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Project portfolio managers are multi-objective Decision-Makers (DMs) who are expected to
select the best mix of projects by maximizing profits and minimizing risks over a multi-
period planning horizon. However, project portfolio decisions are complex multi-objective
problems with a high number of projects from which a subset has to be chosen subject to
various constraints and a multitude of priorities and preferences. We propose a Goal
Programming (GP) approach for project portfolio selection that embraces conflicting fuzzy
goals with imprecise priorities. A fuzzy goal with an aspiration level and a predefined
membership function is defined for each objective. The impreciseness in the priorities of
the membership values of the fuzzy goals is modeled with fuzzy relations. This leads to
type II fuzzy sets since fuzzy relations are organized between the membership values of
the fuzzy goals which are themselves fuzzy sets. The proposed model is based on the Tech-
nique for Order Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy preference
relations. TOPSIS is used to reduce the multi-objective problem into a bi-objective problem.
The resulting bi-objective problem is solved with fuzzy GP (FGP). The fuzzy preference
relations are used to help DMs express their preferences with respect to the membership
values of the fuzzy goals. The proposed approach is used to solve a real-life problem char-
acterized as a fuzzy Multi-Objective Project Selection with Multi-Period Planning Horizon
(MOPS–MPPH). The performance of the proposed approach is compared with a competing
method in the literature. We show that our approach generates high-quality solutions with
minimal computational efforts.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Multi-Objective Decision Making (MODM) techniques have attracted a great deal of interest due to their adaptability to
real-life decision making problems. In general, solving MODM problems with multiple (often conflicting) objectives requires
some form of compromise since the reinforcement of one objective will often worsen some or all of the other conflicting
objectives. Therefore, the Decision Maker (DM) must search for a trade-off between the objectives if the best overall result
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is to be obtained. Numerous MODM models have been proposed in the literature for reaching the best compromise between
conflicting objectives [34–36,60,77].

Formally, the MODM models involve a vector of decision variables, objective functions, and constraints. Generally, the
MODM problem can be formulated as follows:
ðMODMÞ
Min f ðXÞ
S:t: X 2 S ¼ fX 2 RnjgðXÞ 6 b; X P 0g

�
ð1Þ
where f(X) represents k different objective functions, g(X) 6 b represents m constraints, S is the feasible solution space, and
X 2 Rn is a vector of decision variables.

The MODM models have been classified into the following four classes according to the preference information: (1)
no articulation of the preference information; (2) a priori articulation of the preference information; (3) progressive
articulation of the preference information; and (4) posterior articulation of preference information [34,36]. Goal Pro-
gramming (GP), originally developed by Charnes and Cooper [15], is a mathematical programming technique capable
of handling multiple objectives with a priori articulation of the preference information [50]. The preference information
in GP is provided as a set of target values (aspiration levels) for the objective functions by the DMs [15]. The key idea
behind GP is to minimize the unwanted deviations from the goals set by the DMs [60]. Further development of the ori-
ginal GP model are proposed by Cooper [17], Lee [47], Ignizio [37,38], Hannan [27], Gass [23], Min and Storbeck [51],
Jones and Tamiz [40], Romero [56], Romero [57], Liao and Ho [48], and Chang [12]. GP models can be classified into
three major subsets (i.e., non-preemptive, lexicographic, and Chebyshev) based on the achievement function used for com-
bining the unwanted deviations [60,57]. Romero [55] presented a comprehensive review of GP models categorized into
18 areas of application and 12 different variants.

Classical GP considers a set of goals with precise and deterministic aspiration levels. However, in real-life problems, there
are many decision making situations where the DMs are not able to establish the aspiration levels precisely. A fuzzy GP (FGP)
method has been developed to deal with such situations [79,26,10,58,67,20,54,52,59,16,5,13,75,76,31,1,72,6,7,9,49].

In many real-life problems, DMs are simultaneously interested in multidimensional decisions with low-risk and high-re-
turn solutions. These decisions become more complicated when the DMs face several conflicting objectives under uncer-
tainty. Considering the DMs’ preferences for the priority structure of the aspiration levels makes the applications of
MODM more realistic in problems with uncertainties and ambiguities. These problems could be solved by simultaneously
modeling the aspiration levels as fuzzy variables and developing a fuzzy relation for the DMs’ preferences for the priority
of the objectives. In this study, we intend to generate high-quality solutions while modeling the imprecise preferences of
the DMs for the priorities of the goals and their aspiration levels. Using the proposed approach, a fuzzy MODM problem
is reduced to a bi-objective problem with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and
high-quality solutions are generated through a simultaneous consideration of low-risk and high-return objectives. All the
objectives from the original MODM problem will have an important role in the construction of the resulting bi-objective
problem. The resulting bi-objective problem is then solved with the proposed FGP approach. We reduce the computational
complexities and take into consideration the uncertain hierarchical structure of the DMs’ preferences and the fuzzy priority
relations of the membership values of the aspiration levels of the fuzzy goals. More precisely, our proposed approach has two
different modules. In the first module, we convert the original MODM problem into a bi-objective problem with TOPSIS. This
module seeks solutions that simultaneously have a minimum distance from the Positive Ideal Solution (PIS) and a maximum
distance from the Negative Ideal Solution (NIS). In the second module, we propose a new FGP approach to solve the resulting
bi-objective problem. The objective function in the final FGP includes a parametric combination of two types of imprecise-
ness. The first type of impreciseness refers to the imprecise preferences for the priority of the membership values of the fuz-
zy aspiration levels which are modeled with linguistic terms parameterized using a linear fuzzy relation function. The second
type of impreciseness refers to a weighted sum of the membership values of the fuzzy aspiration levels. The parametric nat-
ure of the proposed approach helps DMs generate solutions with desirable trade-offs between the objectives in a fuzzy
environment.

The overall properties of the proposed procedure (i.e., confining the objective dimension space while considering both the
ideal and the anti-ideal situations using TOPSIS, and extending the linear fuzzy relation between the membership values of
the aspiration levels for different fuzzy goals while interacting with the DMs) make it robust and well-posed for modeling
real-life problems. It is worth noting that a Multi-Objective Project Selection with Multi-Period Planning Horizon (MOPS–
MPPH) in a fuzzy environment has also been developed. The proposed procedure and the extended version of the FGP meth-
od proposed by Aköz and Petrovic [5] are applied to the MOPS–MPPH.

The remainder of the paper is organized as follows. In Section 2 we present the application of the TOPSIS method for
solving MODM problems. The proposed approach including a MODM problem using TOPSIS and an extended version of
the fuzzy priority relation are described in Section 3. In Section 4 we develop the MOPS–MPPH proposed in this
study. The proposed approach and an extended version of the FGP procedure developed by Aköz and Petrovic [5] are
applied to the MOPS–MPPH in Section 5. Finally, we end the paper with our conclusions and future research directions
in Section 6.
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2. TOPSIS method for solving the MODM problems

The TOPSIS method, introduced by Hwang and Yoon [35], is a well-known MODM approach. A wide variety of TOPSIS
applications have been reported in the MADM literature. Kahraman et al. [41] proposed a decision process for selecting
new product ideas based on fuzzy heuristic multi-attribute utility and hierarchical fuzzy TOPSIS. Abo-Sinna and Amer [2]
and Abo-Sinna et al. [4] used TOPSIS to solve multi-objective large-scale non-linear programming problems with block angu-
lar structure. Abo-Sinna and Abou-El-Enien [3] applied TOPSIS to large-scale multiple objective programming problems
involving fuzzy parameters. Jadidi et al. [39] used and extended the version of the TOPSIS method proposed by Abo-Sinna
and Abou-El-Enien [3] to solve the multi-objective supplier selection problem under price breaks using multi-objective
mixed integer linear programming. Lai et al. [46] used the compromise properties of TOPSIS to generate solutions with
the shortest distance from the PIS as well as the longest distance from the NIS and reducing a k-dimensional objective space
to a two-dimensional objective space by a first-order compromise procedure. Recently, Khalili-Damghani et al. [45] used a
TOPSIS method to confine the objective dimension space of real-life large-scale multi-objective multi-period project selec-
tion problems.

2.1. Algorithm I

In this section we briefly describe the TOPSIS method for MODM:
Step 1. Considering the original multiple objective optimization problem with k conflicting objectives as (2), we solve two

sets of single objective optimization problems as (3) and (4):
fOptimize f iðXÞ; i ¼ 1;2; . . . ; k; gjðXÞ 6 b; j ¼ 1;2; . . . ;m:g ð2Þ
fMin f iðXÞ; i ¼ 1;2; . . . ; k; gjðXÞ 6 b; j ¼ 1;2; . . . ;m:g ð3Þ
fMax f iðXÞ; i ¼ 1;2; . . . ; k; gjðXÞ 6 b; j ¼ 1;2; . . . ;m:g ð4Þ
where m and k have the same definitions as in Problem (1), gj(X) 6 b, j = 1,2, . . . ,m are the same set of constraints in Problem
(1), and b is a constant.

Step 2. Form the pay-off table for the objective functions and calculate Z+, and Z� as follows:
Z� ¼ Z�1 ; Z
�
2 ; . . . ; Z�i ; . . . ; Z�k�1; Z

�
k

� �
ð5Þ

Zþ ¼ Zþ1 ; Z
þ
2 ; . . . ; Zþi ; . . . ; Zþk�1; Z

þ
k

� �
ð6Þ
where Z� is a vector of the optimum values of the single objective problem which has been optimized in the contrary direc-
tion of the original MODM problem (i.e., NIS). On the other hand, if f1(X) is to be minimized in the original Problem (1), then
Z�1 is the optimum value of the problem {Max f1(X); gj(X) 6 b, j = 1,2, . . . ,m}, (i.e., Z�1 ¼ f �1 ðXÞÞ and Zþ1 is the optimum value of
the problem {Min f1(X); gj(X) 6 b, j = 1,2, . . . ,m.}, (i.e., Zþ1 ¼ f �1 ðXÞÞ.

Z+ is a vector of optimum values of the single objective problem which has been optimized in the same direction of the
original MODM problem (i.e., PIS). On the other hand, if f1(X) is to be maximized in the original Problem (1), then, Zþ1 is the
optimum value of the problem {Max f1(X); gj(X) 6 b, j = 1,2, . . . ,m.}, (i.e., Zþ1 ¼ f �1 ðXÞÞ and Z�1 is the optimum value of the prob-
lem {Min f1(X); gj(X) 6 b, j = 1,2, . . . ,m.}, (i.e., Z�1 ¼ f �1 ðXÞÞ.

It is clear that the range of the objective functions which are maximized in the original MODM problem (i.e.,
Zþi > Z�i ; i ¼ 1;2; . . . ; kÞ, can be estimated by Zþi � Z�i ; i ¼ 1;2; . . . ; k. In contrast, the range of the objective functions which
are minimized in the original MODM problem (i.e., Zþi < Z�i ; i ¼ 1;2; . . . ; kÞ, can be estimated by Z�i � Zþi ; i ¼ 1;2; . . . ; k.

Step 3. Using the NIS, the PIS, the range of the objective functions, the DMs’ opinions about the relative importance of the
objective functions, and considering i, (i = 1,2, . . . ,k) different objective functions in the original MODM problem (which have
been divided into k1 minimizing objective functions and k � k1 maximizing objective functions), we calculate the distance

function from the PIS (i.e., dPIS
p ðxÞÞ and the distance function from the NIS (i.e. dNIS

p ðxÞÞ as follows:
dPIS
p ðxÞ ¼

Xk1

i¼1

Wi �
ðfiðXÞ � zþi Þ

z�i � zþi

� �p

þ
Xk

i¼k1þ1

Wi �
ðzþi � fiðXÞÞ

zþi � z�i

� �p
" #1

p

ð7Þ

dNIS
p ðxÞ ¼

Xk1

i¼1

Wi �
ðz�i � fiðXÞÞ

z�i � zþi

� �p

þ
Xk

i¼k1þ1

Wi �
ðfiðXÞ � z�i Þ

zþi � z�i

� �p
" #1

p

ð8Þ
The parameter wi in Eqs. (7) and (8) reflects the importance weight of the distance of each objective function from its PIS
and NIS in the original MODM problem, respectively. The sum of wi over the index i is equal to unit. The parameter p is a
positive integer (p 2 {1,2,3, . . .} [ {1}) used to control the compromise solution in TOPSIS. The distance decreases as p in-
creases. More specifically, p = 1 refers to the Manhattan distance (the longest distance in the geometrical sense), p = 2, refers
to the Euclidean distance (the shortest distance in the geometrical sense), and p =1, refers to the Tchebycheff distance (the

shortest distance in the numerical sense). It is notable that dPIS
p ðxÞ and dNIS

p ðxÞ are scale independent since they are normalized
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to get values in the range [0,1]. Before normalization, it is not possible to compare objectives with different units of mea-
surement. However, after normalization comparing them is possible because their values are independent of the scale

and the metrics of the objective functions in the original MODM problem. Although dPIS
p ðxÞ and dNIS

p ðxÞ are scale independent,
they contain all the relevant measurement information for the objective functions in the original MODM problem.

Step 4. Given the overall goal of generating solutions which simultaneously have a minimum distance from the PIS and a
maximum distance from the NIS, we develop the bi-objective problem (9)–(11) as follows:
Min dPIS
p ðxÞ ð9Þ

Max dNIS
p ðxÞ ð10Þ

S:t: x 2 S ð11Þ
The resulting bi-objective problem can be solved using one of the aforementioned existing procedures in the literature
[2–4,39]. We refer to Eqs. (9)–(11) as the TOPSIS-based bi-objective problem where S is the feasible solution space in the ori-
ginal MODM problem. In other words, the expression x 2 S means that all the constraints of the general models (2)–(4) are
satisfied (i.e., gj(X) 6 b, j = 1,2, . . . ,m).

3. Proposed approach

In this section we develop a parametric MODM procedure based on TOPSIS with an uncertain hierarchical structure of the
DMs’ preferences on the membership values of the fuzzy aspiration levels.

3.1. Presentation of the DM’s preferences

Fuzzy relations are effective paradigms for representing DMs’ preferences with respect to different aspects of optimiza-
tion problems [42,43,64,44,21,18,19].

Definition 3.1. A fuzzy relation is a fuzzy set defined in a Cartesian product of crisp sets U1,U2, . . .,Un. More formally, a fuzzy
relation R in U1 � U2 � � � � � Un is defined as the fuzzy set R = {((U1,U2, . . . ,Un), lR(U1,U2, . . . ,Un))j(U1, U2, . . . ,Un) 2
U1 � U2 � � � � � Un} where lR: U1 � U2 � � � � � Un ? [0,1].

Chiclana et al. [18,19] introduced different forms of representation for the DMs’ preferences over a set of alternatives.
They also proposed an integration procedure for different combination of DMs’ preference formats.

Suppose X = {x1, . . . ,xn}, n P 2 is a finite set of alternatives. The alternatives are classified from best to worst according to
the DMs’ preferences. The DMs’ preferences for a set of alternatives, X, can be represented according to one of the following
definitions:
Definition 3.2. An individual preference ordering on X is defined as O = {o(1), . . . , (o(n)}, where o(�) is a permutation function
over the index set {1, . . . ,n}.
Definition 3.3. A fuzzy preference relation on X is described through P � X � X, with a membership function, lP:
X � X ? [0,1], where lP(xi, xj) = pij denotes the preference degree of alternative xi over xj.
Definition 3.4. A utility preference form on X is defined as a set of n utility values, U = {ui, i = 1, . . . ,n}, ui 2 [0,1], where ui

represents the utility evaluation of the DM to alternative xi.
Definition 3.5. A positive preference relation on X is defined through A � X � X, A = [aij], where aij indicates a ratio of the
preference intensity for alternative xi to that of xj.

Szmidt and Kacprzyk [62,63] used the intuitionistic fuzzy preference relation to study the consensus-reaching process,
and to analyze the extent of agreement in a group of experts. Xu [74] developed a special variation of GP for obtaining
the priority vector of incomplete fuzzy preference relations. Fan et al. [21] proposed a method for solving the MODM prob-
lems based on a linear GP model, where the preferences of the DM on the alternatives were represented with a fuzzy rela-
tion. Fan et al. [22] also proposed a GP model for solving group decision-making problems where the preference information
on the alternatives provided by the DMs was represented with multiplicative preference relations and fuzzy preference rela-
tions. Wang and Fan [69] proposed a chi-square method for obtaining a priority vector from an arbitrary mixture of the mul-
tiplicative and fuzzy preference relations of the DMs on the alternatives. Wang and Chen [70] used fuzzy linguistic
preference relations for constructing a pairwise comparison matrix in the fuzzy analytical hierarchy process method with
additive reciprocal property and consistency. Wang et al. [71] presented an optimization aggregation approach for determin-
ing the relative weights of individual fuzzy preference relations. Chang and Wang [14] used the consistent fuzzy preference
relations for a forecasting procedure concerning the success of advanced manufacturing technology implementation based
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on seven influential factors. The method reduced the ratio of the pairwise comparisons of the priority weights in comparison
with the analytic hierarchy process. Gong et al. [24] proposed GP models for deriving the priority vector of the intuitionistic
fuzzy preference relations.

3.2. Extension of the uncertain priority of the objectives using fuzzy relations

The main challenge in FGP is to represent the hierarchical structure of a DM’s preferences on the fuzzy priority of the
goals and their associated fuzzy aspiration levels. The fuzzy relation between the membership values of the fuzzy goals
has been effectively used to represent uncertain hierarchical structures of the DMs’ preferences on the priority of the mem-
bership values of the fuzzy goals. Considering Definition 3.3 and customizing it for Problem (1) results in Definitions 3.6 and
3.7 as follows:

Definition 3.6. Let G ¼ f~g1; . . . ; ~gng be a finite set of fuzzy goals and X = {x1, . . . ,xm} be the set of decision variables in Problem
(1). The membership of the fuzzy goal s, is ls(X): Rn ? [0,1], i = 1, . . . ,n.
Definition 3.7. Let G ¼ f~g1; . . . ; ~gng be a finite set of fuzzy goals, X = {x1, . . . ,xm}be the set of decision variables in Problem (1),
and F = {l1(X), . . . ,ln(X)} be a finite set of membership values of the fuzzy goals in G. The DMs’ preferences on F is represented
with a fuzzy preference relation, R � F � F, with membership function, lR: F � F ? [0,1] where lR(ls(X), lt (X)) denotes the
membership value of the preference of the membership value of the fuzzy goals (i.e., ls(X)) over the membership value of the
fuzzy goal t (i.e., lt(X)).

It can be concluded that R is a function of the membership value of the fuzzy goals while the membership value of the
fuzzy goals are a function of the decision variables, X, themselves. Formally, we organize a fuzzy relation based on several
membership functions of fuzzy goals, all considered simultaneously in a FGP. First, the fuzzy sets adjust the decision vari-
ables and the membership values of the fuzzy goals through ls(X) for a given fuzzy goal s. The hierarchical structure for
the DM’s preferences on the membership values of the fuzzy goals is then modeled through fuzzy relation R. This type of
uncertainty modeling can be assumed as a real-life application of the type II fuzzy sets in which a fuzzy relation has been
organized between the memberships values of the fuzzy goals which are fuzzy sets themselves. Clearly, the binary value
of lR for a DM’s preferences on the membership values of the two given fuzzy goals is not useful. In other words, different
values for the DM’s preferences on a given set of membership values of the fuzzy goals should be supplied through a suit-
able function of ls(X) and lt(X). Therefore, ls(X)–lt(X) can be a suitable function for representing this type of combined
relation. It is worth noting that ls(X) is abbreviated to ls in favor of simplicity throughout the remaining parts of the man-
uscript. More formally, lR which represents the preference of ls over lt is followed by Rq, q = 1,2, . . . ,10, which is a func-
tion of ls � lt.

One of the main features of the MODM procedures is their ability in handling the DMs’ preferences on the priority of
the goals. The hierarchical structure of the DMs’ preferences on the priorities of the membership values of the fuzzy goals
could be represented through fuzzy relations. The DMs can determine their preferences for the priority relations of the
membership values of the fuzzy goals in the form of linguistic terms which can be parameterized with fuzzy relations.
Herrera et al. [28–30] have proposed a framework based on the linguistic decision processes for group decision making
problems. Generally, the value for a variable can be represented by words in natural languages. This representation
through linguistic variables is characterized by fuzzy sets defined in the universe of discourse in which the variable is
defined.

We propose a framework for capturing the DM’s preferences on the membership values of a fuzzy goal through 3 dif-
ferent linguistic terms subdivided into 10 different linguistic sub-terms. Each sub-term is associated with a fuzzy prefer-
ence relation which is modeled with a linear fuzzy membership function. More formally, we develop a procedure using a
wide range of linguistic terms, different fuzzy priority relations for the DMs’ preferences on the membership values of the
fuzzy goals, and their associated membership functions. The approach framework is depicted in Fig. 1 while the details of
the linguistic sub-terms and their associated fuzzy relation membership functions are shown in Table 1 and Fig. 2, respec-
tively. Without loss of generality, we have assumed that the fuzzy preference relations are represented with linear mem-
bership functions.

As the DM’s preference on the priority of the membership values of two given fuzzy goals tends toward ‘‘extremely
more important’’ (i.e., toward R9 in Table 1), the membership values (i.e., lR) of a given member (i.e., ls–lt) in the set
will be smaller. Incomparability (i.e., case (j) in Fig. 2) and Exactly Equal (i.e., case (a) in Fig. 2) can be handled with the
existing crisp methods in the literature. Case (j) in Fig. 2 shows that goal s is unanimously preferred to goal t. Therefore,
lR10

will have a positive value equal to 1 if and only if ls–lt is equal to 1; otherwise, it will be 0. Case (a) in Fig. 2
shows the indifference between goal s and goal t. Therefore, lR1 will achieve a positive value equal to 1 if and only
if ls–lt is equal to 0; otherwise, it will be 0. All the remaining cases in Fig. 2, which are modeled through linguistic
terms parameterized with fuzzy relations, denote that the membership value of goal s is preferred to the membership
value of goal t to some extent.

The membership function of the fuzzy relations between the fuzzy goals can be formulated as follows:



Fig. 1. The hierarchical structure of the DM’s preferences on the achievement level of the goals.

Table 1
Linguistic terms and their associated fuzzy relations.

Linguistic term Linguistic sub-term Fuzzy relation

Equal Exactly equal eR1

Partially equal eR2

More important Partially more important than eR3

Slightly more important than eR4

Moderately more important than eR5

Significantly more important than eR6

Completely more important than eR7

Fully more important than eR8

Extremely more important than eR9

Incomparable Incomparable eR10
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leR1
¼

0 if � 1 6 ls � lt < 0

1 if ls � lt ¼ 0

0 if 0 < ls � lt 6 þ1

8>><>>: ð12Þ

leR2
¼

0 if � 1 6 ls � lt 6 �0:5

2ðls � lt þ 0:5Þ if � 0:5 6 ls � lt 6 0

�2ðls � lt � 0:5Þ if 0 6 ls � lt 6 0:5

0 if 0:5 6 ls � lt 6 þ1

8>>>>>><>>>>>>:
ð13Þ

leR3
¼

2ðls � lt þ 1Þ; if � 1 6 ls � lt 6 �0:5

1 if � 0:5 6 ls � lt 6 þ1

(
ð14Þ



Fig. 2. Linear fuzzy relation membership functions.
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leR4
¼
ðls � lt þ 1Þ; if � 1 6 ls � lt 6 0
1 if 0 6 ls � lt 6 þ1

�
ð15Þ
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leR5
¼

2
3 ðls � lt þ 1Þ; if � 1 6 ls � lt 6 0:5

1 if 0:5 6 ls � lt 6 þ1

(
ð16Þ

leR6
¼ ðls � lt þ 1Þ

2
; if � 1 6 ls � lt 6 þ1 ð17Þ

leR7
¼

0; if � 1 6 ls � lt 6 �0:5

2
3 ðls � lt þ 0:5Þ; if � 0:5 6 ls � lt 6 þ1

(
ð18Þ

leR8
¼

0; if � 1 6 ls � lt 6 0

ðls � ltÞ; if 0 6 ls � lt 6 þ1

(
ð19Þ

leR9
¼

0; if � 1 6 ls � lt 6 þ0:5

2ðls � lt � 0:5Þ; if þ 0:5 6 ls � lt 6 þ1

(
ð20Þ

leR10
¼

0; if � 1 6 ls � lt < þ1

1 if ls � lt ¼ þ1

(
ð21Þ
where s and t(s – t) are indices of two arbitrary objective functions in the original MODM problem.

3.3. Proposed fuzzy mathematical programming

Considering the TOPSIS-based bi-objective problem (9)–(11), the extended fuzzy relation developed in (12)–(21), and the
FGP model proposed by Tiwari et al. [68,69], the following model (called TOPSIS-based goal programming with fuzzy priorities)
is proposed for solving the MODM problems. The parameters of model (22)–(43) are defined as follows:
k, 0 6 k 6 1
 The parameter assigned to fine-tune convex combination of the weighted additive
achievement degrees of the fuzzy goals and the weighted sum of the DM’s preferences on
the membership values of the fuzzy goals
lPIS
p
 The membership value of the goal of the first objective in model (9)–(11)
lNIS
p
 The membership value of the goal of the second objective in model (9)–(11)
wPIS
p
 The relative importance of the satisfaction level of the first fuzzy goal in model (9)–(11)
wNIS
p
 The relative importance of the satisfaction levels of the second fuzzy goal in model (9)–

(11)

lst, s, t 2 {1,2}, s – t
 A binary variable which is equal to 1 if an importance relation has been defined between

the membership values of dPIS
p ðxÞ and dNIS

p ðxÞ; it is equal to 0 otherwise

wst, 0 6 wst 6 1
 The relative importance of the DM’s preference on the satisfaction levels of the fuzzy goals

s and fuzzy goals t
eRkðs; tÞ ¼ eRq; q ¼ 1;2; . . . ;10
 The fuzzy relation type k defined between the satisfaction levels of the fuzzy goals of the

objective functions in model (9)–(11) (i.e., dPIS
p ðxÞ and dNIS

p ðxÞ)

leRkðs;tÞ

; k ¼ 1;2; . . . ;10
 The membership value of the fuzzy relation type k defined between the membership

values of dPIS
p ðxÞ and dNIS

p ðxÞ

dPISþ

p

The minimum distance from the PIS for the compromise ratio of p when model (9)–(11) is
solved as a single-objective problem
dPIS�
p

The maximum distance from the PIS for the compromise ratio of p when model (9)–(11) is
solved as a single-objective problem
dNIS�
p

The minimum distance from the NIS for the compromise ratio of p when model (9)–(11) is
solved as a single-objective problem
dNISþ
p

The maximum distance from the NIS for the compromise ratio of p when model (9)–(11)
is solved as a single-objective problem
y
 A binary variable that enforces just one of the constraints (26) and (27) to be active
simultaneously
M
 A very large constant value

X
 The vector of the decision variables in the original MODM problem

S
 The feasible solution space in the original MODM problem
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Max k� wPIS
p � lPIS

p þwNIS
p � lNIS

p

� �
þ ð1� kÞ �

X2

s¼1

X2

t ¼ 1
t–s

ðwstlstleRðs;tÞÞ ð22Þ

S:t: lPIS
p 6

dPISþ
p � dPIS

p ðXÞ
dPISþ

p � dPIS�
p

ð23Þ

lNIS
p 6

dNIS
p ðXÞ � dNIS�

p

dNIS�
p � dNISþ

p

ð24Þ

1 P leR1ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR1 ð25Þ

2 lPIS
p � lNIS

p þ 0:5
� �

þM � y P leR2ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR2 ð26Þ

� 2 lPIS
p � lNIS

p � 0:5
� �

�M � yð1� zÞ 6 leR2ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR2 ð27Þ

2 lPIS
p � lNIS

p þ 1
� �

P leR3ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR3 ð28Þ

lPIS
p � lNIS

p þ 1
� �

P leR4ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR4 ð29Þ

2
3

lPIS
p � lNIS

p þ 1
� �

P leR5ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR5 ð30Þ

ðlPIS
p � lNIS

p þ 1Þ
2

P leR6ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR6 ð31Þ

2
3

lPIS
p � lNIS

p þ 0:5
� �

P leR7ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR7 ð32Þ

lPIS
p � lNIS

p

� �
P leR8ðs;tÞ

; 8lst ¼ 1; eRðs; tÞ ¼ eR8 ð33Þ

2 lPIS
p � lNIS

p � 0:5
� �

P leR9ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR9 ð34Þ

1 P leR10ðs;tÞ
; 8lst ¼ 1; eRðs; tÞ ¼ eR10 ð35Þ

0 6 lPIS
p 6 1 ð36Þ

0 6 lNIS
p 6 1 ð37Þ

0 6 leRðs;tÞ 6 1; 8lst ¼ 1; s; t ¼ 1; 2; s – t ð38Þ

lst 2 f0; 1g; s; t ¼ 1; 2; s – t ð39Þ
0 6 k 6 1 ð40Þ
wPIS

p þwNIS
p ¼ 1 ð41Þ

X 2 S ð42Þ
y 2 f0; 1g ð43Þ
We should note that s and t indices in model (22)–(43) refer to the PIS and the NIS in model (9)–(11), respectively. In
addition:

� Objective function (22) simultaneously maximizes a convex combination of the weighted additive membership values of
the fuzzy goals and the weighted sum of the uncertain DM’s preferences on the membership values of the fuzzy goals.
� Inequalities (23) and (24) have been written for the first and the second fuzzy goals (i.e., dPIS

p ðxÞ and dNIS
p ðxÞ).

� Only one of the constraints (25)–(35) is held at the same time. This reduces the complexity of model (22)–(43) as well as
the complexity of the overall procedure and only one judgment about the DM’s preferences on the membership values of
these two goals is required.
� Relations (36)–(38) guarantee the lower- and the upper-bound of the membership values of the fuzzy goals and the fuzzy

relations, respectively.
� Relation (39) holds the binary properties of the variable lst, s, t 2 {1,2}, s – t.
� Relation (40) controls the eligible values of parameter k.
� Eq. (41) is used to control the sum of the weights as the parameters wPIS

p and wNIS
p help DM fine-tune the weight of the

membership values of the fuzzy goals in the first segment of the objective function.
� Relation (42) represents the constraints in the original MODM problem (i.e., gj(X) 6 b, j = 1,2, . . . ,m in models (2)–(4).
� Relation (43) represents the binary properties of variable y.
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The parametric nature of the proposed approach can help a DM generate arbitrary solutions with a desirable trade-off
between the weighted additive membership values of the fuzzy goals and the weighted sum of the DM’s preferences on
the membership values of the fuzzy goals. As parameter k in (22) increases, the objectives in the TOPSIS-based bi-objective
problem are weighted more and the procedure tends to generate solutions which simultaneously satisfy the minimum dis-
tance from the PIS and the maximum distance from the NIS. In this case, the DM’s preferences on the priority of the mem-
bership values of these two fuzzy objectives (i.e., dPIS

p ðxÞ and dNIS
p ðxÞÞ are weighted less and consequently the generated

solutions are less likely of satisfying these preferences.
Next, a combined procedure (i.e., Algorithm II) is presented for solving the MODM problem. This procedure which is based

on FGP and TOPSIS considers the uncertain DM’s preferences on the priority of the membership values of the fuzzy goals
which have been modeled using linguistic terms parameterized with linear fuzzy relation membership functions as intro-
duced in Eqs. (12)–(21) and Fig. 2.
Fig. 3. Flowchart of the proposed framework.
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3.4. Algorithm II

Step 1. Apply Algorithm I to the MODM Problem (1).
Step 2. Form the pay-off table of theTOPSIS-based bi-objective problem (9)–(11).
Step 3. Ask the DM to determine his/her preferences on the priority of the membership values of the wPIS

p and wNIS
p objec-

tives in problem (9)–(11).
Step 4. Form the TOPSIS-based goal programming with fuzzy priorities using model (22)–(43).
Step 5. Fine-tune the parameters in model (22)–(43), solve model (22)–(43), and present a set of solutions to the DM.

We should note that Fig. 3 presents the flowchart of the proposed framework as well as the interactions between the
Algorithms I, the Algorithm II, and the DM.

4. Practical application of the proposed approach in the MOPS–MPPH problem

The selection of an optimum portfolio of projects has both practical and theoretical importance in project management. In
this section we present the practical application for the proposed framework.

4.1. Brief review of the project selection literature using mathematical programming

Chan et al. [11] developed a goal seeking model for solving capital budgeting problems. Steuer and Na [61] provided a
comprehensive and categorized bibliography of the multi-criteria decision making applications in capital budgeting, work-
ing capital management, and portfolio analysis. Badri et al. [8] developed a 0–1 GP model for information system project
selection. Padberg and Wilczak [53] applied a mathematical programming model to obtain an optimal decision rule for pro-
ject selection as a capital budgeting problem. Timothy and Kalu [65] developed a GP for capital budgeting under uncertainty.
Xu et al. [73] presented a fuzzy 0–1 integer chance-constrained programming model to find the solution for multi-project
multi-item investment problems. NSGA-II was used to solve an optimization model with a small modification to the con-
straint-handling rule. Gupta et al. [25] used fuzzy mathematical programming to develop a comprehensive set of models
for asset portfolio optimization. Huang [32] studied the capital budgeting problem in fuzzy environments. Two types of mod-
els were proposed using the credibility to measure a confidence level. A fuzzy simulation-based genetic algorithm was ap-
plied to solve the problem. Huang [33] proposed an optimal portfolio selection model to solve the portfolio selection
problem with random and fuzzy variables using neural networks. Liao and Ho [48] proposed a fuzzy binomial approach
to evaluate projects under uncertainty. They developed a method to compute the mean value of a project’s fuzzy net present
value. Tiryaki and Ahlatcioglu [66] proposed a revised version of the fuzzy analytic hierarchy process to solve a classical port-
folio selection problem. They applied their proposed method in choosing stocks on the Istanbul Stock Exchange. Zhang et al.
[78] proposed a portfolio selection model based on the lower- and upper-possibilistic means and possibilistic variances. The
MODM procedure (22)–(43) proposed in this study is applicable to a great many applications in multi-criteria decision mak-
ing. Next, we demonstrate the applicability of the proposed MODM procedure to the MOPS–MPPH problem:

Let us consider an organization that is facing several investment opportunities in the form of projects with the following
indices, parameters, and decision variables:

Indices:

j
 Number of projects (j = 1,2, . . . ,n)

i
 Type of human resources (i = 1,2, . . . ,m)

k
 Type of machine (k = 1,2, . . . ,s)

o
 Type of raw material (o = 1,2, . . . ,z)

t
 Planning period (t = 1,2, . . . ,T)
Parameters:

Hit
 Maximum available human resources Type i in Period t (man-hours)

hij
 Requirement of human resources Type i in Project j (man-hours)

Mkt
 Maximum available machine-hour Type k in Period t

mkj
 Requirement of machine-hour Type k in Project j

Rot
 Maximum available raw material Type o in Period t

roj
 Requirement of raw material Type o in Period j

Bjt
 Maximum available budget for project j in Period t

Cit
 Hourly cost of human resources Type i in Period t

Ckt
 Hourly cost of machine Type k in Period t

Cot
 Unit cost of material Type o in Period t

pjt
 Total net profit of Project j in Period t

Ijt
 Rate of return for Project j in Period t
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MARRt
 Minimum attractive rate of return in Period t

djt
 Duration of project j in Period t
Decision variables:
xjt ¼
1 if Project j is selected for investement in Period t

0 otherwise

�

Model (44)–(57) attempts to select an optimum portfolio of investment projects in a fuzzy multi-objective space consid-

ering several constraints in the multi-period planning horizon. We should note that all parameters of the proposed mathe-
matical model are assumed to be dynamically changeable through the planning horizon.

MOPS–MPPH problem objectives:
Max Z1 ¼
XT

t¼1

Xn

j¼1

xjt � pjt ð44Þ

Min Z2 ¼
XT

t¼1

Xn

j¼1

xjt

Xm

i¼1

hij � Cit þ
XT

t¼1

Xn

j¼1

xjt

Xs

k¼1

mkj � Ckt þ
XT

t¼1

Xn

j¼1

xjt

Xz

o¼1

roj � Cot ð45Þ

Max Z3 ¼
XT

t¼1

Xn

j¼1

xjt � Ijt ð46Þ

Min Z4 ¼
XT

t¼1

Xm

i¼1

ðHit �
Xn

j¼1

hij � xjtÞ þ
Xs

k¼1

ðMkt �
Xn

j¼1

mkj � xjtÞ þ
Xz

o¼1

ðRot �
Xn

j¼1

roj � xjtÞ
" #

ð47Þ
Constraints:
XT

t¼1

xjt 6 1; j ¼ 1;2; . . . ; n ð48Þ

XT

t¼1

ðt þ djtÞ � xjt 6 T þ 1; j ¼ 1;2; . . . ;n ð49Þ

Xn

j¼1

hijxjt 6 Hit; i ¼ 1;2; . . . ;m; t ¼ 1;2; . . . ; T ð50Þ

Xn

j¼1

mkjxjt 6 Mkt; k ¼ 1;2; . . . ; s; t ¼ 1;2; . . . ; T ð51Þ

Xn

j¼1

rojxjt 6 Rot; o ¼ 1;2; . . . ; z; t ¼ 1;2; . . . ; T ð52Þ

Xm

i¼1

hij � Cit þ
Xs

k¼1

mkj � Ckt þ
Xz

o¼1

roj � Cot

 !
� xjt 6 Bjt; j ¼ 1;2; . . . ;n; t ¼ 1;2; . . . ; T ð53Þ

Xm

i¼1

hij � Cit þ
Xs

k¼1

mkj � Ckt þ
Xz

o¼1

roj � Cot

 !
� xjt < Pjt ; j ¼ 1;2; . . . ;n; t ¼ 1;2; . . . ; T ð54Þ

Xn

j¼1

ðxjt � ðMARRt � IjtÞÞ 6 0; t ¼ 1;2; . . . ; T ð55Þ

Xn

j¼1

xjt P 0; t ¼ 1;2; . . . ; T ð56Þ

xjt 2 f0; 1g; j ¼ 1;2; . . . ;n; t ¼ 1;2; . . . ; T ð57Þ
We consider the following fuzzy objectives:

� Eq. (44) is used to maximize the net profit of the selected projects, where T is the upper-bound of the planning periods.
� Eq. (45) attempts to minimize the total cost of the selected projects, where s and z are reserved for the machine type and

the raw material type, respectively.
� Eq. (46) is intended to maximize the total internal rate of return of the selected projects.
� The last objective function presented in Eq. (47) is used to minimize the total unused resources of the optimum portfolio,

subject to the following constraints:
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� Constraints (48), held for all projects, ensure that each selected project must be selected only one time throughout the
planning horizon.
� Constraints (49), held for all projects, ensure that each selected project is completed in the planning horizon.
� Constraints (50), held for all human resources types in all projects and all planning periods, ensure that all human

resources needs are met during the project selection process.
� Constraints (51), held for all machine-hour types in all projects and all planning periods, ensure that all machine-hour

needs are met during the project selection process.
� Constraints (52), held for all raw material types in all projects and all planning periods, ensure that all raw material needs

are met during the project selection process.
� Constraint (53), held for all projects and all planning periods, checks the budget availability in the project selection

process.
� Constraint (54), held for all projects and all planning periods, ensures that the total cost of a selected project is less than

its profit.
� Constraints (55) ensure that the internal rate of return of the selected projects is greater than or equal to the Minimum

Attractive Rate of Return (MARR).
� Constraints (56) indicate that projects could be selected in each planning period.
� Constraints (57) refer to the zero-one orientation of the decision variables.
5. Experimental results

The performance of Algorithm II has been compared with an extended version of the FGP method proposed by Aköz and
Petrovic [5] for random generated cases of MOPS–MPPH. Both procedures have been coded in Lingo 11.0 and executed on a
Pentium 4 portable PC with Core 2 due CPU, 2 GHz, and Windows XP using 1 GB of RAM.
Table 2
Test problems.

Project number Period number Hit, Mkt, Rot hij, mkj, roj Pjt, Bjt Cit, Ckt, Cot Ijt MARRt djt

5 5 U[0,10,000] U[0, 2] U[1,100,000] U[0, 2] U[1,10] U[1,5] U[1,3]

Table 3
Budgets, profits, internal rates, durations, and MARR for the random case.

Project Period 1 Period 2 Period 3 Period 4 Period 5

Bjt

1 99668.00 29912.00 35258.00 15433.00 63050.00
2 72868.00 59889.00 97047.00 75272.00 20623.00
3 32079.00 96531.00 93877.00 12606.00 85533.00
4 10054.00 79387.00 28643.00 55232.00 74061.00
5 33993.00 71170.00 43455.00 65723.00 31798.00

Pjt

1 8937.00 5646.00 5911.00 59855.00 30449.00
2 3096.00 51514.00 48050.00 54892.00 26798.00
3 81986.00 62308.00 73564.00 47882.00 89556.00
4 69612.00 27785.00 82869.00 26735.00 67944.00
5 76689.00 95638.00 33644.00 25946.00 26610.00

Ijt

1 6.00 6.00 4.00 4.00 2.00
2 10.00 6.00 8.00 3.00 4.00
3 8.00 6.00 11.00 4.00 9.00
4 2.00 3.00 10.00 6.00 3.00
5 8.00 2.00 10.00 4.00 5.00

djt

1 2.00 2.00 3.00 2.00 1.00
2 1.00 1.00 3.00 2.00 1.00
3 1.00 2.00 2.00 2.00 2.00
4 3.00 3.00 3.00 2.00 3.00
5 2.00 3.00 1.00 2.00 3.00

MARRt 3 2 4 5 1
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5.1. Generating the test problems

Table 2 shows the parameters for the generated cases. The human resources types, the machine-hour types, and the raw
material types are represented by i, k, and o indices and are assumed to be equal to 4.

The generated random cases using the uniform distribution in Table 2 are summarized in Tables 3–6 provided in Appen-
dix A.

5.2. Implementation of the proposed algorithm

Table 7 presents the payoff matrix of the single objective optimization in the original MODM problem. The range of the
objective functions of the original MODM problem is presented in Table 7. These values are used to form the objective func-
tions of the TOPSIS-based bi-objective problemand to set the target values of the goals in the method proposed by Aköz and
Petrovic [5].

Table 8 shows the payoff matrix of the single objective optimization in the TOPSIS-based bi-objective problem. The range of
the objective functions of the TOPSIS-based bi-objective problem is presented in Table 8. These values are used to set the target
values of the goals in our proposed method. It is notable that the values of wi, i = 1, . . . ,4 and p are set to 0.25 and 1 in Tables 7
Table 4
Available resources for the random case.

Human Period 1 Period 2 Period 3 Period 4 Period 5

Hit

1 5919.00 7371.00 3761.00 8324.00 6228.00
2 2104.00 7253.00 9962.00 7437.00 1436.00
3 7769.00 4497.00 4433.00 1259.00 834.00
4 2282.00 5486.00 7777.00 4709.00 4134.00

Machine Period 1 Period 2 Period 3 Period 4 Period 5

Mkt

1 8401.00 4930.00 5343.00 9638.00 6598.00
2 4548.00 2567.00 8298.00 4915.00 758.00
3 4117.00 6528.00 2386.00 9824.00 5748.00
4 8402.00 1083.00 9120.00 1673.00 711.00

Material Period 1 Period 2 Period 3 Period 4 Period 5

Rot

1 229.00 7323.00 7479.00 8336.00 7814.00
2 2413.00 9933.00 6460.00 1697.00 5967.00
3 8281.00 753.00 4277.00 4326.00 7098.00
4 1379.00 226.00 3053.00 2089.00 2715.00

Table 5
Required resources for the random case.

Project Human 1 Human 2 Human 3 Human 4

hij

1 0.00 1.00 1.00 1.00
2 1.00 2.00 1.00 2.00
3 0.00 0.00 1.00 1.00
4 0.00 1.00 0.00 1.00
5 1.00 1.00 1.00 0.00

Machine 1 Machine 2 Machine 3 Machine 4

mkj

1 1.00 2.00 0.00 1.00
2 2.00 1.00 1.00 2.00
3 2.00 1.00 1.00 2.00
4 1.00 1.00 1.00 1.00
5 1.00 0.00 1.00 2.00

Material 1 Material 2 Material 3 Material 4

roj

1 1.00 0.00 0.00 1.00
2 1.00 1.00 1.00 1.00
3 0.00 1.00 0.00 0.00
4 1.00 1.00 2.00 1.00
5 2.00 2.00 2.00 1.00



Table 6
Unit cost of the resources for the random case.

Human Period 1 Period 2 Period 3 Period 4 Period 5

Cit

1 1.00 1.00 2.00 1.00 1.00
2 1.00 0.00 0.00 2.00 0.00
3 1.00 1.00 1.00 2.00 2.00
4 2.00 1.00 2.00 2.00 0.00

Machine Period 1 Period 2 Period 3 Period 4 Period 5

Ckt

1 0.00 1.00 1.00 1.00 0.00
2 1.00 1.00 2.00 0.00 2.00
3 1.00 1.00 1.00 1.00 1.00
4 0.00 1.00 2.00 1.00 2.00

Material Period 1 Period 2 Period 3 Period 4 Period 5

Cot

1 0.00 0.00 0.00 2.00 1.00
2 0.00 1.00 1.00 2.00 0.00
3 0.00 0.00 0.00 2.00 2.00
4 2.00 0.00 1.00 1.00 2.00

Table 7
Payoff matrix of the single-objective optimization for Problem (1).

Z1 Z2 Z3 Z4

Ideal calculations
Max Z1 327,879 60 15 300,352
Min Z2 0 0 0 300,411
Max Z3 161,366 83 21 300,352
Min Z4 273,935 60 15 300,352

Anti-ideal Calculations
Min Z1 0 0 0 300,411
Max Z2 215,310 83 21 300,352
Min Z3 0 0 0 300,411
Max Z4 0 0 0 300,411

Table 8
Payoff matrix of the TOPSIS-based bi-objective problem.

dPIS
p dNIS

p

Ideal calculations

Min dPIS
p

0.0100458 3.98995

Max dNIS
p

0 3.98995

Anti-ideal calculations

Max dPIS
p

3 0

Min dNIS
p

0 1
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and 8, respectively. It can also be concluded from Table 8 that the range of the objective functions of the TOPSIS-based bi-
objective problemhas a narrow interval while this range in the original MODM problem had a wide interval in Table 7. In gen-
eral, it is easier to compare a set of conflicting objectives in a narrow interval than a wide interval.

The DM’s preferences on the priority of the membership values of the fuzzy goals in the original problem and the two
goals in the TOPSIS-based goal programming problemare presented in Tables 9 and 10, respectively. The DMs independently
selected an uncertain preference score for the priority of the membership values of the fuzzy goals. The values presented in
Table 9 were used in an extended version of the FGP method proposed by Aköz and Petrovic [5] while the values in Table 10
were used in our proposed method.

Generally, the determination of the fuzzy relations is difficult, time consuming, and even impossible for MODM problems.
In the proposed procedure, we reduce the multi-objective problem into a bi-objective problem to limit the number of com-
parisons made by the DMs to one. We should note that all the crisp weights were equally distributed in both procedures in
order to establish a fair and comparable comparison setting.



Table 9
Fuzzy preference of the achievement level of the objectives in Problem (1).

Z1 Z2 Z3 Z4

Z1 R3 R3 R3

Z2 – R3 R3

Z3 – – R3

Z4 – – –

Table 10
Fuzzy preference of the achievement level of the TOPSIS-based bi-objective
problem.

dPIS
p dNIS

p

dPIS
p

R3

dNIS
p

–

Table 11
Results of the Aköz and Petrovic’s procedure for the MOPS–MPPH case.

k xjtjxjt – 0, "j, t l1 l2 l3 l4
P

iwili
P

i
P

jwijlijleR ði; jÞ O.F.V.

0 x13, x34, x44, x52 0.7619,048 0.3809524 0.7619048 0.000000 0.4761905 0.9206349 0.9206349
0.1 x13, x34, x44, x52 0.8809524 0.3809524 0.7619048 0.000000 0.5059524 0.9206349 0.8791667
0.2 x13, x34, x44, x52 0.8809524 0.3809524 0.7619048 0.000000 0.5059524 0.9206349 0.8376984
0.3 x13, x34, x44, x52 0.8809524 0.3809524 0.7619048 0.000000 0.5059524 0.9206349 0.7962302
0.4 x13, x34, x44, x52 0.8809524 0.3809524 0.7619048 0.000000 0.5059524 0.9206349 0.7547619
0.5 x13, x34, x44, x52 0.9457831 0.4457831 0.7619048 0.1296615 0.5707831 0.8774144 0.7240988
0.6 x13, x34, x44 1.000000 0.5421687 0.6666667 0.4176707 0.6566265 0.7496653 0.693842
0.7 x13, x34, x44 1.000000 0.5421687 0.6666667 0.4176707 0.6566265 0.7496653 0.6845381
0.8 x14, x34, x41, x52 1.000000 0.5542169 0.5714286 0.7288136 0.7136147 0.5502689 0.6809455
0.9 x14, x34, x41, x52 1.000000 0.5542169 0.5714286 0.7288136 0.7136147 0.5502689 0.6972801
1 x14, x34, x44, x52 0.9457831 0.4457831 0.7619048 0.7288136 0.7205711 0.000000 0.7205711

Mean 0.925207 0.453554 0.709957 0.286495 0.593803 0.734587 0.76270615

Table 12
Results of the proposed algorithm for the MOPS–MPPH case.

k xjtjxjt – 0, "j, t lPIS
p lNIS

p

P
iwili

P
i
P

jwijlijleR ði; jÞ O.F.V.

0 x24, x34 0.5000000 0.000000 0.2500000 1.000000 1
0.1 x52 1.000000 0.5000000 0.7500000 1.000000 0.975
0.2 x52 1.000000 0.5000000 0.7500000 1.000000 0.95
0.3 x52 1.000000 0.5000000 0.7500000 1.000000 0.925
0.4 x52 1.000000 0.5000000 0.7500000 1.000000 0.9
0.5 x52 1.000000 0.5000000 0.7500000 1.000000 0.875
0.6 x52 1.000000 1.000000 1.000000 0.6666667 0.8666667
0.7 x52 1.000000 1.000000 1.000000 0.6666667 0.9
0.8 x52 1.000000 1.000000 1.000000 0.6666667 0.9333333
0.9 x24, x34 1.000000 1.000000 1.000000 0.6666667 0.9666667
1 x24, x34 1.000000 1.000000 1.000000 0.6666667 1

Mean 0.954545 0.681818 0.818182 0.848485 0.9356061
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The results from the extended version of the FGP method proposed by Aköz and Petrovic [5] and the results from our
proposed method are summarized in Tables 11 and 12, respectively. The step-size of parameter k is set equal to 0.1 in both
procedures. All of the importance weights of the goals are assumed to be equally distributed for all segments of the objective
functions in both methods to make a fair and comparable comparison.

It can be concluded from Tables 11 and 12 that the mean of the weighted additive membership values for the fuzzy goals
in the proposed method is higher than the mean of the FGP method proposed by Aköz and Petrovic [5]. Moreover, it is
obvious that the mean of the weighted additive membership values of the DMs’ preferences on the uncertain priority of
the fuzzy goals in the proposed method is relatively higher than the mean of the FGP method proposed by Aköz and Petrovic
[5]. A narrow segment of the Pareto frontier which is both near the ideal solution and far from the anti-ideal solution is
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re-generated as the final solution since the proposed method uses TOPSIS to reduce the multi-objective space into a bi-objec-
tive space. Therefore, the multiplicity of the selected investment chances is reduced significantly. This results in the gener-
ation of more robust solutions under different circumstances. Moreover, the large amount of resources will be saved and
could be made available for future use. It is notable that all of these occur where the satisfaction level of the fuzzy goals
and the uncertain priority of the fuzzy goals are highly met in the proposed method.

5.3. Comparison indices

We have used a weighted sum membership value of the fuzzy goals, a weighted sum of the imprecise DMs’ preferences
on the priority of the membership values of the objectives, and the Closeness Coefficient (CC) to compare the performance of
the two procedures. The CC is calculated as follows:
Table 1
Closene

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Mea
CCki ¼
dNISki

p

dNISki
p þ dPISki

p

; i 2 f1; 2g; k 2 ½0; 1� ð58Þ
where CCki represents the CC of procedure i for parameter k; dNISki
p represents the distance from the NIS for procedure i con-

sidering parameter k and dPISki
p represents the distance from the PIS for procedure i considering parameter k. It is obvious that

CCki is between zero and one. The higher CCki values are associated with solutions which are simultaneously far from the NIS
and close to the PIS. Table 13 shows the CCki values for the two procedures.

As is shown in this table, all the CCki values in our proposed method are relatively higher than the CCki values in the FGP
method proposed by Aköz and Petrovic [5]. In other words, the solutions generated by our method are closer to the ideal
solution and farther from the ant-ideal solution in comparison with the solutions generated by the FGP method proposed
by Aköz and Petrovic [5]. Naturally, the case is the same for the mean row of the CCki values. We can conclude from Table
13 that the solutions generated by our method are superior to the solutions generated by the FGP method proposed by Aköz
and Petrovic [5] with respect to the distance from the PIS, distance from the NIS, and the CCki values.

5.4. Analysis of variance (ANOVA) for the comparison indices

ANOVA experiments were conducted to compare the performance of the two procedures using the three aforementioned
statistics (i.e.,

P
iwili;

P
i

P
jwijlijleRði; jÞ, and CCki). In spite of the fact that Tables 11–13 present the apparent dominance of

the proposed approach on these metrics, we tested the performance differences of the two procedures through ANOVA.

5.5. Interpreting the results of the ANOVA

An ANOVA test was conducted for 11 different samples of the aforementioned results which were a direct result of the
step-size 0.1 for k. The confidence levels of all experiments were set to 95%. The tests were accomplished using MINITAB 15.0
software.

Table 14 presents the results of the ANOVA for these metrics (i.e.
P

iwili;
P

i

P
jwijlijleRði; jÞ, and CCki). As is shown in this

table, there is enough evidence to reject the hypothesis of equal means for the considered metrics. We can conclude that the
achieved mean values of the selected measures (i.e.

P
iwili;

P
i

P
jwijlijleRði; jÞ, and CCki) in our proposed method are superior

to the same measures in the FGP method proposed by Aköz and Petrovic [5].
Clearly, the p-values are less than the significant level (i.e., 0.05). The results of the ANOVA test and the results provided in

Tables 11–13indicate that the performance of our proposed approach is significantly better than the performance of the FGP
method proposed by Aköz and Petrovic [5].
3
ss coefficients for both procedures.

Aköz, and Petrovic [5] Proposed framework (Algorithm II)

dNISk1
p dPISk1

p
CCk1 dNISk2

p dPISk2
p

CCk2

1.831907 2.103073 0.4655442 1.123279 1.160609 0.4918275
1.831907 2.103073 0.4655442 1.040843 1.050971 0.4975791
1.831907 2.103073 0.4655442 1.040843 1.050971 0.4975791
1.831907 2.103073 0.4655442 1.040843 1.050971 0.4975791
1.831907 2.103073 0.4655442 1.040843 1.050971 0.4975791
1.831907 2.103073 0.4655442 1.040843 1.050971 0.4975791
1.041694 1.052102 0.4975146 1.040843 1.050971 0.4975791
1.041694 1.052102 0.4975146 1.040843 1.050971 0.4975791
2.551417 3.060008 0.4546825 1.040843 1.050971 0.4975791
2.551417 3.060008 0.4546825 1.123279 1.160609 0.4918275
2.244240 2.651468 0.4584097 1.123279 1.160609 0.4918275

n 1.856537 2.135830 0.4687340 1.063326 1.080872 0.4960100



Table 14
Analysis of variance.

Source Degree of freedom Sum of square Mean square F p-Value

I. First metric:
P

iwili

Algorithm II 2 0.090291 0.045146 47.43 0.000
Error 8 0.007615 0.000952
Total 10 0.097907

S = 0.03085 R-Sq = 92.22% R-Sq (adj.) = 90.28%

II. Second metric:
P

i
P

jwijlijleR ði; jÞ
Algorithm II 1 0.4222 0.4222 10.02 0.011
Error 9 0.3793 0.0421
Total 10 0.8015

S = 0.2053 R-Sq = 52.68% R-Sq (adj.) = 47.42%

III. Third metric: CCki

Algorithm II 1 0.000348 0.000348 3.68 0.048
Error 9 0.001871 0.000208
Total 10 0.002219

S = 0.01442 R-Sq = 15.69% R-Sq (adj.) = 6.32%
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6. Conclusion remarks

We proposed a FGP approach based on TOPSIS for MODM by considering uncertain DM’s preferences on the priority of the
membership values of the fuzzy goals. The proposed approach has several attractive features. The first feature is the substan-
tial reduction of the objective function space. The proposed procedure reduces a multi-objective decision making problem to
an efficient bi-objective problem. As a result, the computational efforts and complexities are reduced significantly and high-
quality solutions that are simultaneously close to the PIS and far from the NIS are generated. The resulting bi-objective prob-
lem is solved using a new FGP. The second feature is the consideration of uncertain DMs’ preferences on the priority of the
membership values of the fuzzy goals in the form of fuzzy relations. The membership value of each fuzzy goal is modeled
using fuzzy sets. Moreover, the fuzzy DM’s preferences on the priority of the membership values of the fuzzy goals are effec-
tively extended through a structure which is comprised of linguistic terms, fuzzy relations, and fuzzy membership functions.
The third feature is the efficient consideration of the DMs’ preferences. DMs often have a difficult time presenting their pref-
erences on the priority of the fuzzy membership values which are uncertain themselves with crisp numbers. We model the
uncertain preferences between the priorities of the membership values of the fuzzy goals using linguistic terms parameter-
ized with linear fuzzy relations. The membership value of a given fuzzy goal is a fuzzy set with a membership value between
zero and one. A fuzzy relation has been organized between the membership values of the two fuzzy goals with uncertainties.
Ten different linguistic terms were introduced to model the uncertain preferences of the DMs on the priority of the mem-
bership values of the two fuzzy goals. Each linguistic term was associated with a linear type of fuzzy set which could have
different values with predefined membership values. Each fuzzy relation represented the membership values of the uncer-
tain preferences of the DMs on the priority of the membership values of the fuzzy goals, which are shown with the difference
between the membership values of the competing fuzzy goals i and j, li–lj through a continuous fuzzy set. In each fuzzy
relation set, the more conformity of li–lj with its associated linguistic term is, the higher the membership value of the rela-
tion is. This type of uncertainty modeling is a real application of type II fuzzy sets in which a fuzzy relation has been orga-
nized between membership values of the fuzzy goals which are fuzzy sets themselves.

The optimization model maximizes a parametric combination of the weighted sum membership values of the fuzzy goals
and the weighted sum of the fuzzy priority relations of the membership values of the fuzzy goals. The aforementioned fea-
tures of the proposed approach make it robust and well-posed for modeling real-life problems through FGP. Moreover the
proposed procedure interacts with the DM to determine the fuzzy relation type and the fine-tuning parameter k which sets
the two main arguments of the objective functions in the proposed approach (i.e., the weighted sum of the membership val-
ues of the fuzzy goals and the weighted sum of the DM’s preferences on the priority of the membership values of the fuzzy
goals).

A multi-objective fuzzy binary optimization model for solving the MOPS–MPPH was developed to present the efficiency
of the proposed procedure. In order to show the robustness of the proposed approach in solving complicated real-life prob-
lems, the MOPS–MPPH was used and compared with a FGP method proposed by Aköz and Petrovic [5]. The MOPS–MPPH was
equipped with 4 conflicting fuzzy objective functions (i.e., benefit, cost, internal rate of return, and resource utilization). The
problem involved seeking solutions for the four aforementioned fuzzy objective functions by considering several sets of con-
straints in a multi-period planning horizon. Three metrics were calculated in an experiment to compare the performance of
the two models. The proposed approach dominated the extended version of the FGP method proposed by Aköz and Petrovic
[5] on random benchmark cases. The structural and practical dominance of the proposed procedure are described next.

The relative importance of the fuzzy goals had not been considered in [5]. Our proposed approach reduces the multiple
dimensions of the objective function space based on TOPSIS while considering the relative importance of the fuzzy goals (i.e.,
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wPIS
p and wNIS

p Þ. We also considered the relative importance of the DM’s preferences on the membership values of the fuzzy
goals i and j (i.e., wij). The number of independent DM’s judgments on the priority of the membership values of the fuzzy
goals was reduced to one in our proposed procedure while this is proportional to the number of objective functions in
[5]. We developed a framework and a hierarchical structure of the DMs’ preferences on the membership values of the fuzzy
goals including linguistic terms and sub-terms, fuzzy relations, and the associated membership functions.

The proposed approach can efficiently generate solutions which are close to the PIS and far from the NIS, simultaneously.
This was demonstrated through the ANOVA experiments and the CCki metric. The ANOVA experiments showed that the
weighted sum of the membership values of the fuzzy goals in the proposed procedure are higher than in the same metric
in [5].
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