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A B S T R A C T   

This study proposes an investment evaluation and incentive allocation model for public-private partnerships 
(PPPs) in renewable energy development projects (REDPs). A hybrid multicriteria decision-making (MCDM) and 
bi-level optimization model are proposed to evaluate investment opportunities and allocate government financial 
incentives (GFIs) to REDPs. The best-worst method (BWM) is used to weigh the evaluation criteria. VIKOR and 
grey relational analysis (GRA) rank and allocate GFIs to the private sector companies selected to participate in 
the REDPs. The government uses the PPP to persuade digital services companies in the private sector to invest in 
underdeveloped REDPs using financial incentives with minimal risk and maximum return. An iterative full- 
enumeration-based heuristic model is developed to handle the computational intractability in the bi-level 
model. The computational results show that political and financial support and land use are the most and the 
least important criteria, respectively. Moreover, we show that the government prefers to allocate a significant 
portion of its GFIs to waste heat recovery and hydropower in partnership with digital services companies. The 
results from the bi-level model help government agencies and policymakers offer equitable incentive programs in 
the energy sectors.   

1. Introduction 

Managing investments in renewable energy development projects 
(REDPs) is one of the most essential solutions to save energy and reduce 
environmental pollutants in low-carbon economies [1]. Many countries 
have invested heavily in establishing and developing renewable power 
plants in the last decade. Despite the efforts to manage investments, the 
shortage of financial resources has always been a significant problem for 
governments facing natural disasters, pandemics, and economic un-
certainties [2]. Therefore, public sector budgets alone would not be 
sufficient to develop programs like REDPs. This has led governments to 
establish public-private partnerships (PPPs) to exploit REDPs. 

Governments currently manage most REDPs in developing countries 
[3]. The private sector’s willingness to be involved in these projects has 
encouraged governments to manage these financial support more 
effectively. This desire ignited the opportunity to make the most of 
private sector resources in achieving the goals of low-carbon economies 

(J. [4]). However, persuading the private sector to invest based on 
government strategies is challenging for most developing countries. 
Governments usually try to provide the necessary infrastructure for 
developing REDPs. 

On the other hand, paying attention to the profitability of the private 
sector is considered a priority for many governments [5]. As a result, the 
private sector in most developing countries with poor economic infra-
structure has little interest in REDPs because there is no guarantee of a 
reasonable rate of return on these investments [6]. For instance, the 
government’s financial support for developing solar energy as a sus-
tainable investment opportunity in Iran caused the private sector to 
increase its investment in solar power by 23 % in 2019 compared to 
2016. However, inadequate government financial support decreased the 
private sector investment rate by 17 % in biomass and waste heat re-
covery energy, known as high-risk REDPs in Iran [7]. Therefore, gov-
ernments must plan operational strategies to persuade the private sector 
to invest in high-risk REDPs. 
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The energy consumption of digital services companies is growing at a 
rapid pace. For instance, blockchain, one of the most critical digital 
technologies, consumes enormous power. Nonetheless, blockchain 
development in the future is undeniable [8]. Having a reliable and 
sustainable energy resource to supply blockchain power is a critical 
problem in digital services companies [9]. Nair et al. (2020) show the 
rapid growth of research in the field. However, developing a renewable 
energy PPP is a win-win strategy for sustainable blockchain-based sys-
tems [10,11]. Therefore, this study proposes a hybrid multicriteria 
decision-making (MCDM) model and a bi-level optimization model 
within a PPP framework to evaluate investment opportunities in 
renewable energy. It is important to note that while this study specif-
ically considers digital services companies, the proposed model can be 
adapted to accommodate other private investors, including traditional 
energy companies, based on the specific context and objectives of the 
PPP. This paper intends to provide a flexible methodology that can be 
applied across various private investor profiles. 

Offering government financial incentives (GFIs), including no/low- 
interest loans, which reduce investment risk, is known as one of the 
most effective strategies for improving partnerships with the private 
sector in REDPs [12]). Optimal GFI allocation is among the critical 
problems for the government. If these resources are not effectively 
allocated, the results will not be effective, and the government will lose 
part of its investment. Despite the extensive research into renewable 
energy investment management, there is no integrated approach to 
prioritizing REDPs and providing optimal GFI for coordinating govern-
ment and private sector decisions and developing renewable energy 
projects. The main research challenge is developing an efficient 
approach to evaluate renewable energy investment opportunities and 
optimally allocating GFIs to REDPs for successful PPPs. 

This study develops a hybrid approach comprising the best-worst 
method (BWM), VIKOR, grey relational analysis (GRA), and a bi-level 
optimization model for evaluating investment opportunities and allo-
cating GFI to REDPs. This approach is presented in two phases. Invest-
ment management and renewable energy development criteria are 
considered in the first phase based on research literature and experts’ 
views. The obtained criteria are weighted using BWM. Then renewable 
energy projects, including solar, wind, biomass, hydropower, and waste 
heat recovery (WHR) alternatives, are prioritized by VIKOR and GRA. In 
the second phase, the optimal investment combination for the digital 
services companies and the optimal amount of allocated GFI to each 
alternative for the government is determined by solving a bi-level 
optimization model. In this model, the government provides financial 
incentives to digital services companies as private sector partners to 
invest in underdeveloped REDPs. 

Considering that bi-level optimization models are strongly NP-hard 
[13], an effective full-enumeration-based heuristic is developed to 
solve the model. Finally, extensive numerical analysis is presented to 
evaluate the developed approach’s applicability, the proposed method’s 
performance, and the solution heuristic’s effectiveness. Iran enjoys 
excellent potential to develop renewable energies because of its 
geographic situation. However, about 83.3 % of electric power is 
generated by fossil fuel and gas in heat, gas, combined cycle, and diesel 
power plants [14]. SABTA has presented some operational projects in 
recent years to extend renewable energy development infrastructure in 
cooperation with digital services companies. The contributions of this 
paper are summarized as follows.  

• Evaluating investment opportunities in the field of renewable 
energies, 

• An optimal allocation of GFIs to REDPs to motivate the digital ser-
vices companies, as private sector investors, to cooperate in devel-
oping renewable energies,  

• Designing a bi-level model to formulate the problem in a cooperative 
environment,  

• Presenting an iterative full-enumeration-based heuristic to find the 
Stackelberg equilibrium,  

• Applying the proposed approach to Iran’s energy system as a case 
study in a developing country. 

This paper refers to PPPs as a collaborative model between the public 
and private sectors to develop REDPs. PPPs in the renewable energy 
sector can take various contractual forms, each involving different de-
grees of risk transfer from the public sector to the private sector. Four 
main types of PPPs are ordered based on the level of risk transferred: 1) 
management and lease contracts, 2) brownfield projects, 3) greenfield 
projects, and 4) divestitures. These types encompass several subtypes, 
each presenting unique characteristics [15]. The proposed problem is 
designed to analyze PPP collaborations primarily in the context of 
Greenfield Projects (GP), which involve the development of new infra-
structure or facilities from the ground up, typically in areas that have not 
been developed before (new sites or regions). The problem addresses 
undeveloped renewable energy projects, aligning with the concept of 
Greenfield Projects in the PPP classification. The government aims to 
increase investment in digital services companies in undeveloped 
renewable energy projects. This aligns with promoting investments in 
new and untapped areas, fitting the greenfield categorization. While the 
proposed methodology could be adapted for other PPP types, such as 
management and lease contracts or brownfield projects, its primary 
emphasis on encouraging investments in undeveloped renewable energy 
projects makes PGs the most suitable category. This ensures that the 
problem is aligned with the goal of fostering the development of 
renewable energy infrastructure in areas yet to be explored or exploited. 
It is important to note that the proposed methodology focuses on the 
strategic allocation of GFI to attract private investment, especially from 
digital services companies, in the context of renewable energy projects. 

The remainder of the paper is structured as follows. Section 2 reviews 
the related criteria for evaluating renewable energy sources (RES) and 
different methods for REDP selection and GFI allocation. Section 3 
presents the weighting and ranking methods framework in the MCDM 
phase and the proposed mathematical model and heuristic. Section 4 
presents a case study of renewable energies in Iran. Section 5 reports the 
computational results of weighting the criteria, prioritizing the alter-
natives, and the related sensitivity analyses. The results of the optimi-
zation phase are then analyzed. Section 6 proposes the policy 
implications. Finally, the paper is concluded, and future suggestions are 
provided in Section 7. 

2. Literature review 

In this section, some of the related research is presented to establish 
the research gap. For this purpose, first, an overview related to the 
public-private partnership projects in renewable energy development is 
presented. Second, the main criteria for evaluating RES are presented. 
Finally, MCDM methods for selecting REDPs and optimization models 
for allocating the GFIs are investigated. 

2.1. Public-private partnership projects in renewable energies development 

PPPs have emerged as critical instruments for advancing renewable 
energy development on a global scale. This literature review offers a 
chronological narrative of key insights from research papers spanning 
various years, shedding light on the intricate dynamics of PPPs, gov-
ernment support, and renewable energy investment. Wang, Chen, Xiong, 
& Wu [16] conducted a study exploring the impact of contract charac-
teristics on private investment in PPPs, specifically focusing on China’s 
projects. The findings emphasized the positive association between 
private investment and competitive bidding, higher asset specificity, 
and increased residual rights controlled by private investors. These 
outcomes underscored the pivotal role of a competitive bidding process 
and collaborative structures to attract private investment in PPPs. Wang 
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et al. [11,17]) delved into the relationship between government support 
programs and private investments in PPP markets across 130 developing 
countries Wang et al. [11,17,18]). The study revealed the positive 
impact of direct government support (subsidies) on attracting private 
capital, highlighting the importance of institutional quality and risk 
allocation. This research provided valuable insights into crafting effec-
tive government policies to stimulate private investments in PPPs. 

Yang, Huo, Saqib, & Mahmood [19] conducted an investigation into 
the relationship between renewable energy, PPPs, and carbon emissions, 
testing the Environmental Kuznets Curve (EKC) hypothesis. The findings 
highlighted the mitigating effect of renewable energy on CO2 emissions, 
particularly in lower and upper quantiles. The study recommended 
increased government investment in renewable energy and PPPs, 
aligning with environmentally friendly practices. Kirikkaleli, Ali, & 
Altuntaş [20] focused on the impact of PPP investment in energy on CO2 
emissions in Bangladesh. The study revealed a long-term association 
among PPP investment, economic factors, and CO2 emissions. Economic 
growth and PPP investments increased environmental degradation, with 
mitigation provided by renewable energy and financial development. 
Akinsola et al. [21] explored the relationship between PPP investment, 
financial development, and ecological footprint in Brazil. The research 
employed various econometric techniques, revealing that economic 
growth and PPP investments increased environmental degradation, with 
mitigation provided by renewable energy and financial development. 
Chileshe, Njau, Kibichii, Macharia, & Kavishe [22] investigated critical 
success factors (CSFs) for PPPs in infrastructure and housing projects in 
Kenya. The study identified key CSFs, including community support, 
project feasibility, legal frameworks, and financial market availability. 
These findings offer practical insights for successful PPP implementation 
in the Kenyan construction sector. Xie, Zhao, Chen, & Allen [23] delved 
into green supply chain management within the construction industry 
[23]. The study advocated for governmental intervention and PPPs to 
foster ecological modernization. Coordination between government 
support and PPPs was highlighted as necessary for achieving environ-
mental and economic performance benefits in the construction sector. 
Basílio [24] examined the role of Multilateral Development Banks 
(MDBs) in supporting renewable energy projects, particularly in the 
context of the Paris Climate Agreement [24]. The study underscored 
MDBs’ active involvement in climate finance while raising questions 
about the alignment of support with renewable energy goals. This 
research signaled the need for increased financial backing to reinforce 
MDBs’ commitments to clean energy. 

The literature review presents a practical understanding of the fac-
tors influencing the success of PPPs in renewable energy projects. It 
underscores the importance of aligning government policies, fostering 
community financial support, and strategically implementing green 
technologies. This synthesis provides a foundation for developing an 
investment evaluation and incentive allocation model that integrates the 
complexities of PPPs in the renewable energy sector. Future research 
and policy efforts should leverage these insights to enhance the effec-
tiveness and sustainability of PPPs in advancing renewable energy ini-
tiatives globally. 

2.2. The related criteria for evaluating RES 

There are many criteria to be studied in the literature in the field of 
RES selection. These criteria are primarily categorized into five eco-
nomic, technical, managerial, environmental, and social criteria [25]. 

Economic criteria: This measure is essential to decision-making 
processes since managers tend to utilize the solutions with the mini-
mum overall cost. This criterion has some sub-criteria, including in-
vestment cost [26], operation and maintenance (O&M) cost [27], 
production cost [28], and investment payback period [29]. 

Technical criteria: REDPs have specific technical guidelines that 
directly affect their success [30]. The most critical related sub-criteria 
are efficiency, production capacity, and technological development 

[31]. 
Managerial criteria: There are two crucial sub-criteria for managing 

REDPs, according to the literature: (1) political and financial support 
and (2) compatibility with the national energy political plan [32]. 
Considering these sub-criteria can increase the success of the projects. 

Environmental criteria: The process of carrying out REDPs has 
remarkable environmental effects. Based on the literature, one of the 
leading environmental criteria is that greenhouse gas (GHG) emissions 
have adverse global and regional results on ecosystems. Moreover, 
constructing renewable energy systems requires suitable land. Local 
communities have to allocate some space to REDPs that could be used 
for other potential goals like farming [33]. Therefore, land use should be 
mainly considered [34]. 

Social criteria: It is vital to aggregate people’s final opinions about 
launching different renewable energy systems because people are the 
primary beneficiaries of renewable energies. In addition, employment 
opportunities created by REDPs can, directly and indirectly, impact 
people’s lives [33]. Finally, job creation [31] and social acceptance [26] 
can be considered among the leading social criteria. 

2.3. MCDM and optimization methods 

In the literature review, the problem of investment opportunity 
evaluation in renewable energies is investigated as the prioritization of 
renewable energy alternatives. Therefore, this sub-section focuses on the 
research related to RES ranking. 

MCDM methods have a wide application in the literature for evalu-
ating RES. Several studies used the analytic hierarchy process (AHP) to 
weight the related criteria [35,36]; Wang et al. [11,17,25]. Analytic 
network process (ANP) and Shannon’s entropy are the other weighting 
methods that have been used in a few studies ([37]; Y. [38]). 

Different MCDM techniques are used to prioritize alternatives [39]. 
Lee & Chang [37] presented a comparative analysis of the weighted sum 
method (WSM), VIseKriterijumska Optimizacija I Kompromisno Resenje 
(VIKOR), the technique for order of preference by similarity to ideal 
solution (TOPSIS), and ÉLimination et Choix Traduisant la REalité 
(ELECTRE) for prioritizing renewable energy sources in Taiwan. 
Büyüközkan & Güleryüz [33] applied decision-making trial and evalu-
ation laboratory (DEMATEL), ANP, and TOPSIS for the evaluation of 
RES in Turkey. Based on their results, the best renewable energy tech-
nologies in Turkey are geothermal and biogas power. Çolak & Kaya [40] 
prioritize renewable energy alternatives in Turkey by fuzzy-AHP and 
TOPSIS. About the new MCDM methods [41,42], investigated the 
problem of evaluating RES using BWM. Based on the authors’ best 
knowledge, there is no other research to use the new MCDM method in 
this field; however, new MCDM techniques like BWM have been used 
widely in different areas of renewable energy development [43]. Table 1 
shows some of the main studies related to evaluating renewable 
energies. 

Although the allocation of government incentives has a critical role 
in improving the cooperation between government and digital services 
companies in the field of renewable energy investment, there is no 
research in the literature to investigate this problem from operation and 
decision-making perspectives. However, GFIs have been allocated to 
other fields, such as cooperation supply chain design [71]. Therefore, 
using mathematical programming, this study can be considered the first 
to investigate investment opportunity evaluation and governmental 
incentive allocation in renewable energies. 

3. Proposed approach 

The proposed approach is described in two phases. First, the 
framework of BWM as a weighting method and VIKOR and GRA as 
ranking methods are explained in the MCDM phase. Second, the bi-level 
mathematical model and the heuristic algorithm are presented in the 
optimization phase. 
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3.1. MCDM phase 

This phase weighs the related criteria to investment management 
and renewable energy development by BWM and prioritizes REDPs 
using VIKOR and GRA. First, economic, technical, managerial, envi-
ronmental, and social criteria are obtained from literature and experts’ 
views. Then, BWM is applied to determine the global weight of these 
criteria/sub-criteria. Finally, a numerical analysis is presented to eval-
uate GRA and VIKOR sensitivity from robustness insight. Fig. 1 illus-
trates the framework of the proposed MCDM phase. 

3.1.1. The advantage of applying BWM, VIKOR, and GRA 
AHP, ANP, BWM, and other similar methods have been applied to 

obtain the criteria weights in MCDM problems [72,73]. Several com-
parisons should be made between AHP and ANP [74]. However, BWM 
requires fewer ones [75]. Let’s consider an MCDM problem with n de-
cision criteria, then AHP and BWM will respectively require n(n − 1)/ 2 
and 2n − 3 comparisons [76–78]. Moreover, BWM obtains the criteria 
weights by a mathematical model, and the solutions are global optimal 
and consequently more reliable. In contrast, the final results of AHP and 
ANP can be affected by the personal preferences of different experts 
[77]. Second, GRA is one of the most used methods in solving problems, 
especially business problems, with simple and understandable calcula-
tions (H.-H. [79]). S.-f. Zhang, Liu, and Zhai [80] showed that the results 

obtained from GRA are highly stable. Finally, regarding applying 
VIKOR, Opricovic [81] stated that the final results of VIKOR are 
compromised regarding distance to the ideal solution. 

Overall, it is hard to claim which method is more reliable. One 
approach is to compare the results of different methods [82]. This study 
performs a sensitivity analysis to compare the performance of VIKOR 
and GRA. 

3.1.2. Best-worst method 
BWM is among the recent MCDM techniques first designed by Refs. 

[77,78]. This method consists of reference comparisons and has fewer 
calculations than AHP and ANP. Fig. 2 shows the BWM flowchart. 
Moreover, the steps of BWM are described in the Online Resources 
section in detail. 

3.1.3. Grey relational analysis 
Deng [83] proposed GRA, which is based on the concept of grey 

systems theory. A kind of distance measurement is used to determine the 
relationship between alternatives. Fig. 3 shows the GRA flowchart. 
Moreover, the steps of GRA are described in further detail in the Online 
Resources. 

3.1.4. VIKOR technique 
VIKOR is a powerful MCDM method with compromise solutions 

Table 1 
Main studies in the field of renewable energy evaluation.  

Ref. MCDM methods Criteria 

Weighting method Alternative prioritization method 

EWA ANP AHP BWM AHP/ANP T V G P E EC TE MA EN SO 

[40]   ✓   ✓     ✓ ✓ ✓ ✓ ✓ 
[44]   ✓  ✓      ✓ ✓  ✓ ✓ 
[33]  ✓    ✓     ✓  ✓ ✓ ✓ 
[42]    ✓  ✓     ✓ ✓ ✓ ✓  
[45] ✓     ✓     ✓   ✓ ✓ 
[46]   ✓   ✓ ✓    ✓   ✓ ✓ 
[1]   ✓   ✓     ✓  ✓ ✓ ✓ 
[37] ✓      ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
[47] ✓         ✓ ✓   ✓ ✓ 
[48]   ✓   ✓     ✓   ✓ ✓ 
[36]   ✓   ✓     ✓ ✓  ✓ ✓ 
[26]  ✓   ✓      ✓  ✓ ✓ ✓ 
(Y. [38])  ✓   ✓      ✓ ✓  ✓ ✓ 
[41]    ✓  ✓     ✓ ✓  ✓ ✓ 
[49]   ✓  ✓      ✓   ✓ ✓ 
[50] ✓     ✓ ✓  ✓  ✓ ✓  ✓ ✓ 
[51]   ✓     ✓   ✓ ✓ ✓  ✓ 
[52]   ✓   ✓     ✓ ✓  ✓ ✓ 
[53] ✓      ✓    ✓ ✓  ✓  
[54] ✓     ✓     ✓   ✓ ✓ 
(Y. [25])   ✓  ✓      ✓ ✓  ✓ ✓ 
[10,11]   ✓    ✓    ✓  ✓   
[55]  ✓   ✓      ✓ ✓  ✓  
[56] ✓     ✓     ✓   ✓ ✓ 
(M. [57]) ✓    ✓      ✓ ✓ ✓ ✓ ✓ 
(W. [58])   ✓      ✓  ✓ ✓ ✓ ✓  
[59]  ✓    ✓     ✓   ✓ ✓ 
[60] ✓        ✓  ✓  ✓   
[61] ✓        ✓  ✓   ✓  
[62]  ✓      ✓   ✓ ✓    
(M. [63])  ✓     ✓    ✓  ✓ ✓ ✓ 
[64] ✓     ✓     ✓ ✓  ✓ ✓ 
(H. [65]) ✓    ✓ ✓     ✓ ✓ ✓ ✓  
[66] ✓        ✓  ✓  ✓ ✓ ✓ 
[67]   ✓  ✓   ✓   ✓ ✓  ✓  
[68]  ✓       ✓    ✓  ✓ 
(Z. [69]) ✓    ✓      ✓  ✓ ✓  
[70] ✓    ✓      ✓  ✓ ✓  
This study   ✓ ✓   ✓ ✓   ✓ ✓ ✓ ✓ ✓ 

EWA: entropy-weighting approach; DE: DEMATEL; T: TOPSIS; V: VIKOR; G: grey relational analysis; 
P: PROMETHEE; E: ELECTRE; EC: Economic; TE: Technical; MA: Managerial; EN: Environmental; SO: Social. 
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obtained based on closeness to the ideal solution [81]. Fig. 4 shows the 
VIKOR flowchart. Moreover, the steps of VIKOR are described in further 
detail in Online Resources. 

3.2. Optimization phase 

The selection of investment projects related to renewable energies is 
among the complex management decisions that need to be solved using 
optimization models, including mathematical modeling [84]. Investing 
in REDPs should be managed based on government strategic plans and 
private sector preferences. In other words, there are two 

decision-makers in the optimization phase. This paper uses a bi-level 
optimization model to optimally solve the GFI allocation problem. 
Fig. 5 shows the flowchart of the optimization phase. 

The government allocates GFI to REDPs in the proposed bi-level 
model to increase investment in digital services companies in undevel-
oped renewable energy projects. For this purpose, the minimum in-
vestment in REDPs in digital services companies is maximized by 
allocating GFI at the upper level. A multi-objective model is designed to 
determine investment in digital services companies based on the rate of 
return and investment risk of projects. The proposed mathematical 

Fig. 1. Flowchart of the proposed MCDM phase.  
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formulation is presented as follows.  
Sets and indexes 
i ∈ {1,…,

I}
Set of renewable energies (index i) 

Government parameters 
Pi Development preference of renewable energy projects i 
Li The government’s lower bound on investing in renewable energy i 
Ui The government’s upper bound on investing in renewable energy i 
Budget The total available budget for REDPs 
Private sector parameters 
Incomei The annual income from investing in renewable energy i 
costi Cost of investing in renewable energy i 
βi Risk of investing in renewable energy i 
Fi Private sector company’s lower bound on investing in renewable 

energy i 
Ki Private sector company’s upper bound on investing in renewable 

energy i 
N Maximum number of REDPs for investing 
M A positive and large enough number 
Government decision variables 
yi The amount of allocated GFI to REDP i 
Z Minimum investment in REDPs by the digital services companies 
Private sector company (follower) decision variables 
xi The amount of investment in REDP i 
wi Equal to 1 if REDP i is selected for investing by the private sector 

company; otherwise, 0.  

Government model 

Max Z (1)  

s.t.

Z≤Pi × xi (2)  

Li ≤ xi ≤ Ui i ∈ I (3)  

∑

i∈I
yi =Budget (4)  

yi ≤M × wi i ∈ I (5)  

wi ≤M × yi i ∈ I (6)  

yi ≥0 x,w ∈ U∗(y,Z) i ∈ I (7) 

Private sector company (follower) Model 

Max Z1 =
∑

i∈I

(
(Incomei + yi)

costi
− 1
)

× xi (8)  

Min Z2 =
∑

i∈I
βi × xi (9)  

s.t.

∑

i∈I
xi =1 (10)  

Fi ≤ xi ≤ Ki i ∈ I (11)  

∑

i∈I
wi ≤ N (12)  

wi ∈{0,1} and 0 ≤ xi ≤ 1 i ∈ I (13) 

The government’s objective function (1) is to maximize the mini-
mum investment of the digital services companies in REDPs. According 
to Equation (2), variable Z calculates the minimum amount of private- 

Fig. 2. Bwm flowchart.  

Fig. 3. Gra flowchart.  
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sector investment. In this model, the assumption has been made that all 
private partners share the same conditions and are regarded uniformly 
by the government in terms of value. Equation (3) guarantees that the 
private sector company’s investment should be in the pre-determined 
interval by the government. Equation (4) ensures that the total invest-
ment for all REDPs should equal the total budget. According to Equa-
tions (5) and (6), GFI can be allocated to a REDP, which the private 
sector company selects for investing. Equation (7) shows the domain of 
decision variables of leader model and also clarify xi,wi are determined 

by solving follower model optimally with considering yi, Z. In this 
constraint, the set U∗(yi, Z) is a set of optimal solutions of the follower 
level problem. 

In the private sector company model, the first objective function (8) 
maximizes the annual return rate for the selected REDPs. In this model, 
it is assumed that all GFIs can be converted as cash incentives form. The 
second objective function (9) minimizes the total risk of the chosen 
REDPs. It should be noted that the project risk is calculated based on the 
geometric mean deviation from the stock return rate of energy 

Fig. 4. Flowchart of VIKOR.  

Fig. 5. Flowchart of the proposed optimization phase.  
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companies in the stock market. Equation (10) guarantees that the total 
investment portion in the selected REDPs should equal 1. Equation (11) 
ensures that the investment portion for private sector companies in each 
REDP should be in the pre-determined interval by the government. 
Equation (12) guarantees that the maximum number of selected REDPs 
for investing equals N. 

3.2.1. Solution method 
This paper proposes an iterative full-enumeration-based heuristic to 

solve the bi-level model near-optimally. Since the proposed heuristic 
solves the model based on a unique solution of the private sector com-
pany, the goal attainment method (GAM) is used to convert the private 
sector company model to a single-objective model to obtain a unique 
solution instead of the Pareto front. 

3.2.1.1. Goal attainment method (GAM). GAM is an efficient method of 
finding the best compromise solution in multi-objective problems (Y.-L. 
[85]). In this method, weighted vectors of v1 and v2 should be deter-
mined by decision-makers with the aim of defining the importance of 
each objective function. Then, for each objective, the minimum distance 
from its optimal value is calculated using Equations (14) to (16). 

Min G (14)  

s.t.

Z∗
1 − Z1 ≤ v1G (15)  

Z2 − Z∗
2 ≤ v2G (16) 

where, v1 and v2 are defined as technical weights so that v1 + v2 = 1. 
Based on the definitions, the private sector company model can be 
converted into a single-objective one as Equations (17) to (20). 

Single-objective private sector company model 

Min Z3 =G (17)  

s.t.

Z∗
1(y) −

∑

i∈I

(Incomei − yi) − costi
costi

× xi ≤ v1G (18)  

∑

i∈I
βi × xi − Z∗

2 ≤ v2G (19) 

Constraints (10) to (12) 

G is unrestricted in sign (20) 

Equation (17) minimizes the distance of objective functions from 
their optimal values. Standardization is not required since the numerical 
interval of objective functions is similar, and the G value is valid for the 
two objective functions. Equations (18) and (19) calculate the weighted 
distance of the objective functions from their optimal values. Constraints 
(10) to (12) means to consider the constraints of the leader model. 
Equations (20) indicate that variable G is free in the sign. 

The follower model is solved based on the given values in the leader 
model and yi is assumed as a parameter in the follower model. There-
fore, Constraint (7) should be modified as Constraint (7 M), as follows: 

yi ≥0 (G, x,w) ∈ U∗(y, Z) i ∈ I (7M) 

The final formulation of the bilevel problem solved in this paper will 
be as follows: (1)–(6), (7 M), (17), (18), (19), (10)–(13), and (20). 

Based on the proposed solution method explained in subsection b in 
section 3.2.1.2, the follower model should be solved for all generated 
strategies of the leader model. Therefore, in each iteration of the solving 
procedure of the follower model, there are fixed values for the variable 
yi. In this situation, Z∗

1
(
yi
)

can be obtained, and the single-objective 
private sector company model can be solved. 

3.2.1.2. Iterative full-enumeration heuristic algorithm (IFEH). Addressing 
bi-level models, mainly when a discrete variable is present at the private 
sector company level, poses a significant challenge within operations 
research (Gao et al., 2005). This study introduces the IFEH algorithm as 
a novel approach to tackle this longstanding open problem. The essence 
of the IFEH algorithm lies in its utilization of all feasible solutions of the 
government as initial solutions. In each iteration, the government for-
mulates strategies communicated to the private sector company through 
the generated feasible solutions. The private sector company, in turn, 
identifies and retains optimal solutions corresponding to each strategy 
proposed by the government, forming the Government’s Strategies Set 
(GSS). Subsequently, the private sector company leverages the GSS to 
present its optimal solution. This solution set is then integrated into the 
government model, and the objective function Z is computed within the 
framework of the government-level model. The solution yielding the 
optimal value for the government is designated as the final solution from 
all the obtained solutions. The operators are delineated as subsections (I) 
to (III) to delve further into the mechanics of the IFEH algorithm. This 
comprehensive approach advances the understanding of bi-level models 
and provides a practical algorithmic solution to a persistent challenge in 
operations research. 

3.2.1.3. Applicability of the IFEH algorithm. The IFEH algorithm exhibits 
notable applicability in addressing intricate challenges inherent in bi- 
level models, especially those featuring discrete variables at the pri-
vate sector company level. The algorithm’s utility is elucidated through 
several key aspects. 

3.2.1.3.1. Handling discrete variables. Bi-level models incorporating 
discrete variables present a formidable computational challenge. The 
IFEH algorithm is expressly designed to navigate this complexity by 
introducing a systematic approach. It utilizes all feasible government 
solutions as initial solutions, systematically addressing the nuances 
introduced by discrete variables. 

3.2.1.3.2. Iterative solution refinement. The iterative nature of the 
algorithm is a distinguishing factor. The government proposes strategies 
to private sector companies through each iteration based on the feasible 
solutions generated. This iterative process fosters a nuanced exploration 
of the solution space, enhancing the algorithm’s capability to converge 
toward optimal solutions over successive iterations. 

3.2.1.3.3. Government-private sector company interaction. A funda-
mental feature of the IFEH algorithm lies in the dynamic interaction 
between the government and the private sector company. The govern-
ment’s strategic proposals guide the private sector companies in 
generating optimal solutions. This collaborative approach facilitates a 
mutual exchange of information and enriches the understanding of the 
problem landscape from both perspectives. 

3.2.1.3.4. Government’s Strategies Set (GSS). The introduction of the 
GSS is a pivotal concept in the algorithm. This set consolidates optimal 
solutions corresponding to various government strategies, serving as a 
comprehensive repository. The GSS streamlines the presentation of 
optimal solutions by the private sector company, contributing to the 
efficiency and effectiveness of the algorithm. 

3.2.1.3.5. Integration and final solution determination. The algo-
rithm’s methodology extends to integrating optimal private-sector 
company solutions into the government model. Following this integra-
tion, the objective function Z is computed at the government level. The 
determination of the final solution, grounded in the government’s 
perspective, underscores the holistic nature of the IFEH algorithm, 
ensuring a robust and well-considered outcome. 

3.2.1.4. Strategy generation for the government. GSS is considered the set 
of initial heuristic solutions; therefore, it is necessary to design a sys-
tematic procedure to explore more efficient leadership strategies to 
improve the algorithm performance. For this purpose, an iterative 
technique is developed in such a way that, if there is {1,…, |I| }
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Strategies and members of this set can be calculated using Equation (21). 

LSS =

{(
|I|

i

)

, i ∈ {1,…, I}

}

|LSS| =
∑

i∈{1,…,I}

(
|I|

i

) (21) 

For instance, if three types of REDPs are available, GSS is generated 
as Equation (22). 

LSS = {(1), (2), (3), (1,2), (1, 3), (2, 3), (1, 2,3)}

|LSS| =

(
3

1

)

+

(
3

2

)

+

(
3

3

)

=
3!
2!

+
3!
2!

+ 1 = 7
(22) 

If there are three REDPs, the government will have seven different 
strategies. Given that the private sector company model is solved 
quickly via commercial solvers, generating government strategies to 
allocate GFIs to REDPs will be possible. There is a challenging problem 
in the strategy generation procedure to determine the amount of GFI for 
each GSS member because yi ∈ R

+. Therefore, there are unlimited 
feasible combinations of yi for each strategy. In this paper, a local search 

algorithm is proposed to find efficient combinations of yi based on the 
government’s objective function as an efficiency measure and the pri-
vate sector company’s objective function as a fitness function. 

3.2.1.5. Local search algorithm for GFI allocation. In this paper, a local 
search algorithm is developed to determine efficient combinations of yi 
for GSS members. In this algorithm, an array with a length of |LSS| is 
considered and called Ysi, where in each cell of Ysi a random number in 
[0,1] is generated based on a constraint that guarantees 

∑

i
Ysi = 1. 

Then, two neighbor solutions are generated by Equations (23) and (24). 
In these equations, i is the index of set of renewable energies and s ∈

{1,…,|LSS|}. However, the index i should be aligned with the index s. In 
fact, the index i counts the members of LSS. For example, for a subset of 
LSS like {1,2,3}, the index i shows the 1,2, and 3. Also, for another subset 
of LSS like {2,3}, the index i shows the 2 and 3. 

W+
si =Ysi +C × (usi − vsi) (23)  

W−
si =Ysi − C × (usi − vsi) (24) 

where C ∼ N(μ, σ2) is considered as a perturbation factor, usi and vsi 

are two randomly selected members. It is clear that if 
∑

i
W+

si ∕= 1 and 
∑

i
W−

si ∕= 1, a repair strategy is needed to set them equal to 1. If σ and μ 

have large values, the perturbation factor will have an excessive effect 
on the population generation procedure so that the heuristic conver-
gence will deviate. Based on the experiments, it is recommended that 
these parameters should be generated in the interval [0,1]. In the next 
step, the fitness value of each developed solution is calculated using the 
private sector company’s objective function to replace it in the next 
generation based on Pseudocode 1. 

Pseudocode 1. replacement strategy  

Where the fitness() function is calculated based on the private sector 
company objective function; thus, the optimal combination of GFI 
allocation to the selected REDFs is determined. The pseudocode of the 
local search algorithm is presented as Pseudocode 2. 

Pseudocode 2. local search algorithm  

To clarify the selection process of usi and vsi, it should be mentioned 
that each member of S which is shown by the index s, contains a group of 
energies which are shown by i. For example, s = 5 may include a group 
of energies like {1,2, 3, 4, 5}. This group can be considered as a popu-
lation in which usi and vsi are selected from that. 

Based on the mentioned steps, the set of feasible government stra-
tegies, including the selected REDPs and the optimal amount of allo-
cated GFIs, are generated using GSS and a local search algorithm. 
According to these strategies, the private sector company model is 
solved optimally for each developed feasible government strategy to 
create a feasible solution space for the government. Consequently, the 
final solution of the heuristic is proposed to the decision-makers by 
replacing the obtained private sector company decision variables for 
each strategy in the government model and calculating the best value 
according to the government’s objective function. 

The proposed heuristic considers a classical non-cooperative Stack-
elberg game from the game theory perspective. The government 
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maximizes the minimum investment in the digital services companies 
(or private sector) in REDPs, and the private sector company tends to 
maximize its annual rate of return for the selected REDPs and minimize 
the total risk of the selected REDPs in a competitive environment. In 
each iteration of IFEH, the private sector company’s optimal solutions 
are calculated according to the feasible strategies the government 
generated. In this way, the Stackelberg equivalent can be obtained near- 
optimally. This approach best solves the bi-level models where the pri-
vate sector company level has discrete variables [71]. 

3.2.1.6. Limitations of the IFEH algorithm. While the IFEH algorithm 
presents a promising approach to addressing challenges in bi-level 
optimization, it is essential to recognize certain limitations that may 
impact its applicability and performance. 

3.2.1.6.1. Computational intensity. The iterative nature of the algo-
rithm, involving repeated interactions between the government and 
private sector companies, may result in increased computational in-
tensity. The algorithm’s performance could be impacted when applied 
to large-scale problems, particularly those with a high dimensionality of 
decision variables. 

3.2.1.6.2. Sensitivity to initial solutions. The reliance on all feasible 
government solutions as initial solutions might make the algorithm 
sensitive to the quality of these initial solutions. In scenarios where the 
government’s feasible solutions are not well-distributed or representa-
tive, the algorithm’s convergence to optimal solutions may be hindered. 

3.2.1.6.3. Discretization challenges. Handling discrete variables, 
although a strength of the algorithm, can also be a limitation. The al-
gorithm’s effectiveness may be contingent on the nature and distribu-
tion of discrete variables, and it might face challenges in cases where 
discrete decision spaces are highly fragmented or involve intricate 
combinatorial structures. 

3.2.1.6.4. Limited Adaptability to dynamic environments. The IFEH 
algorithm’s performance may be compromised in dynamic optimization 
environments where the problem parameters or constraints undergo 
frequent changes. The algorithm’s iterative nature might struggle to 
adapt to evolving scenarios promptly. 

3.2.1.6.5. Lack of robustness to noisy data. The algorithm may 
exhibit reduced robustness in noisy or uncertain data. Variability or 
inaccuracies in the input data could lead to suboptimal solutions or 
hinder the algorithm’s convergence. 

3.2.1.6.6. Solution interpretability. The complexity introduced by the 
iterative interactions and the integration of optimal private-sector 
company solutions into the government model may render the final 
solution less interpretable. Understanding the underlying decision- 
making process might be challenging, limiting the algorithm’s 
transparency. 

3.2.1.6.7. Algorithm tuning requirements. Achieving optimal perfor-
mance with the IFEH algorithm may require careful tuning of parame-
ters, making it sensitive to the choice of algorithmic settings. This tuning 
process can be time-consuming and may necessitate domain-specific 
expertise. 

4. Case study 

This paper investigates the evaluation of investment opportunities 
and governmental incentive allocation in renewable energies in Iran as a 
case study. Fig. 6 illustrates the trend of electricity generation using 
renewable resources and the portion of renewable energies to total 
generated energy in Iran from 2001 to 2019. 

Providing financial resources for REDPs is one of Iran’s most chal-
lenging problems. Iranian banks as investment institutions cannot 
completely cover the required financial resources for REDPs and provide 
high-interest loans (about 18 % interest rate). Moreover, the recent 
decline in oil price, as the primary income of Iran, makes the govern-
ment prioritize industrial projects to pay them from the limited National 
Development Fund [86]. 

According to the proposed information on the SABTA website [87], 
nominal capacity, installed capacity, and the number of active com-
panies in the renewable energy section by the end of 2019 are presented 
in Table 2. 

According to Table 2, by the end of 2019, about 46.6 % of electricity 
generation in the renewable energy sector is related to solar energy. 
38.6 % of the electricity is generated by wind energy, and other 
renewable energy power plants produce 14.8 % of the electricity. 
Moreover, the nominal capacity of solar and wind power plants is about 
33.8 % and 63.5 %, respectively. Approximately 82.6 % of active 
companies in the renewable energy sector are in the field of solar energy. 
This information shows that solar and wind energies have attracted the 
attention of government and digital services companies. Therefore, 
other renewable energies, such as biomass, hydropower, and WHR, have 

Fig. 6. Renewable energy generation in Iran from 2001 to 2019.  

Table 2 
Related information about active companies in renewable energies in Iran.  

Power plant Nominal Capacity 
MW 

Installed Capacity 
MW 

Number of 
companies 

Wind 1427 302 45 
Solar PV 2685 365 299 
Biomass 31 11 5 
Small 

Hydropower 
15 91 8 

Waste heat 
recovery 

68 13 5 

Total 4226 782 362  
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not developed like solar or wind energies, and the digital services 
companies have not invested in these REDPs. To solve this problem, the 
government intends to prioritize investment opportunities based on 
some criteria related to investment management and renewable energy 
development and allocate GFI to REDPs. For this purpose, five types of 
renewable energies, including solar, wind, biomass, hydropower, and 
WHR, which have the most applications in Iran, are investigated from a 
sustainable investment perspective. The criteria and sub-criteria used in 
this paper are presented in Table 3. 

Based on Table 3 and the available data on the Renewable Energy 
and Energy Efficiency Organization in Iran (SABTA) website, the nu-
merical results obtained from evaluating investment opportunities in 
renewable energy in Iran can be examined using the proposed ap-
proaches. Notably, the opinions of some experts employed in some 
active companies in the renewable energy organization in Iran have 
been considered to complete the required information [104]. 

5. Computational results 

This section investigates the weighting of the related criteria and 
sub-criteria and prioritizes REDPs to evaluate investment opportunities 
in renewable energies in Iran. Moreover, performance validation of the 

proposed bi-level optimization model is examined. Finally, some 
managerial insights are presented through sensitivity analysis results. 
This study implements BWM, VIKOR, and GRA in GAMS 24.1 and 
MATLAB R2017b. The heuristic is coded in Python 3.8.3 and runs on a 
PC with a 3.2 GHz Intel Core i7-640 M CPU and 16 GB of RAM. 

The structure of computational results is presented in two sub- 
sections. First, calculations of the multicriteria decision model are 
described in two parts: weighting criteria and sub-criteria by BWM and 
prioritizing REDPs using VIKOR and GRA. Then, sensitivity analysis of 
criteria weight is performed to select the best prioritization method. 
Second, based on the presented prioritization by the best method, the 
applicability of the bi-level model and performance of the developed 
heuristic are investigated. Moreover, some managerial insights are 
driven by performing sensitivity analyses. 

5.1. Computational results of the MCDM model 

The proposed case study considers five types of REDPs in solar, wind, 
bio-mass, hydropower, and WHR alternatives. There are 13 sub-criteria 
in economic, technical, managerial, environmental, and social cate-
gories. The pairwise comparisons are determined using the opinions of 
seven experts in some companies related to SABTA. 

5.1.1. Weighting the criteria using BWM 
The best and the worst criteria and the related preferences are 

determined through BWM questionnaires completed by some experts in 
the field of renewable energies. Table 4 shows the weight of criteria and 
sub-criteria obtained by BWM. 

The political and financial support criterion has the highest global 
weight (0.184), and land use has the lowest (0.023). Payback period, 
investment cost, efficiency, and compatibility with national energy po-
litical plan with global weights (0.137), (0.133), (0.115), and (0.091) 
are ranked second to fifth, respectively. A detailed calculation related to 
BWM is presented in Appendix A. 

5.1.2. Prioritizing the alternatives using VIKOR and GRA 
According to the proposed procedure, the alternatives are evaluated 

using the experts’ views using the linguistic scales 1 to 5 that present the 
low to the high importance, respectively. After that, an average of the 
obtained rates is determined. Based on the results presented in Online 
Resources and the final results in Table 5, solar, wind, and hydropower 
are ranked as the first, the second, and the third alternatives in both 
prioritization methods. About the other REDPs, VIKOR ranked WHR as 
the fourth alternative and biomass as the fifth one. On the contrary, 
biomass and WHR are reported as the fourth and fifth ones using GRA, 
respectively. 

The numerical distance (ND) between alternative scores obtained by 
VIKOR and GRA is an applicable measure for comparing the robustness 
of the proposed methods that is calculated by Equation (25). This 
measure shows the ranking reliability for each method. Therefore, larger 
values of this measure indicate higher robustness. 

NDij =

⃒
⃒wi − wj

⃒
⃒

∑

i
wi

∀i∕= j ∈ criteria set (25) 

According to Table 6, VIKOR reports larger values for ND than GRA 
in all REDPs pairwise comparisons. For instance, ND for solar and WHR 
pairwise comparisons are 0.44 by VIKOR and 0.08 by GRA. Hence, 
VIKOR results in more robustness than GRA in the case study. 

5.1.3. Sensitivity analysis for ranking methods 
In this sub-section, sensitivity analysis of VIKOR and GRA is per-

formed to evaluate their robustness over changing criteria weights 
because these changes significantly affect alternative prioritization. For 
this purpose, two robustness measures R1 and R2 are defined. Measure 
R1 is related to calculating the number of changes in alternatives’ 

Table 3 
Criteria and sub-criteria related to evaluating investment opportunities in 
REDPs.  

Criteria Sub-criteria modality Description Ref. 

Economic Investment cost Cost Equipment 
installation cost 

[26,28, 
88,89] 

O&M cost Cost Labor resource 
cost, operational 
budget, and 
maintenance 
costs 

[26,27, 
30, 
89–91] 

Production cost Cost Energy 
conversion cost 

[28,34, 
92] 

Investment 
payback period 

Benefit The period when 
the initial capital 
can be received 

[29, 
93–95] 

Technical Efficiency Benefit The rate of output 
to input 

[30,31, 
96–99] 

Production 
Capacity 

Benefit Maximum annual 
energy 
production rate 

[31,91, 
99,100] 

Technical 
development 

Benefit Technology 
reliability and its 
development at 
the national level 

[26,28, 
31,89] 

Managerial Political and 
financial support 

Benefit Government 
support programs 
like financial 
incentives 

[32,95, 
101] 

Compatibility 
with the 
National Energy 
Political Plan 

Benefit Government 
action plans to 
promote 
renewable 
energies 

[32, 
101–103] 

Environmental GHG emissions Cost CO2 production 
during the power 
plan life cycle 

[26,27, 
89,91] 

Land use Cost Lands needed to 
establish power 
plants 

[27,34, 
88] 

Social Job creation Benefit Number of fixed 
and variable jobs 
that are created 
by establishing 
power plants 

[31,88, 
99,100] 

Social 
acceptance 

Benefit Social acceptance 
of renewable 
energy 
development in 
the country 

[26,30, 
90,91]  
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position concerning the initial ranking. For example, if the alternative 
initial ranking is 1 > 2 > 3 > 4 > 5 and after changing the weight of one 
criterion, the new ranking becomes 4 > 2 > 3 > 1 > 5, then the mea-
sure R1 will equal one because one change (the rank of alternatives 1 and 
4) is applied. In measure R2, the number and position change weight are 
taken into account. In the above example, R2 equals 3 since alternative 1 
(or similarly alternative 4) is changed three ranks. For the sensitivity 
analysis, the weight is set with a 5 % or 50 % increase or decrease of the 

criterion weight. Figs. 7 and 8 show a comparison of the sensitivity 
analysis based on R1 and R1. To set the criteria weight equal to 1, the 
remaining criteria must be proportionally decreased when a criterion 
weight increases. 

Fig. 7 shows that based on the measure R1, changing weights of C3 
and C11 does not result in REDP ranking change. These results approve 
Table 5, which shows that the mentioned criteria have low effects on 
prioritizing alternatives. Changing weights of C1, C8, and C9 affects 
REDP prioritization obtained by GRA. The change in weight of C4, C5, 
and C7 permutes the alternative ranking obtained by GRA. Fig. 8 illus-
trates that VIKOR and GRA have similar performance over changing 
weights of C4 and C8. However, changing weights of C5, C6, and C9 
significantly affect REDP prioritization obtained by GRA. 

As a result, GRA has more significant sensitivity over changing 
criteria weights than VIKOR. Therefore, VIKOR is selected as the best 
method for REDP prioritization in the case study because of the 
robustness of analytical insight. 

Table 4 
The obtained weights of criteria/sub-criteria.  

Criteria Criteria Weights Sub-Criteria Code Sub-Criteria Weights Global Weights Ranking 

Economic 0/340 Investment cost C1 0/391 0/133 3 
O&M cost C2 0/135 0/046 8 
Production cost C3 0/069 0/024 12 
payback period C4 0/404 0/137 2 

Technical 0/224 Efficiency C5 0/513 0/115 4 
Production Capacity C6 0/200 0/045 9 
Technical development C7 0/286 0/064 6 

Managerial 0/275 Policy & financial support C8 0/670 0/184 1 
Compatibility with the National Energy Policy Plan C9 0/330 0/091 5 

Environmental 0/052 GHG emissions C10 0/554 0/029 11 
Land use C11 0/446 0/023 13 

Social 0/085 Job creation C12 0/563 0/048 7 
Social acceptance C13 0/437 0/037 10  

Table 5 
Final prioritization of REDPs using VIKOR and GRA.  

Rank VIKOR GAR 

Q Renewable Energy Γ Renewable Energy 

1 0 Solar 0.736 Solar 
2 0.263 Wind 0.650 Wind 
3 0.382 Hydropower 0.633 Hydropower 
4 0.624 Biomass 0.513 Waste heat recovery 
5 0.996 Waste heat recovery 0.492 Biomass  

Table 6 
ND measure for VIKOR and GRA.  

Energy Solar Wind Hydropower Biomass Waste heat recovery 

VIKOR GRA VIKOR GRA VIKOR GRA VIKOR GRA VIKOR GRA 

Solar – – 0.12 0.03 0.17 0.03 0.28 0.07 0.44 0.08 
Wind 0.12 0.03 – – 0.05 0.01 0.28 0.07 0.44 0.08 
Hydropower 0.17 0.03 0.05 0.01 – – 0.11 0.04 0.27 0.05 
Biomass 0.28 0.07 0.28 0.07 0.11 0.04 – – 0.16 0.01 
WHR 0.44 0.08 0.44 0.08 0.27 0.05 0.16 0.01 – –  

Fig. 7. Robustness analysis of ranking methods using R1.  
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5.2. Computational results of the optimization model 

In this sub-section, the bi-level model is solved by the proposed 
heuristic and optimal combination of allocated GFI to the ranked REDPs 
and the optimal investment amount by digital services companies in 
each REDP. Before presenting the obtained results, the data collection 
procedure is explained. 

5.2.1. Data collection 
The government plans to increase the private sector’s investment in 

less developed renewable energies in Iran. The required data to solve the 
optimization model is presented in this sub-section. The development 
preference of each renewable energy project is one of the most critical 
input parameters calculated by Equation (26). 

Pi =
∑

j∈{Qj>Qi}

NDij ∀i ∈ criteria set (26) 

where, Qi is the rank of ith REDP. In this way, a REDP with a lower 
rank resulting from VIKOR has a higher priority in persuading digital 
services companies to invest. Li and Ui are determined by the decision- 
maker. Moreover, the total budget for REDPs is assumed to be about 
$1100 for 5 KW. Moreover, the annual income for each 5 KW in 2019 is 
about $1540, and the initial investment cost is nearly $2475. It should 
be noted that the investment cost is considered a fixed cost and is paid 
for three to five years. Fi and Ki are determined by the digital services 
companies’ preferences. The investment risk for solar, wind, hydro-
power, biomass, and WHR energies is assumed to be about 8.1 %, 11.7 
%, 19.4 %, 24.8 %, and 35.1 %, respectively. 

5.2.2. The heuristic performance evaluation 
As mentioned in the heuristic framework, all government strategies 

for REDP selection should be generated to create the GSS set. There are 
five REDPs, including solar (1), wind (2), hydropower (3), bio-mass (4), 
and WHR (5), in Iran, so all of the feasible combinations of REDPs se-
lection for a government are generated as follow. 

|LSS| =
(

5
1

)

+

(
5
2

)

+

(
5
3

)

+

(
5
4

)

+

(
5
5

)

=5+2×
5!
2!

+5+1=31   

In the next heuristic step, all optimal combinations of GFI allocation are 
generated using the proposed local search algorithm presented in 
Table 7. 

The optimal amount of digital services companies’ investment in 
REDPs is determined by optimally solving the private sector company 
model using the heuristic operators. Thus, creating a feasible decision 
space for the government to obtain the final solution by the govern-
ment’s objective function is possible. Table 8 shows the numerical re-
sults of GFI allocation to different REDP combinations. 

The generated variables in Table 7 for each GSS member are inserted 
into the government model to obtain the final solution. The best com-
bination is the final solution to the problem based on the government’s 
objective function. Therefore, the final solution obtained is a high- 
quality, near-optimal solution. Fig. 9 illustrates the government’s 
objective function values for each generated xi and yi of GSS members. 

Fig. 9 shows the optimal values of the government objective function 
according to the different values of wi and GSS members. It can be shown 
that if N = 1, LSS1 is selected as the optimal combination and resulted in 
2.265 for the government’s objective function, which is the highest 
value. Only WHR is selected in this combination, and all available 
budget is allocated. If N = 5, the government objective function is equal 
to 1.01163, which shows the government’s desirability decreases for 
increasing N. For large values of N, the investment of digital services 
companies is allocated to REDPs that do not have high priority for the 
government. However, digital services companies tend to invest in more 
REDPs to minimize the investment risk. Fig. 10 shows the investment 
risk for a different combination of REDPs. 

The government objective function values and the private sector 
company risk for a different combination of REDPs, which are presented 
in Figs. 9 and 10, have a similar trend. The high-priority REDPs the 
government selects are the high-investment risk projects for the private 
sector companies. This similarity approves the investigated problem in 
the case study about the high investment risk for the digital services 
companies in less developed energies selected by SABTA. However, 
using the proposed approach, the optimal GFI allocation to the digital 
services companies leads investors to invest despite the high risk, which 
is precisely the primary purpose of this research. The optimal amount of 
private sector investment for dual, triple, quadruple, and quintuple 

Fig. 8. Robustness analysis of ranking methods using R2.  

LSS=
{

(1), (2), (3), (4), (5), (1, 2), (1, 3), (1, 4), (1, 5), (2,3), (2,4), (2,5), (3, 4), (3, 5), (4, 5), (1,2, 3), (1, 2,4), (1,2, 5), (1,3, 4),
(1, 3,5), (1, 4,5), (2,3, 4), (2, 3,5), (2, 4,5), (3,4, 5), (1, 2, 3,4), (1,2, 3,5), (1,2, 4, 5), (1, 3,4, 5), (2, 3, 4,5), (1,2, 3,4, 5)

}
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component combinations is illustrated in Fig. 11. 
Fig. 11 shows that hydropower and WHR are selected for investment 

by the digital services companies for N = 2. Since WHR has more in-
vestment risk than hydropower, the government allocates $1605 as GFI 
to hydropower and $5814 to WHR for each 5 KW. In other words, digital 
services companies are encouraged to invest 81 % in WHR and 19 % in 
hydropower. For N = 3, the digital services companies invest 59 % in 
WHR, 30 % in hydropower, and 11 % in wind energy. The allocated GFI 
to them is $4020, $2089, and $1090 for each 5 KW, respectively. For N 
= 4, about 38 % of the digital services company’s budget is invested in 
bio-mass energy because the government allocated $4592 for each 5 
KW. WHR, hydropower, and solar energies with GFIs equal to $1232, 
$1078, and $617 are the other projects for the digital services companies 
with 24 %, 22 %, and 16 % of the total budget. Finally, for N = 5, GFI 
could not completely cover the investment risk effect, and about 52 % of 
the total investment of digital services companies is allocated to solar 

and wind energies, known as developed renewable energies in Iran. 
However, WHR is the main investment project with 38 % of total in-
vestment because the government allocated about $3407 for each 5 KW 
to this type of energy. There is a 5 % digital services companies’ in-
vestment in biomass and hydropower. However, in the current situation, 
these types of renewable energies do not have any portion of the in-
vestments of digital services companies. As a result, it can be stated that 
the proposed model and the heuristic significantly improve the GFI 
allocation to REDPs to persuade digital services companies to invest in 
high-risk REDPs. 

6. Managerial implications 

According to the field interviews with some investors in the digital 
services companies, timely payment of financial resources by the gov-
ernment, government support for importing technical equipment from 

Table 7 
The optimal allocated GFI to REDP combinations.  

LSS1→y1 = 7419 LSS2→ y2 = 7419 
LSS3→y3 = 7419 LSS4→ y4 = 7419 
LSS5→y5 = 7419     

LSS6→y1 = 4770,
LSS7→y1 = 3810,
LSS8→y1 = 3916,
LSS9→y1 = 3598,
LSS10→y2 = 3112,
LSS11→y2 = 3070,
LSS12→y2 = 3710,
LSS13→y3 = 4505,
LSS14→y3 = 1605,
LSS15→y4 = 4205,

y2 =

2649 
y3 =

3609 
y4 =

3503 
y5 =

3821 
y3 =

4307 
y4 =

4349 
y5 =

3709 
y4 =

2914 
y5 =

5814 
y5 =

3214    
LSS16→y1 = 2473,

LSS17→y1 = 1944,
LSS18→y1 = 1775,
LSS19→y1 = 2164,
LSS20→y1 = 1767,
LSS21→y1 = 2120,
LSS22→y2 = 2192,
LSS23→y2 = 1090,
LSS24→y2 = 2336,
LSS25→y3 = 2164,

y2 =

3916,
y2 =

3351,
y2 =

4240,
y3 =

3928,
y3 =

3014,
y4 =

4205,
y3 =

3351,
y3 =

2089,
y4 =

4011,
y4 =

3928,

y3 =

1030 
y4 =

2124 
y5 =

1404 
y4 =

1327 
y5 =

2638 
y5 =

1094 
y4 =

1876 
y5 =

4240 
y5 =

1072 
y5 =

1327   
LSS26→y1 = 861,

LSS27→y1 = 1679,
LSS28→y1 = 1324,
LSS29→y1 = 617,
LSS30→y2 = 2114,
LSS31→y1 = 333,

y2 =

2758,
y2 =

2218,
y2 =

1489,
y3 =

1078,
y3 =

353,
y2 =

330,

y3 =

2222,
y3 =

2052,
y4 =

2272,
y4 =

4592,
y4 =

977,
y3 =

1439,

y4 =

1578 
y5 =

1470 
y5 =

2334 
y5 =

1232 
y5 =

3975 
y4 =

1910,

y5 =

3407  

Table 8 
The amount of digital services companies investment in different combinations 
of REDPs.  

LSS1→x1 = 1 LSS2→x2 = 1 LSS3→ 
x3 = 1 LSS4→x4 = 1 LSS5→x5 = 1     

LSS6→x1 = 0.27,
LSS7→x1 = 0.57,
LSS8→x1 = 0.6,
LSS9→x1 = 0.5,
LSS10→x2 = 0.55,
LSS11→x2 = 0.61,
LSS12→x2 = 0.51,
LSS13→x3 = 0.55,
LSS14→x3 = 0.19,
LSS15→x4 = 0.37,

x2 =

0.73 
x3 =

0.43 
x4 =

0.4 
x5 =

0.5 
x3 =

0.45 
x4 =

0.39 
x5 =

0.49 
x4 =

0.45 
x5 =

0.81 
x5 =

0.63    
LSS16→x1 = 0.49,

LSS17→x1 = 0.26,
LSS18→x1 = 0.38,
LSS19→x1 = 0.2,
LSS20→x1 = 0.15,
LSS21→x1 = 0.36,
LSS22→x2 = 0.36,
LSS23→x2 = 0.11,
LSS24→x2 = 0.41,
LSS25→x3 = 0.23,

x2 =

0.15,
x2 =

0.16,
x2 =

0.35,
x3 =

0.22,
x3 =

0.27,
x4 =

0.3,
x3 =

0.33,
x3 =

0.3,
x4 =

0.45,
x4 =

0.61,

x3 =

0.35 
x4 =

0.58 
x5 =

0.27 
x4 =

0.58 
x5 =

0.58 
x5 =

0.34 
x4 =

0.32 
x5 =

0.59 
x5 =

0.14 
x5 =

0.16   
LSS26→x1 = 0.28,

LSS27→x1 = 0.15,
LSS28→x1 = 0.29,
LSS29→x1 = 0.16,
LSS30→x2 = 0.43,
LSS31→x1 = 0.31,

x2 =

0.09,
x2 =

0.13,
x2 =

0.46,
x3 =

0.22,
x3 =

0.36,
x2 =

0.21,

x3 =

0.24,
x3 =

0.49,
x4 =

0.08,
x4 =

0.38,
x4 =

0.16,
x3 =

0.05,

x4 =

0.39 
x5 =

0.23 
x5 =

0.17 
x5 =

0.24 
x5 =

0.06 
x4 =

0.05,

x5 =

0.38  
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Fig. 9. The government’s objective function for different combinations of REDPs.  

Fig. 10. The private sector company investment risk for different combinations of REDPs.  

Fig. 11. The optimal values of digital services companies’ investment in REDPs.  
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some high-tech countries, and fair allocation of low-interest loans are 
the most critical concerns of the digital services companies to invest in 
REDPs. Moreover, ensuring initial capital return and minimizing fixed/ 
operational costs are other concerns that digital services companies tend 
to reduce by making optimal plans. The proposed MCDM model con-
firms the above problems and shows that political and financial support, 
payback period, and investment cost significantly affect investment 
opportunities in REDPs. Since solar and wind energies are the most 
developed REDPs in Iran (Fig. 12), the government tends to develop 
other renewable energies, including biomass, hydropower, and WHR, 
with the help of digital services companies. For this purpose, some GFI is 
considered to persuade digital services companies to invest in high-risk 
REDPs. 

Based on the optimization model results, WHR and hydropower have 
the highest allocated GFI because of their high-risk investment value. 
For N = 4 and N = 5, bio-mass is considered a high-efficiency investment 
project for digital services companies. The government allocates sig-
nificant GFI to WHR and hydropower for their development through 
cooperation with digital services companies. 

7. Conclusion and policy implication 

This study is a new attempt to develop a novel approach for evalu-
ating investment opportunities in REDPs and GFI optimal allocation in 
Iran. This hybrid approach is proposed based on MCDM methods and a 
bi-level optimization model that can be useful in deciding on a renew-
able energy system. The proposed MCDM model is designed based on 
BWM to weigh the related criteria and VIKOR and GRA to prioritize 
REDPs as alternatives. The optimization model is developed based on bi- 
level mathematical modeling where the government and the private 
sector companies are competitive. Since bi-level models are strongly NP- 
hard problems, this paper developed a new iterative full-enumeration- 
based heuristic based on a classical non-cooperative Stackelberg game. 
The extended heuristic finds the final solution by replacing the optimal 
solutions of private sector companies calculated according to the 
generated feasible government strategies with the government model 

and extracting the best one based on the government objective function. 
This procedure results in a near-optimal solution based on the Stackel-
berg equivalent conception. Computational results illustrate that “po-
litical and financial support” and “land use” are the most and the least 
important criteria, respectively. 

Moreover, considering the government plans to increase the invest-
ment of digital services companies in less developed renewable energies, 
WHR and hydropower energies are preferred. At the same time, private 
sector companies tend to invest in solar and wind energies as low-risk 
projects. The heuristic results show that hydropower and WHR are 
selected for investment by the digital services companies for N = 2. Since 
WHR has more investment risk than hydropower, the government al-
locates $1605 as GFI to hydropower and $5814 to WHR for each 5 KW. 
Therefore, digital services companies are encouraged to invest 81 % in 
WHR and 19 % in hydropower. For N = 3, the digital services companies 
invested 59 % in WHR, 30 % in hydropower, and 11 % in wind energy 
because the allocated GFI are $4020, $2089, and $1090 for each 5 KW. 
For N = 4, about 38 % of the digital services company’s budget is 
invested in bio-mass energy because the government allocated $4592 for 
each 5 KW. WHR, hydropower, and solar energies with GFI equal to 
$1232, $1078, and $617 are the other investable projects for the digital 
services companies with 24 %, 22 %, and 16 % of the total budget. 
Finally, for N = 5, GFI could not completely cover the investment risk 
effect. About 52 % of the total private sector investment is allocated to 
solar and wind energies, known as the developed renewable energies in 
Iran. However, WHR is the leading investment project with 38 % of total 
investment because the government allocates about $3407 for each 5 
KW to this type of REDP. For biomass and hydropower, there is a 5 % 
investment from the digital services companies; however, in the current 
situation, these types of renewable energies do not have any portion of 
private sector investment. Hence, SABTA experts believe that a mana-
gerial problem is finding an efficient GFI payment policy under gov-
ernment supervision. According to the SABTA experts, the main problem 
is finding an efficient policy to pay GFI under government supervision. 
This paper suggests four policies in Table 9 to achieve the best perfor-
mance in REDPs. 

Fig. 12. Geographical distribution of renewable energy powerplants in Iran (http://www.satba.gov.ir/en/home).  
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These policies can guarantee the success of the GFI allocation plan 
for developing renewable energies in Iran, and the digital services 
companies can also use government financial resources appropriately. 

It should be noted that the current study has some limitations in 
theory and practice, which are discussed below. First, in response to 
recognizing the diverse nature of GFIs and their potential impact on 
project return and risk, this paper acknowledges the need for a more 
nuanced treatment of GFIs in the optimization model. The assumption in 
this paper that different types of GFIs can be converted to a cash form, as 
reflected in the inclusion of the variable yi in equation (8) representing 
the rate of return for the private investor, is acknowledged. Future 
research can explicitly account for the distinct characteristics of various 
GFI forms that address this. GFIs will be categorized into direct and 
indirect financial support programs, aligning with classifications avail-
able in the Private Participation in Infrastructure database from the 
World Bank. The aim could be to provide a more comprehensive un-
derstanding of how different GFI types influence private-sector invest-
ment dynamics in renewable energy projects. 

Furthermore, this future agenda can commit to delving into the 
implications of indirect support programs, exploring how guarantees 
related to payment, debt, revenue, exchange rate, construction cost, and 
interest rate may impact the risk faced by private investors in PPPs. 
These enhancements aim to accurately represent the diverse forms of 
GFIs and their effects on private sector investment in renewable energy 
projects. This refinement considers the intricate aspects of GFIs. It is 
crucial to the model’s robustness, striving to capture their diverse forms 
and their effects on private sector investment dynamics in renewable 
energy projects. 

Second, the bi-level optimization model encompasses the nuanced 
consideration of risk by incorporating the rate of return for the private 
investor. This rate of return, shaped by the allocation of GFIs, encap-
sulates the investor’s perception of risk. The iterative full-enumeration- 
based heuristic further refine the understanding of how private 

investors, each with unique risk appetites, strategically approach their 
investment decisions within the PPP framework. To enhance clarity, as a 
future research agenda, a deeper exploration can be undertaken into 
how the specific contractual forms of PPPs influence risk allocation. This 
expansion should comprehensively explore the risk-return dynamics 
inherent in the PPP context, ensuring a nuanced understanding of how 
risks are distributed between public and private partners. 

As another suggestion for developing the proposed problem in this 
paper, considering the input parameters under interval uncertainty and 
developing a robust approach can be applied to future research. More-
over, one can extend this work by developing models and solution al-
gorithms for problems that integrate the capacity expansion of energy 
services and investment decisions. Moreover, potential future research 
may investigate variations in conditions set by private partners, assess 
the influence of diverse selection methods, and analyze the resultant 
implications for the proposed optimization model. Through delving into 
these aspects, a more comprehensive understanding of the multifaceted 
considerations inherent in PPPs can be achieved, thereby making a 
substantive contribution to the progress of the research field. 
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Table 9 
Suggested policies for GFI payment to REDPs.  

Policy Description Suggestion for implementation 

Direct Cash 
Incentives 

These incentives take different forms, like performance-based incentives, 
rebates, buydowns, and grants. Rebates are issued as payments to the system 
installer after the installation is complete. A buydown is a reduction in the 
bottom-line cost of the system for the buyer. Grants, generally used for large 
projects, are more complex and have a competitive application process. These 
incentives are based on system capacity, percentage of capital cost, or expected 
system performance. However, performance-based incentives are based on the 
output energy of the system and are disbursed over several years. 

✓These incentives should be provided until the industry can compete with the 
coal and oil-based energy industries in terms of cost and market capacity. 
✓Policymakers in this field should meet solely to discuss and modify the various 
bottlenecks to support the industry most efficiently. 

Property Tax 
Incentives 

This incentive mitigates or eliminates rising property value from installing 
renewable energy systems. Since renewable energy systems are associated with 
high installation costs, they result in the elevated value of the property. This 
could be a hindrance to renewable energy systems in the future. Property tax 
incentives significantly encourage installing renewable energy systems on a 
property. 

✓Provide explicit property tax exemption for installed renewable energy 
systems rather than providing credit since providing credits can benefit some 
and not others. 

Sales Tax 
Incentives 

This incentive provides an exemption from sales tax on the purchase and 
installation of renewable energy systems to help reduce a certain portion of the 
high cost incurred during its purchase and installation. Sales tax varies from 
state to state, resulting in varied incentives from state to state. 

✓This incentive is vital in highlighting the significance of renewable energy 
systems by providing buyers with tax incentives and making them feel it is 
essential to achieving energy independence. 

Loan Programs These programs encourage the installation of renewable energy systems by 
addressing the financial barrier of high installation costs. Though they do not 
reduce the cost, they help reduce it over some time. 

✓More states should develop fund-generating methods like those mentioned in 
the example so that these loan programs do not affect the state budget. 
✓More accountability in case a person or company shifts from one property to 
another or associates the system with the property.  

S. Mostafayi Darmian et al.                                                                                                                                                                                                                  

https://doi.org/10.1016/j.seps.2024.101953


Socio-Economic Planning Sciences 95 (2024) 101953

18

Appendix A. calculation of BWM in detail  

Table A.1 
Pairwise comparisons for main criteria by experts (Best-to-other)  

Expert Best criteria Economic Technical Managerial Environmental Social 
1 Economic 1 3 2 9 7 
2 Economic 1 2 2 8 5 
3 Managerial 3 2 1 7 6 
4 Technical 3 1 3 8 4 
5 Economic 1 3 3 8 4 
6 Managerial 2 3 1 9 6 
7 Economic 1 3 4 9 6   

Table A.2 
Pairwise comparisons for main criteria by experts (Other-to-worst)  

Worst criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Environmental Social Environmental Environmental Social Environmental Environmental 

Economic 9 7 5 4 8 6 9 
Technical 6 7 6 9 7 7 5 
Managerial 5 6 8 5 6 9 6 
Environmental 1 3 1 1 3 1 1 
Social 3 1 3 2 1 3 2   

Table A.3 
Local optimal weights of main criteria  

Main Criteria DMs Average local weights 
1 2 3 4 5 6 7 

Economic 0.448 0.383 0.172 0.177 0.437 0.263 0.500 0.340 
Technical 0.174 0.251 0.258 0.463 0.212 0.176 0.203 0.248 
Managerial 0.261 0.251 0.434 0.177 0.212 0.435 0.152 0.275 
Environmental 0.041 0.063 0.051 0.049 0.08 0.038 0.043 0.052 
Social 0.075 0.053 0.086 0.133 0.059 0.088 0.101 0.085 
ξ 0.035 0.041 0.098 0.081 0.041 0.023 0.028 0.050   

Table A.4 
Pairwise comparisons for economic sub-criteria by experts (Best-to-other)  

Expert Best criteria Investment cost O&M cost Production cost payback period 
1 Investment cost 1 5 7 3 
2 payback period 2 3 8 1 
3 O&M cost 2 1 6 3 
4 Investment cost 1 7 4 4 
5 payback period 2 5 8 1 
6 Investment cost 1 4 9 5 
7 payback period 2 3 7 1   

Table A.5 
Pairwise comparisons for economic sub-criteria by experts (Other-to-worst)  

Worst criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Production cost Production cost Production cost O&M cost Production cost Production cost Production cost 

Investment cost 7 5 7 9 7 9 7 
O&M cost 5 6 9 1 7 8 6 
Production cost 1 1 1 3 1 1 1 
payback period 5 7 8 6 9 7 9   
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Table A.6 
Local optimal weights of economic sub-criteria  

Economic Experts Average local weights 
1 2 3 4 5 6 7 

Investment cost 0.561 0.286 0.156 0.573 0.329 0.545 0.289 0.391 
O&M cost 0.142 0.190 0.052 0.058 0.132 0.177 0.193 0.135 
Production cost 0.059 0.048 0.059 0.184 0.042 0.042 0.051 0.069 
payback period 0.237 0.476 0.733 0.184 0.497 0.236 0.467 0.404 
ξ 0.062 0.023 0.042 0.017 0.027 0.076 0.021 0.038   

Table A.7 
Pairwise comparisons for technical sub-criteria by experts (Best-to-other)  

Expert Best criteria Efficiency Production Capacity Technical development 
1 Efficiency 1 8 5 
2 Technical development 3 9 1 
3 Technical development 2 9 1 
4 Efficiency 1 8 3 
5 Production Capacity 3 1 7 
6 Efficiency 1 8 7 
7 Efficiency 1 3 8   

Table A.8 
Pairwise comparisons for technical sub-criteria by experts (Other-to-worst)  

Worst criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Production 
Capacity 

Production 
Capacity 

Production 
Capacity 

Production 
Capacity 

Technical 
development 

Production 
Capacity 

Technical 
development 

Efficiency 7 5 4 8 4 8 9 
Production Capacity 1 1 1 1 7 1 5 
Technical 

development 
4 8 7 3 1 5 1   

Table A.9 
Local optimal weights of technical sub-criteria  

Technical Experts Average local weights 
1 2 3 4 5 6 7 

Efficiency 0.770 0.253 0.304 0.683 0.125 0.786 0.671 0.513 
Production Capacity 0.130 0.067 0.071 0.083 0.722 0.071 0.257 0.200 
Technical development 0.100 0.680 0.625 0.233 0.153 0.143 0.071 0.286 
ξ 0.036 0.016 0.034 0.021 0.015 0.077 0.056 0.036   

Table A.10 
Pairwise comparisons for managerial sub-criteria by experts (Best-to-other)  

Expert Best criteria Policy & financial support Compatibility with National Energy Policy Plan 
1 Policy & financial support 1 8 
2 Policy & financial support 1 8 
3 Compatibility with National Energy Policy Plan 8 1 
4 Compatibility with National Energy Policy Plan 7 1 
5 Policy & financial support 1 9 
6 Policy & financial support 1 8 
7 Policy & financial support 1 8   

Table A.11 
Pairwise comparisons for managerial sub-criteria by experts (Other-to-worst)  

Worst criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Compatibility with 
National Energy 
Policy Plan 

Compatibility with 
National Energy 
Policy Plan 

Policy & 
financial 
support 

Policy & 
financial 
support 

Compatibility with 
National Energy 
Policy Plan 

Compatibility with 
National Energy 
Policy Plan 

Compatibility with 
National Energy 
Policy Plan 

(continued on next page) 
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Table A.11 (continued ) 

Policy & financial 
support 

8 9 1 1 8 8 7 

Compatibility with 
National Energy 
Policy Plan 

1 1 9 1 1 1 1   

Table A.12 
Local optimal weights of managerial sub-criteria  

Technical Experts Average local weights 
1 2 3 4 5 6 7 

Policy & financial support 0.889 0.889 0.111 0.125 0.900 0.889 0.889 0.670 
Compatibility with the National Energy Policy Plan 0.111 0.111 0.889 0.875 0.100 0.111 0.111 0.330 
ξ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   

Table A.13 
Pairwise comparisons for environmental sub-criteria by experts (Best-to-other)  

Expert Best criteria GHG emissions Land use 
1 GHG emissions 1 8 
2 Land use 8 1 
3 GHG emissions 1 7 
4 GHG emissions 1 7 
5 GHG emissions 1 8 
6 Land use 8 1 
7 Land use 7 1   

Table A.14 
Pairwise comparisons for environmental sub-criteria by experts (Other-to-worst)  

Worst criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Land use GHG emissions Land use Land use Land use GHG emissions GHG emissions 

GHG emissions 7 1 8 7 7 1 1 
Land use 1 8 1 1 1 8 8   

Table A.15 
Local optimal weights of environmental sub-criteria  

Environmental Experts Average local weights 
1 2 3 4 5 6 7 

GHG emissions 0.889 0.111 0.875 0.875 0.889 0.111 0.125 0.554 
Land use 0.111 0.889 0.125 0.125 0.111 0.889 0.875 0.446 
ξ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   

Table A.16 
Pairwise comparisons for social sub-criteria by experts (Best-to-other)  

Expert Best criteria Job creation Social acceptance 
1 Social acceptance 7 1 
2 Job creation 1 9 
3 Job creation 1 9 
4 Social acceptance 7 1 
5 Job creation 1 8 
6 Social acceptance 8 1 
7 Job creation 1 8   
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Table A.17 
Pairwise comparisons for social sub-criteria by experts (Other-to-worst)  

Worst criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Job creation Social acceptance Social acceptance Job creation Social acceptance Job creation Social acceptance 

Job creation 1 8 7 1 7 1 7 
Social acceptance 8 1 1 9 1 9 1   

Table A.18 
Local optimal weights of social sub-criteria  

Social DMs Average local weights 
1 2 3 4 5 6 7 

Job creation 0.125 0.900 0.900 0.125 0.889 0.111 0.889 0.563 
Social acceptance 0.875 0.100 0.100 0.875 0.111 0.889 0.111 0.437 
ξ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
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[33] Büyüközkan G, Güleryüz S. Evaluation of Renewable Energy Resources in Turkey 
using an integrated MCDM approach with linguistic interval fuzzy preference 
relations. Energy 2017;123:149–63. 

[34] Kolagar M, Hosseini SMH, Felegari R, Fattahi P. Policy-making for renewable 
energy sources in search of sustainable development: a hybrid DEA-FBWM 
approach. Environ Syst Decis 2019:1–25. 

[35] Bourcet C. Empirical determinants of renewable energy deployment: a systematic 
literature review. Energy Econ 2020;85:104563. 

[36] Solangi YA, Tan Q, Mirjat NH, Valasai GD, Khan MWA, Ikram M. An integrated 
Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of 
renewable energy resources in Pakistan. Processes 2019;7(2):118. 

[37] Lee H-C, Chang C-T. Comparative analysis of MCDM methods for ranking 
renewable energy sources in Taiwan. Renew Sustain Energy Rev 2018;92:883–96. 

[38] Wu Y, Wang J, Ji S, Song Z. Renewable energy investment risk assessment for 
nations along China’s Belt & Road Initiative: an ANP-cloud model method. 
Energy 2020;190:116381. 

[39] Darmian SM, Afrasiabi A, Yazdani M. Multi-criteria evaluation of agro-processing 
industries for sustainable local economic development in East of Iran. Expert Syst 
Appl 2023;120607. 
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[91] Kabak M, Dağdeviren M. Prioritization of renewable energy sources for Turkey by 
using a hybrid MCDM methodology. Energy Convers Manag 2014;79:25–33. 

[92] Haddad B, Liazid A, Ferreira P. A multi-criteria approach to rank renewables for 
the Algerian electricity system. Renew Energy 2017;107:462–72. 
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