a result, the output obtained
from this layer is defined as:

Wi

Oi=W; = —*5+
3,i i W]+W2’

’

i=1,2 (4)

Fourth layer: this layer consists of adaptive nodes endowed
with a node function f;. The output of each node is given by:
O4; =Wifi =Wi(pix +qiy+1;), i=1,2 (5)

where w; is the output obtained from the ith—node in the previous

the nodes of the previous layer:

2 2 r
05 = Yy = 21 (©)

2
i 2w

The ANFIS network applies a hybrid learning algorithm that
includes the gradient descent algorithm and the recursive least
squares method. The gradient descent algorithm is used for
updating the nonlinear parameters of the network while esti-
mating the recursive least squares is used for regulating the
weights of the network [30]. The training error of the network is
defined by Equation (7):

2 N2
- (5-1) )
i=1

I

where f; and f; are the desired and estimated outputs of the
network per ith—input, respectively.

In the current paper, we have used ANFIS to estimate the f;
functions related to each of the five decision criteria analyzed. This
was done by inputting 300 points of the investigated space in such
a way that a continuous approximation covering the whole space
could be obtained. Those points that were deemed to be appro-
priate in terms of a criterion were assigned a value of one, while
those points considered to be inappropriate were assigned a value
of zero. Accordingly, other points were assigned priority values
between 0 and 1. These values were used by ANFIS to estimate the
corresponding set of f; functions.

That is, the different location alternatives have been mapped
from their respective geographic locations to the coordinate system
used by ANFIS to provide a continuous approximation. In particular,
each discrete point defining the inputted grid provides an
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evaluation of each geographic location per decision criterion. It
should be noted that these values constitute a discrete and sub-
jective approximation defined by the experts evaluating the loca-
tions. However, the priority function generated by ANFIS for the
different location alternatives is a continuous surface map — where
each point represents a geographical location —. A priority function
is generated for each criterion and used to evaluate the relative
optimality of each location alternative. The best alternative will
therefore be described in a final grid representing the space of
potential locations, which can be mapped back to the set of
geographic locations in a map.

4. Fuzzy inference system design

Approximate inference is the extraction of inaccurate results
based on inaccurate hypotheses. In this regard, the calculation and
measurement processes implemented by experts are generally
more consistent with fuzzy calculations and approximate inference
than with accurate mathematical calculations and conventional
logics.

Fuzzy inference is the process of designing mappings that lead
from an input to an output value using fuzzy logic. The process of
fuzzy inference requires using all the following tools and concepts:

1. Membership function
2. Operators of fuzzy logic
3. If-then rules

The main objective of these systems is to model the knowledge
of an expert about complicated issues by providing a solid foun-
dation for a formal inference theory based on verbal variables and
knowledge. The basis of this theory is the representation of prop-
ositions in the form of expressions that attribute fuzzy sets as
values to variables.

FISs have been successfully applied in several research areas
such as automatic control, data classification, and the analysis of
decisions in expert systems. In this regard, FISs provide the
analytical tools required to apply approximate reasoning in the
current decision framework so as to identify and select the best
potential locations.

4.1. If-then rules

Fuzzy sets and fuzzy operators are used in the formulation of
fuzzy if-then rules such as:

If x is equal to q, then y is equal to b,

where (a) and (b) are verbal values defined by fuzzy sets on the
reference ranges X and Y, respectively. The “if” part of the rule (x is
equal to a) is known as the premise or input, while the “then” part
(y is equal to b) is called the conclusion or output.

The inputs of a fuzzy if-then rule are generally real values while
their outputs are fuzzy sets that must be defuzzified so as to assign
a crisp value to the output variable. That is, the results obtained
from each rule are determined by the fuzzy set assigned to the
output variables. In this regard, the results are defined in such a way
that if an input is true with a particular degree of membership, then
the output is true with the same degree of membership. Conse-
quently, the inference fuzzy set function applied modifies the
output variable based on the degree of membership of the inputs.
We will apply the truncation method included in the fuzzy logic
toolbox of MATLAB to modify the output fuzzy set.

The implementation of fuzzy if-then rules requires following a
specific three-stage process consisting of:

4.1.1. Stage 1: Fuzzification of inputs

The real values of each input variable and the membership
functions defined are used to fuzzify the inputs and transform them
into membership degree values between zero and one. If a rule has
only one input, the input membership degree is the degree of
support of the rule.

4.12. Stage 2: Applying fuzzy operators in rules with multiple
inputs

If a rule has multiple inputs, the use of fuzzy operators such as
“or” and “and” can be used to merge the degree of membership of
all inputs into a numerical value between zero and one. This value
indicates the degree of support of the rule.

4.1.3. Stage 3: Applying the inference method to deduce and
determine output values

The degree of support of all rules is used for identifying the
output fuzzy sets. The result obtained from a fuzzy rule is the
assignment of a fuzzy set to each output variable. This fuzzy set is
represented using a membership function selected for determining
the quality of the outputs. If inputs are true to some extent (i.e. their
degree of membership is less than one), then the output reference
collection is modified according to the inference method applied.

Note that, an if-then rule is not generally significant on its own.
In a fuzzy inference system, two or several rules that can be con-
trasted are generally required. The outputs of each rule can then be
integrated to construct a single output fuzzy set that has to be
defuzzified so as to obtain a single final value.

5. Proposed method

In the current study, we start by defining the geographic loca-
tion problem at hand and selecting the evaluation criteria that will
be used to determine the most convenient location for constructing
a solar power farm. These criteria have been selected by consulting
several experts and reviewing the related literature. Then, given the
discrete set of points selected from the regions of analysis and their
assigned priorities (defined between 0 and 1), ANFIS is applied to
obtain continuous estimated functions per each decision criterion.
After estimating these functions, and given the existing indepen-
dence between criteria, the fuzzy AHP technique is used to deter-
mine the relative weight of each criterion. Finally, the values
obtained for each alternative per criterion are weighted and
incorporated into a FIS that, after applying 37 if-then inference
rules, assigns a final value to each point in the two-dimensional
decision space.

The proposed three-phase method is depicted in Fig. 2. The first
phase is intended to define the problem, establish a team of experts
and identify the relevant criteria for solar power plant positioning.
The second phase is designed to determine the weights of the
criteria using the fuzzy AHP method. The third phase is used to
extract fuzzy if-then rules and to select the most suitable location.

5.1. Phase 1: Defining and estimating criteria

After defining the location problem, reviewing the relevant
literature and considering the suggestions of several experts, the
criteria described in Table 1 have been chosen to select convenient
locations for constructing a solar power farm in the Iranian regions
of Kerman and Yazd.
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Problem Definition

l

Select a team of experts to determine the
evaluation criteria

|

Define the decision criteria based on the
experts’ judgments and a literature review

}

Define a two-dimensional decision space in
the regions of Kerman and Yazd

|

Estimate the functions for each criterion using
MATLAB software
v
Determine the weight of criteria using
Fuzzy AHP
t
Y
Extract fuzzy if-then rules for the different
decision criteria

1 Phase 3

Revise ANFIS and determine the best location
using a FIS

Phase 1

Phase 2

Fig. 2. Proposed framework.

Table 1
Criteria considered for selecting the most suitable solar power plant location ac-
cording to the literature review.

Field of evaluation Criteria Priority Resource

(authors)
Environmental Distance from residential areas  Max [68]
criteria Access to land Max [48]
Intensity of solar radiation Max  [71]
Economic criteria Distance from roads Min [68]
Distance from transmission Min [68]
power lines

We describe these criteria in more detail through the following
sections.

5.1.1. Environmental criteria

Distance from residential areas: constructing a solar power
plant near urban or rural areas can have negative environmental
effects on urban and population development. Therefore, a
convenient location for solar farms should be at least 500 m away
from residential areas [68].

In the current study, we identify the urban and rural areas of
Kerman and Yazd using information retrieved from Google maps.
The areas located far from cities and villages were assigned a pri-
ority of one, while other areas were assigned priorities lower than
one based on their closeness to cities and villages. Then, these
priority values were used to evaluate a set of two-dimensional
points covering the whole area occupied by both regions. These
values were entered in MATLAB, whose ANFIS toolbox delivered an
estimated priority function for the distance criterion.

As already stated, the three dimensional priority function
generated by ANFIS for the different location alternatives is a
continuous surface map where each point corresponds to a
geographical location. That is, the discrete input values defined on
the x and y axes represent the coordinates of the geographic lo-
cations on the corresponding maps, while the z axis represents the

score value assigned to each coordinate based on each decision
criteria and ranges within the [0, 1] interval. The map of the areas
analyzed in terms of the distance criterion, together with its cor-
responding legend, and the resulting estimated priority function
are illustrated in Fig. 3(a).

Intensity of solar radiation: this is one of the most significant
environmental factors to consider [71]. The data required was
retrieved from the maps available at the Iranian site of new en-
ergies (http://www.suna.org.irby/en/home). As was done with the
previous criterion, two-dimensional points along with their prior-
ities were entered in MATLAB, whose ANFIS toolbox delivered an
estimated priority function for the solar radiation criterion. The
corresponding map together with its legend and the resulting
estimated priority function are illustrated in Fig. 3(b).

Access to land: the availability of accessible land is a key factor
for the investment on energy [31]. In particular, the existence of
accessible land is one of the environmental factors used to select
convenient locations for constructing solar power plants [48].
Consider the geographical map of the rugged and mountainous
regions of Yazd and Kerman presented in Fig. 3(c).! We have
assigned a priority value of one to the areas with higher levels of
access to unused land, while other areas with less accessibility have
been assigned a priority lower than one. The resulting estimated
priority function is also illustrated in Fig. 3(c).

5.1.2. Economic criteria

Distance from roads: nearness to main roads can effectively
reduce the costs of constructing solar power plants. Consequently,
those locations closer to main roads should be assigned a higher
priority (Yuan, 2013). The map of roads in the studied area has been
retrieved from the Iranian Ministry of Roads and Urban Develop-
ment (http://www.141.ir/SitePages/Index.aspx) and is presented in
Fig. 4(a) together with the corresponding estimated priority
function.

Distance from transmission power lines: nearness to trans-
mission power lines is economically important (Yuan, 2013).
Therefore, those areas located near transmission power lines must
be assigned higher priority values. The map of transmission power
lines (that has been retrieved from http://amar.tavanir.org.ir) is
illustrated in Fig. 4(b) together with the estimated priority function
obtained from the ANFIS toolbox.

5.2. Phase 2: Fuzzy AHP with extent analysis

The uncertainty about referral judgments increases the uncer-
tainty faced when prioritizing alternatives and consequently, it
makes the determination of agreement difficult. Among the main
methods developed to deal with hierarchical decisions under am-
biguity in the positioning literature, we will consider the fuzzy AHP
one [39]. A discussion about its potential imprecision and the
alternative ranking methods available in the literature will be
provided in Section 6.

In the current setting, verbal variables are transformed into
triangular fuzzy numbers of the form Mf with i =1, ..., n referring
to the row of the paired comparison matrix and j = 1, ...,m to the
column. A summary of the main steps applied to solve fuzzy AHP
models using the extent analysis method follows. A more detailed
description can be found in Refs. [11] and [70].

! The map can be retrieved from the following link: https://upload.wikimedia.
org/wikipedia/commons/thumb/3/31/Iran_relief_location_map.jpg/672px-Iran_
relief_location_map.jpg.


http://www.suna.org.irby/en/home
http://www.141.ir/SitePages/Index.aspx
http://amar.tavanir.org.ir
https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Iran_relief_location_map.jpg/672px-Iran_relief_location_map.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Iran_relief_location_map.jpg/672px-Iran_relief_location_map.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Iran_relief_location_map.jpg/672px-Iran_relief_location_map.jpg
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1. The value S; of the fuzzy synthetic extent is calculated for each of
the i rows composing the paired comparison matrix

m n m .
si=> M- |33 u Q
j=1 i=1 j=1
where
m . m m m
DoME= | D iy my Yl (9)
=1 =1 =1 =

2. The magnitude degree of the S; triangular fuzzy numbers is
calculated through pairwise comparisons as follows

M;>M, u(S1>82) =1
Mi <My v(S2 > S1) = hgt(S1nS2) = o u’;)__“(fnl .
(10)
with
v(S1>52) = sup min sy, (). iy, )] (11)

where uy, (x) refers to the membership function associated to the
fuzzy number M.

3. Assume now that

d(Ai) = miny(Si>Sk), for k=1,...,n with k=i (12)
then, the weight vector W can be defined as follows
W = (d(A1),d(A2), ..., d(An))T (13)

and normalized, such that

n n n T
W' = <d(Al)/Zd(Ai),d(AZ)/Zd(Ai),...,d(An)/Zd(Ai))
i=1 i=1 i

Table 2 presents the fuzzy paired comparison matrix obtained
from the evaluations of the experts consulted, while Table 3 de-
scribes the normalized weights assigned to each criterion after
implementing the extent analysis method. These weights will be
applied when defining the if-then rules in the next phase of the
evaluation process, which is described in the following section.

5.3. Phase 3: Defining the FIS based on if-then rules

In the final phase, we design the fuzzy inference system —
including inputs, fuzzy rules and outputs — through the following
four steps:

1. The first step to construct the FIS consists of fuzzifying the
variables. The input (values of decision criteria) and output
variables are both transformed into verbal variables (low,
moderate, high). An overview of the FIS is presented in Fig. 5.

The number of input and output variables is also defined in this
section. The five decision criteria considered (distance from resi-
dential areas, intensity of solar radiation, access to land, distance
from roads, and distance from transmission power lines) are
denoted by M1, M2, M3, M4, and M5, respectively, while the output
variable is identified as OUT.

2. The triangular membership functions associated to the (low,
moderate, and high) input and output variables are defined
next. Fig. 6 illustrates the functions considered for the “distance
from residential areas” criterion. Note that the domain on which
the functions are defined is [0, 1], coinciding with that of the
output obtained from ANFIS. The membership functions of the
other inputs and the output variable — which is described in
Fig. 7 — are defined in the same way.

3. Given the information about inputs and outputs provided in the
previous steps, we define 37 if-then inference rules, all of which
are presented in Table 4. Note that a total of 3° rules could have
been defined. However, such a large number would complicate
the analysis considerably without adding any particular insight.
Thus, the experts evaluating the weights of the different criteria
were also consulted so as to select the more plausible combi-
nations, which led to the 37 rules considered.

It should be noted that MATLAB's Fuzzy Logic Toolbox does not

(1 4) Table 3
Criteria and normalized weights.
where W’ is a crisp number. Criteria Weight Normalized weight
. . X . Distance from residential areas 0.58 0.185
4. Steps 1-3 are repeated for all paired comparison matrices in Intensity of solar radiation 1.00 0.315
order to obtain the corresponding normalized weight vectors. Access to land 0.97 0.309
5. The hierarchical structure is drawn using the weights obtained gfsmnce ?0”‘ roads ] 8?2 811)?8
and calculated via the AHP method. istance from transmission power lines . X
Table 2
Fuzzy paired comparison matrix.
Criteria Distance from residential Solar radiation Access to Distance from Distance from transmission power
areas intensity land roads lines
Distance from residential areas (1,1,1) (1,1.2,1.5) (0.2, 04, (15,1.7,2) (0.8,0.9,1)
0.45)
Solar radiation intensity (0.67,0.83,1) (1,1,1) (1,1.5,2) (15,1.7,2) (2,25,3)
Access to land (2.2,25,5) (0.5, 0.66, 1) (1,1,1) (1,1.5,2) (1,1.2,1.5)
Distance from roads (0.5, 0.58, 0.66) (0.5,0.83, 1) (0.5,0.66,1) (1,1,1) (0.8,0.9,1)
Distance from transmission power (1, 1.1, 1.25) (033,04, 0.5) (0.66,0.83, 1) (1., 1.1, 1.25) (1,1,1)

lines
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Fig. 7. Membership functions related to outputs.

allow for the weights of the different criteria to be directly imple-
mented in the analysis. Thus, the weights have been incorporated
when defining the if -then rules in such a way that if a criterion has
a higher weight than others, then it should have a higher impact on
the evaluation output. For example, consider the following rule: If
M1 is M and M2 is L and M3 is L and M4 is H, and M5 is M. Given the
weights obtained for the different decision criteria and described in
Table 3, 0.624% of the rule belongs to the L part of the fuzzy
membership function, 0.295% to the M part and only 0.08% belongs
to the H part. Thus, an output value of L should be assigned to the
rule. However, if we were to assume the same weight on all the
criteria, then the above rule would have been assigned an output

value of M.

4, After defining the set of if-then rules, the FIS can be finally
implemented. The system is described in Fig. 8, where rows
represent the fuzzy if-then rules, while columns refer to the
different inputs and the output variable. It should be noted that
the M1 to M5 (and OUT) column values observed in this figure
do not correspond to the criteria weights being applied but to a
sensitivity analysis tool for the FIS network, whose values do not
modify the results obtained.

After developing the if-then rules and designing the
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Table 4
Extracted rules for determining the most suitable solar power plant location.

Number If-then rules

1 If M1 is H and M2 is H and M3 is H and M4 is H, and M5 is H, then OUT is H

2 If M1 is H and M2 is H and M3 is H and M4 is H, and M5 is M, then OUT is H

3 If M1 is H and M2 is H and M3 is H and M4 is M, and M5 is H, then OUT is H

4 If M1 is H and M2 is H and M3 is M and M4 is H, and M5 is H, then OUT is H

5 If M1 is H and M2 is M and M3 is H and M4 is H, and M5 is H, then OUT is H

6 If M1 is H and M2 is M and M3 is M and M4 is M, and M5 is H, then OUT is M

7 If M1 is M and M2 is H and M3 is H and M4 is H, and M5 is H, then OUT is H

8 If M1 is M and M2 is L and M3 is H and M4 is H, and M5 is H, then OUT is H

9 If M1 is H and M2 is M and M3 is H and M4 is H, and M5 is M, then OUT is H

10 If M1 is H and M2 is H and M3 is H and M4 is M and M5 is M, then OUT is H

11 If M1 is H and M2 is H and M3 is M and M4 is M, and M5 is M, then OUT is H

12 If M1 is H and M2 is H and M3 is H and M4 is M, and M5 is L, then OUT is H

13 If M1 is H and M2 is H and M3 is H and M4 is L, and M5 is L, then OUT is H

14 If M1 is M and M2 is M and M3 is H and M4 is H, and M5 is H, then OUT is M

15 If M1 is M and M2 is L and M3 is L and M4 is H, and M5 is H, then OUT is L

16 If M1 is L and M2 is H and M3 is H and M4 is L, and M5 is L, then OUT is M

17 If M1 is L and M2 is L and M3 is H and M4 is H, and M5 is L, then OUT is L

18 If M1 is L and M2 is M and M3 is L and M4 is M, and M5 is L, then OUT is L

19 If M1 is H and M2 is H and M3 is H and M4 is H, and M5 is M, then OUT is H

20 If M1 is L and M2 is H and M3 is H and M4 is H, and M5 is H, then OUT is M

21 If M1 is L and M2 is L and M3 is M and M4 is H, and M5 is H, then OUT is L

22 If M1 is M and M2 is M and M3 is L and M4 is L, and M5 is L, then OUT is M

23 If M1 is M and M2 is M and M3 is M and M4 is M, and M5 is M, then OUT is M

24 If M1 is H and M2 is H and M3 is L and M4 is L, and M5 is L, then OUT is H

25 If M1 is L and M2 is L and M3 is L and M4 is L, and M5 is L, then OUT is L

26 If M1 is H and M2 is M and M3 is M and M4 is M, and M5 is M, then OUT is M

27 If M1 is M and M2 is L and M3 is M and M4 is H, and M5 is H, then OUT is M

28 If M1 is M and M2 is L and M3 is H and M4 is M, and M5 is M, then OUT is M

29 If M1 is H and M2 is L and M3 is L and M4 is H, and M5 is H, then OUT is L

30 If M1 is H and M2 is L and M3 is H and M4 is L, and M5 is H, then OUT is H

31 If M1 is L and M2 is M and M3 is L and M4 is M, and M5 is L, then OUT is L

32 If M1 is H and M2 is L and M3 is L and M4 is L, and M5 is L, then OUT is L

33 If M1 is L and M2 is L and M3 is L and M4 is H, and M5 is L, then OUT is L

34 If M1 is L and M2 is H and M3 is L and M4 is L, and M5 is M, then OUT is L

35 If M1 is M and M2 is L and M3 is L and M4 is L, and M5 is H, then OUT is L

36 If M1 is L and M2 is H and M3 is M and M4 is H, and M5 is H, then OUT is H

37 If M1 is L and M2 is M and M3 is M and M4 is H, and M5 is H, then OUT is M

M1 = 0.542 M2 =0.824 M3 =1 M4 =0.81 M5 =0.701 OUT = 0.621
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Fig. 8. Fuzzy inference system.
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corresponding FIS, output values were obtained for each point
defining the area investigated from the Kerman and Yazd regions.
Among the output locations, the most convenient one was given by
the point (2.84, 2.36) with a priority of 0.566 based on the five
criteria considered. This location corresponds to Rafsanjan City and
has been identified in Fig. 9, which provides two output maps
describing the priorities assigned to the different solar power farm
locations with different levels of detail. The upper map focuses on
the output obtained from the FIS while the lower one provides a
more detailed description of the counties forming the Kerman
province and neighboring the selected location.

6. Discussion, conclusion and future research directions

The selection of locations for solar power plants is a complex
process due to the different security, economic, environmental, and
social requirements that must be considered. Locations with the
highest solar resources cannot always be selected and several other
factors play significant roles in selecting convenient locations.
Therefore, the use of MCDM models becomes necessary.

We have defined a three-stage fuzzy evaluation framework
designed to identify the most convenient location for constructing
solar power farms. This framework combines three different fuzzy
decision techniques, namely, ANFIS, fuzzy AHP and FISs. The main
advantage of this type of approach is that it allows us to account for
the imprecisions inherent to the evaluations of the different loca-
tions provided by the experts. That is, despite being crisp, the data
generally available when considering the evaluation criteria of the
different alternatives constitute a discrete approximation per-
formed on a grid of prospective locations.

In this regard, the main contribution of our model could be
considered its capacity to account for the imprecision inherent to
the ANFIS and fuzzy AHP evaluations by incorporating a FIS so as to
smooth it out and provide a coherent output set. This approach
contrasts with the standard ones applied in the fuzzy decision
making literature on positioning, where ANFIS and fuzzy AHP are
used to provide final evaluations within MCDM settings without
explicitly accounting for their approximate nature. As already
noted, the imprecision inherent to the evaluations implies that the
final results obtained could differ if the group of experts contacted
to select and weight the criteria were modified or different if-then
rules defined.

The approximate nature of the numerical evaluations provided
by the experts when comparing alternatives within the AHP has
already been emphasized by Refs. [52] and [53]. These authors
noted that the use of fuzzy set theoretical elements within an
already approximate setting such as that of AHP could increase the
imprecision of the analysis performed and distort the results ob-
tained. This effect is partly due to the uncertainties associated with
the numerical representation of the judgments provided by the
decision makers. Moreover [14], highlighted the fact that the
sensitivity of the criteria weights obtained from pairwise compar-
isons to input and output modifications contributes to the un-
certainties inherent to AHP-based spatial MCDM processes.
Therefore, the use of a FIS aimed at smoothing out the imprecision
inherent to the fuzzy AHP-based decision process should help
providing a more coherent output set when evaluating renewable
energy systems.

Finally, besides AHP, the main standard MCDM methods
employed in the positioning literature consist of TOPSIS and the
Elimination and Choice Expressing Reality (ELECTRE) and PROM-
ETHEE families. As stated by Ref. [54]; these methods provide an
elegant and powerful framework of analysis when dealing with
linear decision problems but are subject to rank reversal phe-
nomena when considering nonlinear problems. That is, the

addition or removal of a given subset of alternatives could modify
the resulting rankings obtained. The evaluation process may
therefore require a rank reversal free approach such as the Char-
acteristic Objects Method (COMET) [22,55] in order to obtain a
consistent set of weights for the different decision criteria.

With this last remark in mind, we suggest that potential ex-
tensions of the current decision environment should incorporate
additional decision criteria and consider alternative weighting
methods, other than fuzzy AHP, while adapting the different if-then
rules that define the FIS. Moreover, the selection of locations to
construct power plants exploiting other types of energy resources,
such as wind, is also suggested.
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